Skip to main content

Medicinal Plants Against SARS-CoV/Corona Virus Infections: Ethnopharmacology, Chemistry, and Clinical and Preclinical Studies

  • Reference work entry
  • First Online:
Anti-Viral Metabolites from Medicinal Plants

Abstract

Recently, natural compounds have gained significant importance in health care, as they do not exhibit adverse effects compared to synthetic drugs. Since the dawn of civilization, plants have been one of the primary sources of medicine. Natural occurring medicinal plants, either alone or in combination, are widely used in the health care system. Medicinal plants can be a rich source of chemical substances with therapeutic potential. Coronavirus is an infectious disease that causes acute respiratory illness caused by a virus. Even a year after COVID-19’s first occurrence in Wuhan city, the number of cases is still rising daily throughout the world. SARS-CoV-2 infection spreads quickly and is distinct from other infections, probably due to variations in structural spike proteins. Patients suffering from critical conditions may die from acute respiratory distress syndrome (ARDS), which is characterized by rapid inflammatory reactions caused by the immune effector cells’ excessive production of cytokines and chemokines. This chapter reviews medicinal plants used against SARS-CoV or coronavirus infections, particularly emphasizing ethnopharmacology, chemistry, clinical, and preclinical studies. Various traditional herbs with medicinal values against coronavirus are discussed. AYUSH formulations that have advanced into pilot and full clinical trials against SAR-CoV-2 are also described. Phytoconstituents with potential against coronavirus were studied using activity miner studies, and cluster analysis; disparity and similarity scores were analyzed. To address the current problem, it is advised that promising AYUSH formulations and Indian medicinal plants be explored as soon as possible. This review can be utilized for both therapeutic and research purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 379.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3CLpro:

“3-chymotrypsin-like protease”

ACE2:

Angiotensin-converting enzyme 2

IL:

Interleukin-6

MERS-CoV:

Middle East respiratory syndrome coronavirus

N:

Nucleocapsid

PLpro:

Papain-like protease

pp.:

Polyprotein

RAAS:

Renin-angiotensin-aldosterone system;

RBD:

Receptor binding domain

RdRp:

“RNA-dependent RNA polymerase”

S :

Spike

SARS-CoV:

Severe Acute Respiratory Syndrome

SoC:

Standard of care (SoC)

TM:

Traditional medicine

TMPRSS2:

Transmembrane protease serine

TNF-alpha:

Tumor necrosis factor-alpha

VoC:

Variant of concern

References

  1. Islam MM (2013) Biochemistry, medicinal and food values of jute (Corchorus capsularis L. and C. olitorius L.) leaf: a review. Int J Enhanc Res Sci Technol En 2:135–144. https://doi.org/10.3390/antiox11071358

    Article  CAS  Google Scholar 

  2. Bouyahya A, Bakri Y, Khay EO, Edaoudi F, Talbaoui A, Et-Touys A, Abrini J, Dakka N (2017) Antibacterial, antioxidant and antitumor properties of Moroccan medicinal plants: a review. Asian Pac J Trop Dis 7:57–64. https://doi.org/10.12980/apjtd.7.2017d6-294

    Article  Google Scholar 

  3. Tabish SA (2008) Complementary and alternative healthcare: is it evidence-based? Int. J. Health Sci 2:1–143. https://doi.org/10.1155/2014/525340

    Article  Google Scholar 

  4. Kamboj VP (2000) Herbal medicine. Curr Sci 78:35–39. https://doi.org/10.2307/24103844

    Article  Google Scholar 

  5. Calixto JB (2000) Efficacy, safety, quality control, marketing and regulatory guidelines for herbal medicines (phytotherapeutic agents). Braz J Med Biol Res 33:179–189. https://doi.org/10.1590/s0100-879x2000000200004

    Article  CAS  PubMed  Google Scholar 

  6. Khan M, Adil SF, Alkhathlan HZ, Tahir MN, Saif S, Khan M, Khan ST (2020) COVID-19: a global challenge with old history, epidemiology and progress so far. Molecules 26:39. https://doi.org/10.3390/molecules26010039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Schneider E (2012) Severe Acute Respiratory Syndrome (SARS). Netter’s Inf Dis:537–543. https://doi.org/10.1016/B978-1-4377-0126-5.00089-6

  8. Atzrodt CL, Maknojia I, McCarthy RD, Oldfield TM, Po J, Ta KT, Stepp HE, Clements TP (2020) A Guide to COVID-19: a global pandemic caused by the novel coronavirus SARS-CoV-2. FEBS J 287:3633–3650. https://doi.org/10.1111/febs.15375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Safari I, Elahi E (2021) Evolution of the SARS-CoV-2 genome and emergence of variants of concern. Arch Virol 167:293–305. https://doi.org/10.1007/s00705-021-05295-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zoccola R, Beltramo C, Magris G, Peletto S, Acutis P, Bozzetta E, Radovic S, Zappulla F, Porzio AM, Gennero MS, Dondo A (2021) First detection of an Italian human-to-cat outbreak of SARS-CoV-2 Alpha variant–lineage B. 1.1. 7. One. Health 13:100295. https://doi.org/10.1016/j.onehlt.2021.100295

    Article  CAS  Google Scholar 

  11. Kannan S, Ali PS, Sheeza A (2021) Evolving biothreat of variant SARS-CoV-2-molecular properties, virulence and epidemiology. Eur Rev Med Pharmacol Sc 25:4405–4412. https://doi.org/10.26355/eurrev_202106_26151

    Article  CAS  Google Scholar 

  12. La Rosa G, Brandtner D, Mancini P, Veneri C, Bonanno Ferraro G, Bonadonna L, Lucentini L, Suffredini E (2021) Key SARS-CoV-2 mutations of alpha, gamma, and eta variants detected in urban wastewaters in Italy by long-read amplicon sequencing based on nanopore technology. Water. 13:2503. https://doi.org/10.3390/w13182503

    Article  CAS  Google Scholar 

  13. Mohapatra RK, Kandi V, Verma S, Dhama K (2022) Challenges of the Omicron (B. 1.1. 529) variant and its lineages: a global perspective. Chembiochem 23:e202200059. https://doi.org/10.1002/cbic.202200059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Petersen E, Ntoumi F, Hui DS, Abubakar A, Kramer LD, Obiero C, Tambyah PA, Blumberg L, Yapi R, Al-Abri S, Pinto TD (2022) Emergence of new SARS-CoV-2 Variant of Concern Omicron (B. 1.1. 529)-highlights Africa’s research capabilities, but exposes major knowledge gaps, inequities of vaccine distribution, inadequacies in global COVID-19 response and control efforts. Int. J. Infect. Dis. 114:268–272. https://doi.org/10.1016/j.ijid.2021.11.040

    Article  CAS  PubMed  Google Scholar 

  15. Chen J, Wang R, Gilby NB, Wei GW (2022) Omicron variant (B. 1.1. 529): infectivity, vaccine breakthrough, and antibody resistance. J Chem Inf Mode 62(2):412–422. https://doi.org/10.1021/acs.jcim.1c01451

    Article  CAS  Google Scholar 

  16. Bentur SA, Mishra A, Kumar Y, Thakral S, Sanjiv S, Garg R (2021) Integrative Therapy based on Yoga, Ayurveda and Modern Western Medicine for treatment of high-risk cases of COVID-19: a telemedicine-based case series. IJTK 21. https://doi.org/10.56042/ijtk.v21i3.55516

  17. Clark AM (1996) Natural products as a resource for new drugs. Pharm Res 13:1133–1141. https://doi.org/10.1023/a:1016091631721

    Article  CAS  PubMed  Google Scholar 

  18. Fuzimoto AD, Isidoro C (2020) The antiviral and coronavirus-host protein pathways inhibiting properties of herbs and natural compounds – additional weapons in the fight against the COVID-19 pandemic? J Tradit Complement Med 10:405–419. https://doi.org/10.1016/j.jtcme.2020.05.003

    Article  PubMed  PubMed Central  Google Scholar 

  19. Siddiqui AJ, Danciu C, Ashraf SA, Moin A, Singh R, Alreshidi M, Patel M, Jahan S, Kumar S, Alkhinjar MI, Badraoui R (2020) Plants-derived biomolecules as potent antiviral phytomedicines: new insights on ethnobotanical evidences against coronaviruses. Plants (Basel) 9. https://doi.org/10.3390/plants9091244

  20. Heinrich M (2010) Ethnopharmacology in the 21st century-grand challenges. Front Pharmacol 1:8. https://doi.org/10.3389/fphar.2010.00008

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wang J-b, Andrade-Cetto A, Echeverria J, Wardle J, Yen H-R, Heinrich M (2022) Ethnopharmacological responses to the coronavirus disease 2019 pandemic. Front Pharmacol 7. https://doi.org/10.3389/fphar.2021.798674

  22. Okoro EE, Maharjan R, Jabeen A, Ahmad MS, Azhar M, Shehla N, Zaman W, Shams S, Osoniyi OR, Onajobi FD, Choudhary MI (2021) Isoflavanquinones from Abrus precatorius roots with their antiproliferative and anti-inflammatory effects. Phytochemistry 187:112743. https://doi.org/10.1016/j.phytochem.2021.112743

    Article  CAS  PubMed  Google Scholar 

  23. Dutta T, Ghorai S, Khan AA, Baildya N, Ghosh NN (2021) Screening of potential anti-HIV compounds from Achyranthes aspera extracts for SARS-CoV-2: an insight from molecular docking study. J Phys Conf Ser 1797. https://doi.org/10.1088/1742-6596/1797/1/012042

  24. Donma MM, Donma O (2020) The effects of allium sativum on immunity within the scope of COVID-19 infection. Med Hypotheses 144:109934. https://doi.org/10.1016/j.mehy.2020.109934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Moghadamtousi SZ, Fadaeinasab M, Nikzad S, Mohan G, Ali HM, Kadir HA (2015) Annona muricata (Annonaceae): a review of its traditional uses, isolated acetogenins and biological activities. Int. J. Mol. Sci 16:15625–15658. https://doi.org/10.3390/ijms160715625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Balderrama-Carmona AP, Silva-Beltrán NP, Gálvez-Ruiz JC, Ruíz-Cruz S, Chaidez-Quiroz C, Morán-Palacio EF (2020) Antiviral, antioxidant, and antihemolytic effect of Annona muricata L. leaves extracts. Plant 9(1650). https://doi.org/10.3390/plants9121650

  27. Balkrishna A, Pokhrel S, Singh H, Joshi M, Mulay VP, Haldar S, Varshney A (2021) Withanone from Withania somnifera attenuates SARS-CoV-2 RBD and host ACE2 interactions to rescue spike protein induced pathologies in humanized zebrafish model. Drug Des Devel Ther 15:1111. https://doi.org/10.2147/DDDT.S292805

    Article  PubMed  PubMed Central  Google Scholar 

  28. Koulgi S, Jani V, Uppuladinne VNM, Sonavane U, Joshi R (2021) Natural plant products as potential inhibitors of RNA dependent RNA polymerase of Severe Acute Respiratory Syndrome Coronavirus-2. PLoS One 16:e0251801. https://doi.org/10.1371/journal.pone.0251801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Khalifa SA, Yosri N, El-Mallah MF, Ghonaim R, Guo Z, Musharraf SG, Du M, Khatib A, Xiao J, Saeed A, El-Seedi HH (2021) Screening for natural and derived bio-active compounds in preclinical and clinical studies: One of the frontlines of fighting the coronaviruses pandemic. Phytomedicine 85:153311. https://doi.org/10.1016/j.phymed.2020.153311

    Article  CAS  PubMed  Google Scholar 

  30. Shahhamzehei N, Abdelfatah S, Efferth T (2022) In Silico and In Vitro Identification of Pan-Coronaviral Main Protease Inhibitors from a Large Natural Product Library. Pharmaceuticals (Basel) 15:308. https://doi.org/10.3390/ph15030308

    Article  CAS  PubMed  Google Scholar 

  31. Kanjanasirirat P, Suksatu A, Manopwisedjaroen S, Munyoo B, Tuchinda P, Jearawuttanakul K, Seemakhan S, Charoensutthivarakul S, Wongtrakoongate P, Rangkasenee N, Pitiporn S (2020) High-content screening of Thai medicinal plants reveals Boesenbergia rotunda extract and its component Panduratin a as anti-SARS-CoV-2 agents. Sci Rep 10:1–12. https://doi.org/10.1038/s41598-020-77003-3

    Article  CAS  Google Scholar 

  32. Thakur A, Gautam S, Kaushal K, Kumari A, Thakur A, Bhatt K, Jasta S (2022) A review on therapeutic potential of Indian medicinal plants against COVID-19 pandemic. Ann. Phytomed. 11:36–47. https://doi.org/10.47070/ijapr.v9i7.2001

    Article  Google Scholar 

  33. Kataria S, Sharma P, Ram JP, Deswal V, Singh M, Rana R, Singhal R, Tripathi A, Kumar K, Trehan N (2022) A pilot clinical study of an add-on Ayurvedic formulation containing Tinospora cordifolia and Piper longum in mild to moderate COVID-19. J Ayurveda Integr Med 13:100454. https://doi.org/10.1016/j.jaim.2021.05.008

    Article  CAS  PubMed  Google Scholar 

  34. Wanjarkhedkar P, Sarade G, Purandare B, Kelkar DA (2022) A prospective clinical study of an Ayurveda regimen in COVID 19 patients. J Ayurveda Integr Med 13:100365. https://doi.org/10.1016/j.jaim.2020.10.008

    Article  CAS  PubMed  Google Scholar 

  35. Wylie MR, Merrell DS (2022) The antimicrobial potential of the neem tree Azadirachta indica. Front Pharmacol 13:891535. https://doi.org/10.3389/fphar.2022.891535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Godatwar PK, Deshpande S, JoshiDeshmukh PS, Deshpande VS, Ghungralekar R, Tamoli S, Gupta A, Vedula S, Rugvedi P, Rai RK (2021) Clinical evaluation of Chyawanprash as a preventive measure during the COVID-19 pandemic: an open-label, multicentric, randomized, comparative, prospective, and interventional community-based clinical study on healthy individuals. J Indian Syst Med 9:104–113. https://doi.org/10.4103/jism.jism_27_21

    Article  Google Scholar 

  37. Gupta A, Madan A, Yadav B, Mundada P, Singhal R, Pandey YK, Agarwal R, Tripathi A, Rana R, Sharma BS, Rao BC (2021) Chyawanprash for the prevention of COVID-19 infection among healthcare workers: a randomized controlled trial. medRxiv. https://doi.org/10.1101/2021.02.17.21251899

  38. Jindal N, Rajput S, Yadav B, Mundada P, Singhal R, Varshney S, Nimbalkar K, Rana R, Khanduri S, Rao BC, Mata S (2021) Chyawanprash as add on to the standard of care in preventing COVID-19 infection among apparently healthy health care workers a single arm, longitudinal study. AAM 10:204–219. https://doi.org/10.5455/AAM.73639

    Article  Google Scholar 

  39. Natarajan S, Anbarasi C, Sathiyarajeswaran P, Manickam P, Geetha S, Kathiravan R, Prathiba P, Pitchiahkumar M, Parthiban P, Kanakavalli K, Balaji P (2021) Kabasura Kudineer (KSK), a poly-herbal Siddha medicine, reduced SARS-CoV-2 viral load in asymptomatic COVID-19 individuals as compared to vitamin C and zinc supplementation: findings from a prospective, exploratory, open-labeled, comparative, randomized controlled trial, Tamil Nadu, India. Trials 22:1–11. https://doi.org/10.1186/s13063-021-05583-0

    Article  CAS  Google Scholar 

  40. Srivastava A, Rengaraju M, Srivastava S, Narayan V, Gupta V, Upadhayay R (2021) A double blinded placebo controlled comparative clinical trial to evaluate the effectiveness of Siddha medicines, Kaba Sura Kudineer (KSK) & Nilavembu Kudineer (NVK) along with standard Allopathy treatment in the management of symptomatic COVID 19 patients – a structured summary of a study protocol for a randomized controlled trial. Trials. 22:130. https://doi.org/10.1186/s13063-021-05041-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Singh H, Srivastava S, Yadav B, Rai AK, Jameela S, Muralidharan S, Mohan R, Chaudhary S, Singhal R, Rana R, Khanduri S (2022) AYUSH-64 as an adjunct to Standard Care in mild to moderate COVID-19: an open-label randomized controlled trial in Chandigarh, India. Complement Ther Me 66:102814. https://doi.org/10.1016/j.ctim.2022.102814

    Article  Google Scholar 

  42. Srivastava S, Singh H, Muralidharan S, Mohan R, Chaudhary S, Rani P, Payyappalli U, Srikanth N (2021) A retrospective analysis of Ayurvedic clinical management of mild COVID-19 patients. 5(2):80–86. https://doi.org/10.4103/jras.jras_15_21

    Article  Google Scholar 

  43. Surve A, Sharma R, Mata S, Rana R, Singhal R (2020) AYUSH 64, a polyherbal Ayurvedic formulation in Influenza-like illness–results of a pilot study. https://doi.org/10.1016/j.jaim.2020.05.010

  44. Gundeti MS, Bhurke LW, Mundada PS, Murudkar S, Surve A, Sharma R, Mata S, Rana R, Singhal R, Vyas N, Khanduri S (2020) AYUSH 64, a polyherbal Ayurvedic formulation in influenza-like illness – results of a pilot study. J Ayurveda Integr Med 13. https://doi.org/10.1016/j.jaim.2020.05.010

  45. Pawar KS, Mastud RN, Pawar SK, Pawar SS, Bhoite RR, Bhoite RR, Kulkarni MV, Deshpande AR (2021) Oral curcumin with piperine as adjuvant therapy for the treatment of COVID-19: a randomized clinical trial. Front. Pharmacol. 12:1056. https://doi.org/10.3389/fphar.2021.669362

    Article  CAS  Google Scholar 

  46. Varnasseri M, Siahpoosh A, Hoseinynejad K, Amini F, Karamian M, Yad MJ, Cheraghian B, Khosravi AD (2022) The effects of add-on therapy of Phyllanthus Emblica (Amla) on laboratory confirmed COVID-19 cases: a randomized, double-blind, controlled trial. Complement Ther Med 65:102808. https://doi.org/10.1016/j.ctim.2022.102808

    Article  PubMed  PubMed Central  Google Scholar 

  47. Nikhat S, Fazil M (2020) Overview of Covid-19; its prevention and management in the light of Unani medicine. Sci Total Environ 728:138859. https://doi.org/10.3389/fphar.2021.669362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Haggag YA, El-Ashmawy NE, Okasha KM (2020) Is hesperidin essential for prophylaxis and treatment of COVID-19 infection? Med Hypotheses 144:109957. https://doi.org/10.1016/j.mehy.2020.109957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Trieu V, Saund S, Rahate PV, Barge VB, Nalk KS, Windlass H, Uckun FM (2021) Targeting TGF-b pathway with COVID-19 drug candidate ARTIVeda/PulmoHeal accelerates recovery from mild-moderate COVID-19. medRxiv. https://doi.org/10.1101/2021.01.24.21250418

  50. Hu K, Guan WJ, Bi Y, Zhang W, Li L, Zhang B, Liu Q, Song Y, Li X, Duan Z, Zheng Q (2021) Efficacy and safety of Lianhuaqingwen capsules, a repurposed Chinese herb, in patients with coronavirus disease 2019: a multicenter, prospective, randomized controlled trial. Phytomedicine 85:153242. https://doi.org/10.1016/j.phymed.2020.153242

    Article  CAS  PubMed  Google Scholar 

  51. Sarah M, Khadidja H, Keltoum D, Asma T (2022) The use of Syzygium aromaticum L. to avoid and control the SARS-CoV-2 related complications. Egypt. Acad. J. Biol. Sci 14:77–89. https://doi.org/10.21608/eajbsc.2022.215048

    Article  Google Scholar 

  52. Senthil Kumar KJ, Gokila Vani M, Wang CS, Chen CC, Chen YC, Lu LP, Huang CH, Lai CS, Wang SY (2020) Geranium and lemon essential oils and their active compounds downregulate angiotensin-converting enzyme 2 (ACE2), a SARS-CoV-2 spike receptor-binding domain, in epithelial cells. Plan Theory 9:770. https://doi.org/10.3390/plants9060770

    Article  CAS  Google Scholar 

  53. Natarajan S, Anbarasi C, Sathiyarajeswaran P, Manickam P, Geetha S, Kathiravan R, Prathiba P, Pitchiahkumar M, Parthiban P, Kanakavalli K, Balaji P (2021) Kabasura Kudineer (KSK), a poly-herbal Siddha medicine, reduced SARS-CoV-2 viral load in asymptomatic COVID-19 individuals as compared to vitamin C and zinc supplementation: findings from a prospective, exploratory, open-labeled, comparative, randomized controlled trial, Tamil Nadu. India. Trials. 22:623. https://doi.org/10.1186/s13063-021-05583-0

    Article  CAS  PubMed  Google Scholar 

  54. Balkrishna A, Bhatt AB, Singh P, Haldar S, Varshney A (2021) Comparative retrospective open-label study of Ayurvedic medicines and their combination with allopathic drugs on asymptomatic and mildly-symptomatic COVID-19 patients. J Herb Med 29:1–8. https://doi.org/10.1016/j.hermed.2021.100472

    Article  Google Scholar 

  55. Sharifi-Rad M, Varoni EM, Salehi B, Sharifi-Rad J, Matthews KR, Ayatollahi SA, Kobarfard F, Ibrahim SA, Mnayer D, Zakaria ZA, Sharifi-Rad M (2017) Plants of the genus Zingiber as a source of bioactive phytochemicals. Molecules 22:2145. https://doi.org/10.3390/molecules22122145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tripathi S, Maier KG, Bruch D, Kittur DS (2007) Effect of 6-gingerol on pro-inflammatory cytokine production and costimulatory molecule expression in murine peritoneal macrophages. J Surg Res 138:209–213. https://doi.org/10.1016/j.jss.2006.07.051

    Article  CAS  PubMed  Google Scholar 

  57. Rathinavel T, Palanisamy M, Palanisamy S, Subramanian A, Thangaswamy S (2020) Phytochemical 6-Gingerol–a promising drug of choice for COVID-19. Int J Adv Sci Eng 6:1482–1489. https://doi.org/10.29294/IJASE.6.4.2020.1482-1489

    Article  CAS  Google Scholar 

  58. Raaben M, Einerhand AW, Taminiau LJ, Van Houdt M, Bouma J, Raatgeep RH, Büller HA, De Haan CA, Rossen JW (2007) Cyclooxygenase activity is important for efficient replication of mouse hepatitis virus at an early stage of infection. J. Virol 4:1–5. https://doi.org/10.1186/1743-422X-4-55

  59. Akbay P, Basaran AA, Undeger U, Basaran N (2003) In vitro immunomodulatory activity of flavonoid glycosides from Urtica dioica L. Phytother Res 17:34–37. https://doi.org/10.1002/ptr.1068

    Article  CAS  PubMed  Google Scholar 

  60. Semalty M, Adhikari L, Semwal D, Chauhan A, Mishra A, Kotiyal R, Semalty A (2017) A comprehensive review on phytochemistry and pharmacological effects of stinging nettle (Urtica dioica). Curr Tradit Med 3:156–167. https://doi.org/10.2174/2215083803666170502120028

    Article  CAS  Google Scholar 

  61. Dibazar SP, Fateh S, Daneshmandi S (2015) Immunomodulatory effects of clove (Syzygium aromaticum) constituents on macrophages: in vitro evaluations of aqueous and ethanolic components. J Immunotoxicol 12:124–131. https://doi.org/10.3109/1547691x.2014.912698

    Article  CAS  PubMed  Google Scholar 

  62. Rahayu RP, Prasetyo RA, Purwanto DA, Kresnoadi U, Iskandar RP, Rubianto M (2018) The immunomodulatory effect of green tea (Camellia sinensis) leaves extract on immunocompromised Wistar rats infected by Candida albicans. Vet World 11:765–770. https://doi.org/10.14202/vetworld.2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Martel J, Ko YF, Ojcius DM, Lu CC, Chang CJ, Lin CS, Lai HC, Young JD (2017) Immunomodulatory properties of plants and mushrooms. TIPS 38:967–981. https://doi.org/10.1016/j.tips.2017.07.006

    Article  CAS  PubMed  Google Scholar 

  64. Kim HY, Shin HS, Park H, Kim YC, Yun YG, Park S, Shin HJ, Kim K (2008) In vitro inhibition of coronavirus replications by the traditionally used medicinal herbal extracts, Cimicifuga rhizoma, Meliae cortex, Coptidis rhizoma, and Phellodendron cortex. J Clin Virol 41:122–128. https://doi.org/10.1016/j.jcv.2007.10.011

    Article  PubMed  Google Scholar 

  65. Dhanasekaran S, Pradeep P (2020) Scope of phytotherapeutics in targeting ACE2 mediated host- SARS-CoV-2. ChemRxiv. https://doi.org/10.26434/chemrxiv.12089730.v1

  66. Varma A, Padh H, Shrivastava N (2011) Andrographolide: a new plant-derived antineoplastic entity on horizon. eCAM 2011. https://doi.org/10.1093/ecam/nep135

  67. Wang W, Wang J, Dong SF, Liu CH, Italiani P, Sun SH, Xu J, Boraschi D, Ma SP, Qu D (2010) Immunomodulatory activity of andrographolide on macrophage activation and specific antibody response. Acta Pharmacol Sin 2010(31):191–201. https://doi.org/10.1038/aps.2009.205

    Article  CAS  Google Scholar 

  68. Lu J, Ma Y, Wu J, Huang H, Wang X, Chen Z, Chen J, He H, Huang C (2019) A review for the neuroprotective effects of andrographolide in the central nervous system. Biomed Pharmacother 117. https://doi.org/10.1016/j.biopha..109078

  69. Arreola R, Quintero-Fabián S, López-Roa RI, Flores-Gutiérrez EO, Reyes-Grajeda JP, Carrera-Quintanar L, Ortuño-Sahagún D (2015) Immunomodulation and anti-inflammatory effects of garlic compounds. J Immunol Res 2015:1–14. https://doi.org/10.1155/2015/401630

    Article  CAS  Google Scholar 

  70. Lang A, Lahav M, Sakhnini E, Barshack I, Fidder HH, Avidan B, Bardan E, Hershkoviz R, Bar-Meir S, Chowers Y (2004) Allicin inhibits spontaneous and TNF-α induced secretion of proinflammatory cytokines and chemokines from intestinal epithelial cells. Clin Nutr 23:1199–1208. https://doi.org/10.1016/j.clnu.2004.03.011

    Article  CAS  PubMed  Google Scholar 

  71. Djakpo O, Yao W (2010) Rhus chinensis and Galla Chinensis–folklore to modern evidence. Phytother Res 24:1739–1747. https://doi.org/10.1002/ptr.3215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Yi L, Li Z, Yuan K, Qu X, Chen J, Wang G, Zhang H, Luo H, Zhu L, Jiang P, Chen L (2004) Small molecules blocking the entry of severe acute respiratory syndrome coronavirus into host cells. J Virol 78:11334–11339. https://doi.org/10.1128/JVI.78.20.11334-11339.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wen CC, Shyur LF, Jan JT, Liang PH, Kuo CJ, Arulselvan P, Wu JB, Kuo SC, Yang NS (2011) Traditional Chinese medicine herbal extracts of Cibotium barometz, Gentiana scabra, Dioscorea batatas, Cassia tora, and Taxillus chinensis inhibit SARS-CoV replication. J Tradit Complement Med 1:41–50. https://doi.org/10.1016/S2225-4110(16)30055-4

    Article  PubMed  PubMed Central  Google Scholar 

  74. Liu L (2020) Traditional Chinese medicine contributes to the treatment of COVID-19 patients. Chin Herb Med 12:95–96. https://doi.org/10.1016/j.chmed.2020.04.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Yang Y, Islam MS, Wang J, Li Y, Chen X (2020) Traditional Chinese medicine in the treatment of patients infected with 2019-new coronavirus (SARS-CoV-2): a review and perspective. Int J Biol Sci 16:1708–1717. https://doi.org/10.7150/ijbs.45538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Yang Y, Lee GJ, Yoon DH, Yu T, Oh J, Jeong D, Lee J, Kim SH, Kim TW, Cho JY (2013) ERK1-and TBK1-targeted anti-inflammatory activity of an ethanol extract of Dryopteris crassirhizoma. J Ethnopharmacol 145:499–508. https://doi.org/10.1016/j.jep.2012.11.019

    Article  PubMed  Google Scholar 

  77. Jezova D, Karailiev P, Karailievova L, Puhova A, Murck H (2021) Food enrichment with glycyrrhiza glabra extract suppresses ACE2 mRNA and protein expression in rats-possible implications for COVID-19. Nutrients 13:2321. https://doi.org/10.3390/nu13072321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Chen F, Chan KH, Jiang Y, Kao RY, Lu HT, Fan KW, Cheng VC, Tsui WH, Hung IF, Lee TS, Guan Y (2004) In vitro susceptibility of 10 clinical isolates of SARS coronavirus to selected antiviral compounds. J Clin Virol 31:69–75. https://doi.org/10.1016/j.jcv.2004.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zhao H, Zhao M, Wang Y, Li F, Zhang Z (2016) Glycyrrhizic acid prevents sepsis-induced acute lung injury and mortality in rats. J Histochem Cytochem 64:125–137. https://doi.org/10.1369/0022155415610168

    Article  CAS  PubMed  Google Scholar 

  80. Kanchibhotla D, Subramanian S, Kumar RM, Hari KV, Pathania M (2022) An in-vitro evaluation of a polyherbal formulation, against SARS-CoV-2. J Ayurveda Integr Med 13:100581. https://doi.org/10.1016/j.jaim.2022.100581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Barretto N, Jukneliene D, Ratia K, Chen Z, Mesecar AD, Baker SC (2005) The papain-like protease of severe acute respiratory syndrome coronavirus has deubiquitinating activity. J Virol. 79:15189–15198. https://doi.org/10.1128/JVI.79.24.15189-15198.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Amin SA, Banerjee S, Gayen S, Jha T (2021) Protease targeted COVID-19 drug discovery: what we have learned from the past SARS-CoV inhibitors? Eur J Med Chem. 215:113294. https://doi.org/10.1016/j.ejmech.2021.113294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lin SC, Ho CT, Chuo WH, Li S, Wang TT, Lin CC (2017) Effective inhibition of MERS-CoV infection by resveratrol. BMC Infect Dis. 17:1–10. https://doi.org/10.1186/s12879-017-2253-8

    Article  CAS  Google Scholar 

  84. Müller C, Schulte FW, Lange-Grünweller K, Obermann W, Madhugiri R, Pleschka S, Ziebuhr J, Hartmann RK, Grünweller A (2018) Broad-spectrum antiviral activity of the eIF4A inhibitor silvestrol against corona-and picornaviruses. Antivir Res 150:123–129. https://doi.org/10.1016/j.antiviral.2017.12.010

    Article  CAS  PubMed  Google Scholar 

  85. Millet JK, Séron K, Labitt RN, Danneels A, Palmer KE, Whittaker GR, Dubuisson J, Belouzard S (2016) Middle East respiratory syndrome coronavirus infection is inhibited by griffithsin. Antivir Res. 133:1–8. https://doi.org/10.1016/j.antiviral.2016.07.011

    Article  CAS  PubMed  Google Scholar 

  86. Li SY, Chen C, Zhang HQ, Guo HY, Wang H, Wang L, Zhang X, Hua SN, Yu J, Xiao PG, Li RS (2005) Identification of natural compounds with antiviral activities against SARS-associated coronavirus. Antivir Res 67:18–23. https://doi.org/10.1016/j.antiviral.2016.07.011

    Article  CAS  PubMed  Google Scholar 

  87. Yu MS, Lee J, Lee JM, Kim Y, Chin YW, Jee JG, Keum YS, Jeong YJ (2012) Identification of myricetin and scutellarein as novel chemical inhibitors of the SARS coronavirus helicase, nsP13. Bioorg Med Chem 22:4049–4054. https://doi.org/10.1016/j.bmcl.2012.04.081

    Article  CAS  Google Scholar 

  88. Park JY, Yuk HJ, Ryu HW, Lim SH, Kim KS, Park KH, Ryu YB, Lee WS (2017) Evaluation of polyphenols from Broussonetia papyrifera as coronavirus protease inhibitors. J Enzyme Inhib Med Chem 32:504–512. https://doi.org/10.1080/14756366.2016.1265519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kim DW, Seo KH, Curtis-Long MJ, Oh KY, Oh JW, Cho JK, Lee KH, Park KH (2014) Phenolic phytochemical displaying SARS-CoV papain-like protease inhibition from the seeds of Psoralea corylifolia. J Enzyme Inhib Med Chem 29:59–63. https://doi.org/10.3109/14756366.2012.753591

    Article  CAS  PubMed  Google Scholar 

  90. Hoever G, Baltina L, Michaelis M, Kondratenko R, Baltina L, Tolstikov GA, Doerr HW, Cinatl J (2005) Antiviral activity of glycyrrhizic acid derivatives against SARS− coronavirus. J Med Chem 48:1256–1259. https://doi.org/10.1021/jm0493008

    Article  CAS  PubMed  Google Scholar 

  91. Cho JK, Curtis-Long MJ, Lee KH, Kim DW, Ryu HW, Yuk HJ, Park KH (2013) Geranylated flavonoids displaying SARS-CoV papain-like protease inhibition from the fruits of Paulownia tomentosa. Bioorg Med Chem 21:3051–3057. https://doi.org/10.1016/j.bmc.2013.03.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Keyaerts E, Vijgen L, Pannecouque C, Van Damme E, Peumans W, Egberink H, Balzarini J, Van Ranst M (2007) Plant lectins are potent inhibitors of coronaviruses by interfering with two targets in the viral replication cycle. Antivir Res 75:179–187. https://doi.org/10.1016/j.antiviral.2007.03.003

    Article  CAS  PubMed  Google Scholar 

  93. Lin CW, Tsai FJ, Tsai CH, Lai CC, Wan L, Ho TY, Hsieh CC, Chao PD (2005) Anti-SARS coronavirus 3C-like protease effects of Isatis indigotica root and plant-derived phenolic compounds. Antivir Res 68:36–44. https://doi.org/10.1016/j.antiviral.2005.07.002

    Article  CAS  PubMed  Google Scholar 

  94. Ryu YB, Jeong HJ, Kim JH, Kim YM, Park JY, Kim D, Naguyen TT, Park SJ, Chang JS, Park KH, Rho MC (2010) Biflavonoids from Torreya nucifera displaying SARS-CoV 3CLpro inhibition. Bioorg Med Chem 18:7940–7947. https://doi.org/10.1016/j.bmc.2010.09.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Chiang LC, Ng LT, Liu LT, Shieh D-E, Lin CC (2003) Cytotoxicity and anti-hepatitis B virus activities of saikosaponins from Bupleurum species. Planta Med 69:705–709. https://doi.org/10.1055/s-2003-42797

    Article  CAS  PubMed  Google Scholar 

  96. Zamboni A, Vrhovsek U, Kassemeyer HH, Mattivi F, Velasco R (2006) Elicitor-induced resveratrol production in cell cultures of different grape genotypes (Vitis spp.). Vitis 45:63–68. https://doi.org/10.5073/vitis.2006.45.63-68

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiran Gangarapu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Andole, S. et al. (2024). Medicinal Plants Against SARS-CoV/Corona Virus Infections: Ethnopharmacology, Chemistry, and Clinical and Preclinical Studies. In: Pal, D. (eds) Anti-Viral Metabolites from Medicinal Plants. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-031-12199-9_15

Download citation

Publish with us

Policies and ethics