Skip to main content

Medicinal Plants in Controlling and Treatment of Diseases Caused by Viral Hemorrhagic Septicemia Virus (VHSV)

  • Reference work entry
  • First Online:
Anti-Viral Metabolites from Medicinal Plants

Part of the book series: Reference Series in Phytochemistry ((RSP))

  • 294 Accesses

Abstract

Numerous wild fish species around the world are affected by the viral hemorrhagic septicemia virus (VHSV), which is extremely contagious and pathogenic in nature. Due to growing worries about the emergence of medication resistance and slow progress in the creation of anti-viral drugs, there has recently been notable advancement in the field of herbal anti-viral therapy. Due to their vast therapeutic range and few to no side effects, medicinal plants have been utilized extensively throughout history in almost all nations for the treatment of illnesses and infections as traditional healing treatments. Since most viral agents cannot be treated with synthetic anti-virals, every attempt has been made to find novel medications and complementary/alternative treatments derived from various herbal preparations. This chapter demonstrates the efficacy of a variety of herbal preparations derived from various herbal medicines and their extracts in the management of infections caused by a variety of viral infections, including newly developing and reemerging viruses that harm human being and animals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 379.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CMV:

Cytomegalovirus

COVID-19:

Coronavirus disease

CPE:

Significant cytopathic effect

ELISA:

Enzyme-linked immunosorbent assay

FAK:

Focal adhesion kinase

FAO:

Food and Agriculture Organization

HNV:

Hematopoietic necrosis virus

ME:

Methanolic extract

OIE:

Organization for Animal Health

ROS:

Reactive oxygen species

RPS:

Relative percent survival

RTG-2:

Rainbow trout gonad cells

RT-PCR:

Reverse-transcription polymerase chain reaction

TEM:

Transmission electron microscopy

VHSV:

Viral hemorrhagic septicemia virus (Rhabdoviridae)

WHO:

World Health Organization

WOAH:

World Organization for Animal Health

References

  1. Gurjar VK, Pal DK, Patel AD (2020) In: Pal D (ed) Recent advances in chemistry and synthesis of pyrazole derivatives as potential promising antimicrobial agents in “Pyrazole preparation and uses”. NOVA Science

    Google Scholar 

  2. Zappa A, Amendola A, Romanò L, Zanetti A (2009) Emerging and re-emerging viruses in the era of globalization. Blood Transfus 7(3):167–171

    PubMed  PubMed Central  Google Scholar 

  3. Howard CR, Fletcher NF (2012) Emerging virus diseases: can we ever expect the unexpected? Emerg Microbes Infect 1:e46

    Article  PubMed  PubMed Central  Google Scholar 

  4. Pal DK, Mandal M, Senthilkumar GP, Padhiari A (2006) Antibacterial activity of Cuscutareflexa stem and Corchorus olitorius seed. Fitoterapia 77(7–8):589–591

    Article  CAS  PubMed  Google Scholar 

  5. Mohanta TK, Patra JK, Rath SK, Pal DK, Thatoi HN (2007) Evaluation of antimicrobial activity and phytochemical screening of oils and nuts of Semicarpus anacardium Lf. Sci Res Essays 2(11):486–490

    Google Scholar 

  6. Pal DK, Singh V, Pandey DD, Maurya RK (2014) Synthesis, characterization and antimicrobial evaluation of some 1, 2, 4-triazole derivatives. Int J Pharm Pharm Sci 6(8):213–216

    CAS  Google Scholar 

  7. Pal DK, Tripathi R, Pandey DD, Mishra P (2014) Synthesis, characterization, antimicrobial, and pharmacological evaluation of some 2, 5-disubstituted sulfonyl amino 1, 3, 4-oxadiazole and 2-amino-disubstituted 1, 3, 4-thiadiazole derivatives. J Adv Pharm Tech Res 5(4):196–201

    Article  Google Scholar 

  8. Rani P, Pal DK, Hegde RR, Hashim SR (2016) Acetamides: chemotherapeutic agents for inflammation-associated cancers. J Chemother 28(4):255–265

    Article  CAS  PubMed  Google Scholar 

  9. Saha S, Pal DK, Kumar S (2017) Antifungal and antibacterial activities of phenyl and ortho-hydroxy phenyl linked imidazolyl triazolo hydroxamic acid derivatives. Invent Rapid Med Chem 2:42–49

    Google Scholar 

  10. Dhama K, Karthik K, Khandia R, Munjal A, Tiwari R, Rana R, Joshi SK (2018) Medicinal and therapeutic potential of herbs and plant metabolites/extracts countering viral pathogens-current knowledge and future prospects. Curr Drug Metab 19(3):236–263

    Article  CAS  PubMed  Google Scholar 

  11. Schaeffer HJ, Beauchamp L, de Miranda P, Elion GB, Bauer DJ, Collins P (1978) 9-(2-hydroxyethoxymethyl) guanine activity against viruses of the herpes group. Nature 272:583–585

    Article  CAS  PubMed  Google Scholar 

  12. Littler E, Oberg B (2005) Achievements and challenges in antiviral drugdiscovery. Antivir Chem Chemother 16:155–168

    Article  CAS  PubMed  Google Scholar 

  13. Wang C, Song Z, Yu H, Liu K, Ma X (2015) Adenine: an important drug scaffold for the design of antiviral agents. Acta Pharm Sin B 5(5):431–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jefferson T, Jones MA, Doshi P, Del Mar CB, Hama R, Thompson MJ, Spencer EA, Onakpoya IJ, Mahtani KR, Nunan D, Howick J, Heneghan CJ (2014) Neuraminidase inhibitors for preventing and treating influenza in adults and children. Cochrane Database Syst Rev 10(4):CD008965

    Google Scholar 

  15. Blair W, Cox C (2016) Current landscape of antiviral drug discovery. F1000Research 5

    Google Scholar 

  16. Sun N, Yu T, Zhao J, Sun Y, Jiang J, Duan Z, Wang W, Hu Y, Lei H, Li H (2015) Antiviral activities of natural compounds derived from traditional chinese medicines against porcine circovirus type 2 (PCV2). Biotechnol Bioprocess Eng 20(1):180–187

    Article  CAS  Google Scholar 

  17. Kotwal GJ (2017) Natural antivirals against human viruses. Virol Mycol 3:e107

    Google Scholar 

  18. Chen SG, Cheng ML, Chen KH, Horng JT, Liu CC, Wang SM, Sakurai H, Leu YL, Wang SD, Ho HY (2017) Antiviral activities of Schizonepeta tenuifolia Briq. against enterovirus 71 in vitro and in vivo. Sci Rep 7(1):935

    Article  PubMed  PubMed Central  Google Scholar 

  19. Mwangi J, Gitonga L (2014) Perceptions and use of herbal remedies among patients with diabetes mellitus in murang, a North District, Kenya. Open J Clin Diagn 4(3):1–20

    Google Scholar 

  20. Guine RP, Goncalves FJ (2016) Bioactive compounds in some culinary aromatic herbs and their effects on human health. Mini-Rev Med Chem 16(11):855–866

    Article  CAS  PubMed  Google Scholar 

  21. Thakur KS, Munesh K, Pala NA (2016) Utilization of valuable higher altitude plants as a source of income generation and traditional medicine in bharmour forest division, Himachal Pradesh, India. Med Aromat Plants 5:226

    Google Scholar 

  22. Dhama K, Latheef SK, Mani S, Abdul Samad H, Karthik K, Tiwari R, Khan RU, Alagawany M, Mayada RF, Alam GM, Laudadio V, Tufarelli V (2015) Multiple beneficial applications and modes of action of herbs in poultry health and production. A review. Int J Pharmacol 11:152–176

    Article  CAS  Google Scholar 

  23. Rahal A, Kumar A, Singh V, Yadav B, Tiwari R, Chakraborty S, Dhama K (2014) Oxidative stress, prooxidants and antioxidants: the interplay. Bio Med Res Int 2014:e761264

    Google Scholar 

  24. Shareef M (2016) Natural cures for breast cancer treatment. Saudi Pharm J 24(3):233–240

    Article  PubMed  PubMed Central  Google Scholar 

  25. Faral-Tello P, Mirazo S, Dutra C, Perez A, Geis-Asteggiante L, Frabasile S, Koncke E, Davyt D, Cavallaro L, Heinzen H, Arbiza J (2012) Cytotoxic, virucidal and antiviral activity of South American plant and algae extracts. Sci World J 174837:1–5

    Article  Google Scholar 

  26. Kumar NK, Dua PK (2016) Status of regulation on traditional medicine formulations and natural products: Whither is India? Curr Sci 111(2):293–301

    Article  Google Scholar 

  27. Yuan H, Ma Q, Ye L, Piao G (2016) The traditional medicine and modern medicine from natural products. Molecules 21:559

    Article  PubMed  PubMed Central  Google Scholar 

  28. Tang SH, Chen JX, Li G, Wu HW, Chen C, Zhang N, Gao N, Yang HJ, Huang LQ (2010) Research on component law of Chinese patent medicine for anti-influenza and development of new recipes for anti-influenza by unsupervised data mining methods. J Tradit Chin Med 30(4):288–293

    Article  PubMed  Google Scholar 

  29. Mukhtar M, Arshad M, Ahmad M, Pomerantz RJ, Wigdah B, Parveen Z (2008) Antiviral potentials of medicinal plants. Virus Res 131(2):111–120

    Article  CAS  PubMed  Google Scholar 

  30. Studer J, Janies DA (2011) Global spread and evolution of viral haemorrhagic septicaemia virus. J Fish Dis 34(10):741–747

    Article  CAS  PubMed  Google Scholar 

  31. Gadd T (2013) Fish rhabdoviruses: viral haemorrhagic septicaemia virus (VHSV) and perch rhabdovirus (PRV): study of viral strains and the disease epidemiology in Finland

    Google Scholar 

  32. Walker PJ, Benmansour A, Dietzgen R, Fang RX and others (2000) Family Rhabdoviridae. In: ICTV, Van Regenmortel MHV, Fauquet CM, Bishop DHL (eds) Virus taxonomy. Classification and nomenclature of viruses. Seventh report of the international committee on taxonomy of viruses. Academic, New York, 562–583

    Google Scholar 

  33. Pierce LR, Stepien CA (2012) Evolution and biogeography of an emerging quasispecies: diversity patterns of the fish Viral Hemorrhagic Septicemia virus (VHSv). Mol Phylogenet Evol 63:327–341

    Article  PubMed  Google Scholar 

  34. Oidtmann B, Joiner C, Stone D, Dodge M, Reese RA, Dixon P (2011) Viral load of various tissues of rainbow trout challenged with viral haemorrhagic septicaemia virus at various stages of disease. Dis Aquat Org 93:93–104

    Article  CAS  Google Scholar 

  35. Kipp RM, Ricciardi A (2006) Viral hemorrhagic septicemia (VHS) factsheet. NOAA National Center for Research on Aquatic Invasive Species, Great Lakes Aquatic Nonindigenous Species Information System (GLANSIS) 2006-12-08. Retrieved 2007-07-13

    Google Scholar 

  36. Jon B (2007) New fish virus could be a little as 2 years away from Lake Michigan. Ludington Daily News 2007-01-09. Retrieved 2007-07-13

    Google Scholar 

  37. Crane M (2006) Chapter 2.1.5: Viral hemorrhagic septicaemia manual of diagnostic tests for aquatic animals 2006. Retrieved 2007-07-16

    Google Scholar 

  38. Hwang JY, Ahn SJ, Kwon MG, Seo JS, Hwang SD, Jee BY (2020) Whole-genome next-generation sequencing and phylogenetic characterization of viral haemorrhagic septicaemia virus in Korea. J Fish Dis 43(5):599–607

    Article  CAS  PubMed  Google Scholar 

  39. Benmansour A, Basurco B, Monnier AF, Vende P, Winton JR, de Kinkelin P (1997) Sequence variation of the glycoprotein gene identifies three distinct lineages within field isolates of viral haemorrhagic septicaemia virus, a fish rhabdovirus. J Gen Virol 78:2837–2846

    Article  CAS  PubMed  Google Scholar 

  40. Stone DM, Way K, Dixon PF (1997) Nucleotide sequence of the glycoprotein gene of viral haemorrhagic septicaemia (VHS) viruses from different geographical areas: a link between VHS in farmed fish species and viruses isolated from North Sea cod (Gadus morhua L.). J Gen Virol 78:1319–1326

    Article  CAS  PubMed  Google Scholar 

  41. Einer-Jensen K, Winton J, Lorenzen N (2005) Genotyping of the fish rhabdovirus, viral haemorrhagic septicaemia virus, by restriction fragment length polymorphisms. Vet Microbiol 106:167–178

    Article  CAS  PubMed  Google Scholar 

  42. Dale OB, Ørpetveit I, Lyngstad TM, Kahns S, Skall HF, Olesen NJ, Dannevig BH (2009) Outbreak of viral haemorrhagic septicaemia (VHS) in seawater-farmed rainbow trout in Norway caused by VHS virus genotype III. Dis Aquat Org 85(2):93–103

    Article  CAS  Google Scholar 

  43. Elsayed E, Faisal M, Thomas M, Whelan G, Batts W, Winton J (2006) Isolation of viral haemorrhagic septicaemia virus from muskellunge, Esox masquinongy (Mitchill), in Lake St Clair, Michigan, USA reveals a new sublineage of the North American genotype. J Fish Dis 29(10):611–619

    Article  CAS  PubMed  Google Scholar 

  44. Dadar M (2020) Viral hemorrhagicsepticemia disease. In: Emerging and reemerging viral pathogens. Academic Press, New York, NY, 705–715

    Google Scholar 

  45. Zwillenberg LO, Jensen MH, Zwillenberg HH (1965) Electron microscopy of the virus of viral haemorrhagic septicaemia of rainbow trout (Egtved virus). Archiv für die gesamteVirusforschung 17(1):1–19

    Article  Google Scholar 

  46. Meyers TR, Winton JR (1995) Viral hemorrhagicsepticemia virus in North America. Annu Rev Fish Dis 5:3–24

    Article  Google Scholar 

  47. Pereiro P, Figueras A, Novoa B (2016) Turbot (Scophthalmus maximus) vs. VHSV (viral hemorrhagicsepticemia virus): a review. Front Physiol 7:192

    Article  PubMed  PubMed Central  Google Scholar 

  48. Campbell JB, Wolf K (1969) Plaque assay and some characteristics of Egtved virus (virus of viral hemorrhagicsepticemia of rainbow trout). Can J Microbiol 15(6):635–637

    Article  CAS  PubMed  Google Scholar 

  49. Olesen NJ, Jørgensen PEV (1991) Rapid detection of viral haemorrhagic septicaemia virus in fish by ELISA. J Appl Ichthyol 7(3):183–186

    Article  Google Scholar 

  50. Chilmonczyk S, Winton JR (1994) Involvement of rainbow trout leucocytes in the pathogenesis of infectious hematopoietic necrosis. Dis Aquat Org 19:89–94

    Article  Google Scholar 

  51. Chilmonczyk S, Voccia I, Monge D (1995) Pathogenesis of viral haemorrhagic septicaemia virus: cellular aspects. Vet Res 26(5–6):505–511

    CAS  PubMed  Google Scholar 

  52. Estepa A, Frias D, Coll JM (1992) Susceptibility of trout kidney macrophages to viral hemorrhagicsepticemia virus. Viral Immunol 4:283–292

    Article  Google Scholar 

  53. Sanz F, Coll JM (1992) Techniques for diagnosing viral diseases of salmonid fish. Dis Aquat Org 13:211–223

    Article  Google Scholar 

  54. Jasemi E, Momtaz S, Ghaffarzadegan R, Abdolghaffari AH, Abdollahi M (2021) A narrative review of herbal preparations against RNA viruses. J Contemp Med Sci 7(1)

    Google Scholar 

  55. Kumar BNS, Swamy BNV, Swamy A, Murali AA (2010) Review of natural diuretics. Res J Pharm, Biol Chem Sci 1(4):615–634

    Google Scholar 

  56. Wang Y, Zhou B, Lu J, Chen Q, Ti H, Huang W, Li J, Yang Z, Jiang Z, Wang X (2017) Inhibition of influenza virus via a sesquiterpene fraction isolated from Laggerapterodonta by targeting the NF-B and p38 pathways. BMC Complement Altern Med 17(1):25

    Article  PubMed  PubMed Central  Google Scholar 

  57. Merina N, Chandra KJ, Jibon K (2012) Medicinal plants with potential anticancer activities: a review. Int Res J Pharm 3(6):26–30

    CAS  Google Scholar 

  58. Borokini TI, Omotayo FO (2012) Photochemical and ethnobotanical study of some selected medicinal plants from Nigeria. J Med Plant Res 6(7):1106–1118

    CAS  Google Scholar 

  59. Sumithira P, Mangala SD, Sophie AM, Latha CP (2012) Antiviral and antioxidant activities of two medicinal plants. Int J Cur Sci 2:256–261

    Google Scholar 

  60. Al-Ali KH, El-Badry AA (2010) Anti-viral activity of two Labiatae plants [Naana (Hassoi, Habak) and basil (Rahan)] of Al-MadiahAlmunawarah. J Med Biomed Sci 1(1):67–73

    Google Scholar 

  61. Simoni IC, Manha APS, Sciessere L, Hoe VMH, Takinami VH, Fernandes MJB (2007) Evaluation of antiviral activity of Brazilian Cerrado plants against animal viruses. Virus Rev Res 12:1–17

    Article  Google Scholar 

  62. Van Hai N (2015) The use of medicinal plants as immunostimulants in aquaculture: a review. Aquaculture 446:88–96

    Article  Google Scholar 

  63. Hoffman R, Recommends BDH, Show WR, Index P, Index R, Protocol D (2010) Olive leaf extract. Viitattu 5:2010

    Google Scholar 

  64. Hashmi MA, Khan A, Hanif M, Farooq U, Perveen S (2015) Traditional uses, phytochemistry, and pharmacology of Olea europaea (olive). Evid Based Complement Altern Med 2015, 541591:1–29.

    Google Scholar 

  65. Guex CG, Reginato FZ, de Jesus PR, Brondani JC, Lopes GHH, de Freitas BL (2019) Antidiabetic effects of Olea europaea L. leaves in diabetic rats induced by high-fat diet and low-dose streptozotocin. J Ethnopharmacol 235:1–7

    Article  CAS  PubMed  Google Scholar 

  66. Paiva-Martins F, Gordon MH, Gameiro P (2003) Activity and location of olive oil phenolic antioxidants in liposomes. Chem Phys Lipids 124:23–36

    Article  CAS  PubMed  Google Scholar 

  67. Saija A, Trombetta D, Tomaino A, Lo Cascio R, Princi P, Uccella N, Bonina F, Castelli F (1998) In vitro evaluation of the antioxidant activity and biomembrane interaction of the plant phenols oleuropein and hydroxytyrosol. Int J Harm 166:123–133

    CAS  Google Scholar 

  68. Ben Salem M, Affes H, Ksouda K, Sahnoun Z, Zeghal KM, Hammami S (2015) Pharmacological activities of O lea europaea leaves. J Food Process Preserv 39(6):3128–3136

    Article  CAS  Google Scholar 

  69. Micol V, Caturla N, Pérez-Fons L, Más V, Pérez L, Estepa A (2005) The olive leaf extract exhibits antiviral activity against viral haemorrhagic septicaemia rhabdovirus (VHSV). Antivir Res 66(2–3):129–136

    Article  CAS  PubMed  Google Scholar 

  70. Lee-Huang S, Zhang L, Huang PL, Chang YT, Huang PL (2003) Anti-HIV activity of olive leaf extract (OLE) and modulation of host cell gene expression by HIV-1 infection and OLE treatment. Biochem Biophys Res Commun 307(4):1029–1037

    Google Scholar 

  71. Omar SH (2010) Oleuropein in olive and its pharmacological effects. Sci Pharm 78(2):133–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kuo KK, Chang JS, Wang KC, Chiang LC (2009) Water extract of Glycyrrhiza uralensis inhibited enterovirus 71 in a human foreskin fibroblast cell line. Am J Chin Med 37(02):383–394

    Article  PubMed  Google Scholar 

  73. Lim JW, Seo JK, Jung SJ, Kang SY (2021) Efficacy of an optimized extract from licorice roots (Glycyrrhiza uralensisfischer) against viral hemorrhagicsepticemia virus in olive flounder (Paralichthysolivaceus). Aquac Res 52(6):2609–2621

    Article  CAS  Google Scholar 

  74. Shoyama Y (2013) Standardization of licorice and TCM formulations using eastern blot fingerprinting analysis. J Chemother 2013:573070

    Google Scholar 

  75. Jafarpour M, Talab AA, Fard AN (2016) In vitro study of the effect of Melissa officinalis aqueous lemon balm extract on Aeromonas hydrophila causative Hemorrhagic septicemia disease in Oncorhychus mykiss. Biomed Pharmacol J 9(1):305–310

    Article  Google Scholar 

  76. Zarei A, ChangiziAshtiyani S, Taheri S, Rasekh F (2014) Comparison between effects of different doses of Melissa officinalis and atorvastatin on the activity of liver enzymes in hypercholesterolemia rats. Avicenna J Phytomedicine 4(1):15–23

    CAS  Google Scholar 

  77. Seo JK, Do CY, Jung MH, Jung SJ, Kang SY (2015) In vivo antiviral activity of Sanguisorba officinalis roots against viral hemorrhagicsepticemia virus in olive flounder Paralichthysolivaceus. Planta Med 81(16):PW_45

    Article  Google Scholar 

  78. Kang SY, Seo JK, Lim JW (2016) Antiviral pentacyclic triterpenoids isolated from Sanguisorba officinalis roots against viral hemorrhagicsepticemia virus and simultaneous quantification by LC-MS/MS. Planta Med 82(S 01):P1013

    Google Scholar 

  79. Guo DL, Chen JF, Tan L, Jin MY, Ju F, Cao ZX, Deng Y (2019) Terpene glycosides from Sanguisorba officinalis and their anti-inflammatory effects. Molecules 24(16):2906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Yang JH, Hwang YH, Gu MJ, Cho WK, Ma JY (2015) Ethanol extracts of Sanguisorba officinalis L. suppress TNF-α/IFN-γ-induced pro-inflammatory chemokine production in HaCaT cells. Phytomedicine 22(14):1262–1268

    Article  CAS  PubMed  Google Scholar 

  81. Kang SY, Kang JY, Oh MJ (2012) Antiviral activities of flavonoids isolated from the bark of Rhus verniciflua stokes against fish pathogenic viruses in vitro. J Microbiol 50(2):293–300

    Article  CAS  PubMed  Google Scholar 

  82. Jang JY, Shin H, Lim J-W, Ahn JH, Jo YH, Lee KY, Lee MK (2018) Comparison of antibacterial activity and phenolic constituents of bark, lignum, leaves and fruit of Rhus verniciflua. PLoS One 13(7):e0200257

    Article  PubMed  PubMed Central  Google Scholar 

  83. Gholizadeh A, Kumar M, Balasubrahmanyam A, Sharma S, Narwal S, Lodha ML, Kapoor HC (2004) Antioxidant activity of antiviral proteins from Celosia cristata. J Plant Biochem Biotechnol 13(1):3–18

    Article  Google Scholar 

  84. Sharma D, Sharma L (2021) The chemical composition and pharmaceutical effect of celosia cristata: a review on nutritional aspect. Int J Innov Sci Technol 6(7):218–223

    Google Scholar 

  85. Begam M, Narwal S, Roy S, Kumar S, Lodha ML, Kapoor HC (2006) An antiviral protein having deoxyribonuclease and ribonuclease activity from leaves of the post-flowering stage of Celosia cristata. Biochem Mosc 71(1):S44–S48

    Article  CAS  Google Scholar 

  86. Balasubrahmanyam A, Baranwal VK, Lodha ML, Varma A, Kapoor HC (2000) Purification and properties of growth stage-dependent antiviral proteins from the leaves of Celosia cristata. Plant Sci 154(1):13–21

    Article  CAS  PubMed  Google Scholar 

  87. Yanping XZLLW, Fengzhen Q (1987) Protective effect of extract of Raphanus sativus root on virus infection in vivo. Chin J Virol 1:019

    Google Scholar 

  88. Shin T, Ahn M, Kim GO, Park SU (2015) Biological activity of various radish species. Orient Pharm Exp Med 15(2):105–111

    Article  Google Scholar 

  89. Gutiérrez RMP, Perez RL (2004) Raphanus sativus (radish): their chemistry and biology. Sci World J 4:811

    Article  Google Scholar 

  90. Park Y, Moon C, Kang JH, Choi TJ (2017) Antiviral effects of extracts from Celosia cristata and Raphanus sativus roots against viral hemorrhagicsepticemia virus. Arch Virol 162(6)

    Google Scholar 

  91. Tang Y, Xin HL, Guo ML (2016) Review on research of the phytochemistry and pharmacological activities of Celosia argentea. Revistabrasileira de farmacognosia 26:787–796

    Article  CAS  Google Scholar 

  92. Yi G, Kim JS, Park JE, Shin H, Yu SH, Park S, Huh JH (2018) MYB1 transcription factor is a candidate responsible for red root skin in radish (Raphanus sativus L.). PLoS One 13(9):e0204241

    Article  PubMed  PubMed Central  Google Scholar 

  93. Jennings MR, Parks RJ (2020) Curcumin as an antiviral agent. Viruses 12(11):1242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Mathew D, Hsu WL (2018) Antiviral potential of curcumin. J Funct Foods 40:692–699

    Article  CAS  Google Scholar 

  95. Jeong EH, Vaidya B, Cho SY, Park MA, Kaewintajuk K, Kim SR, Kim D (2015) Identification of regulators of the early stage of viral hemorrhagicsepticemia virus infection during curcumin treatment. Fish Shellfish Immunol 45(1):184–193

    Article  CAS  PubMed  Google Scholar 

  96. Mbadiko CM, Inkoto CL, Gbolo BZ, Lengbiye EM, Kilembe JT, Matondo A, Mpiana PT (2020) A mini review on the phytochemistry, toxicology and antiviral activity of some medically interesting Zingiberaceae species. J Complemen Altern Med Res 44–56

    Google Scholar 

  97. Zheng J, Cheng J, Zheng S, Feng Q, Xiao X (2018) Curcumin, a polyphenolic curcuminoid with its protective effects and molecular mechanisms in diabetes and diabetic cardiomyopathy. Front Pharmacol 9:472

    Article  PubMed  PubMed Central  Google Scholar 

  98. Raja A, Vipin C, Aiyappan A (2013) Biological importance of marine algae-an overview. Int J Curr Microbiol Appl Sci 2(5):222–227

    Google Scholar 

  99. Monteiro M, Lavrador AS, Santos R, Rangel F, Iglesias P, Tárraga M, Díaz-Rosales P (2021) Evaluation of the potential of marine algae extracts as a source of functional ingredients using zebrafish as animal model for aquaculture. Mar Biotechnol 23(4):529–545

    Article  CAS  Google Scholar 

  100. Fabregas J, Garcıa D, Fernandez-Alonso M, Rocha AI, Gómez-Puertas P, Escribano JM, Coll JM (1999) In vitro inhibition of the replication of haemorrhagic septicaemia virus (VHSV) and African swine fever virus (ASFV) by extracts from marine microalgae. Antivir Res 44(1):67–73

    Article  CAS  PubMed  Google Scholar 

  101. Kwon HJ, Ryu YB, Kim YM, Song N, Kim CY, Rho MC, Park SJ (2013) In vitro antiviral activity of phlorotannins isolated from Ecklonia cava against porcine epidemic diarrhea coronavirus infection and hemagglutination. Bioorg Med Chem 21(15):4706–4713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Yang HK, Jung MH, Avunje S, Nikapitiya C, Kang SY, Ryu YB, Jung SJ (2018) Efficacy of algal Ecklonia cava extract against viral hemorrhagicsepticemia virus (VHSV). Fish Shellfish Immunol 72:273–281

    Article  PubMed  Google Scholar 

  103. Han HJ, Park SK, Kang JY, Kim JM, Yoo SK, Kim DO, Heo HJ (2021) Mixture of phlorotannin and fucoidan from Ecklonia cava prevents the aβ-induced cognitive decline with mitochondrial and cholinergic activation. Mar Drugs 19(8):434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Gurjar, V.K. (2024). Medicinal Plants in Controlling and Treatment of Diseases Caused by Viral Hemorrhagic Septicemia Virus (VHSV). In: Pal, D. (eds) Anti-Viral Metabolites from Medicinal Plants. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-031-12199-9_16

Download citation

Publish with us

Policies and ethics