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1 Introduction

A typical family of differential/integral equations studied in healtcare or in finance
is the following one:

Vt = V0 +
∫ t

0
α(s, Vs)ds +

∫ t

0
σ(s, Vs)dWs, (1)

where V = (Vt : 0 ≤ t ≤ T ) is a d-dimensional quantity, which for example could
represent the values of assets in a portfolio and W is a Brownian motion (briefly
introduced in the next section).

The above type of equations are an important tool in mathematical finance.
Equation in (1) is the integral version of the equation

dVt

dt
= α(t, Vt ) + σ(t, Vt )

dW

dt
. (2)

Indeed by operating the integral operator f (t) �→ ∫ t
0 f (s)ds on the left of (2), we

obtain
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∫ t

0

dVs

ds
ds =

∫ t

0
dVs = Vt − V0.

By operating the integral operator to the right-hand side of (2), we obtain

∫ t

0

(
α(s, Vs) + σ(s, Vs)

dW

ds

)
ds =

∫ t

0
b(s, Vs)ds +

∫ t

0
σ(s, Vs)dW.

Therefore, we obtain

Vt − V0 =
∫ t

0
α(s, V Ss)ds +

∫ t

0
σ(s, V Ss)dW,

that is Eq. (1).
Now we multiply both hand sides of (2) by dt to obtain the differential equation

dVt = α(t, Vt )dt + σ(t, Vt )dW.

1.1 Brownian Motions

There are several ways to define what is a Brownian motion. We present the one
contained in (Gobet 2022, Definition 4.1.1 at page 120)

Definition 1.1 (Brownian Motion in Dimension 1) ABrownianmotion in dimension
1 is a continuous-time stochastic process {Wt ; t ≥ 0} with a continuous path, such
that

• W0 = 0;
• the time increment Wt − Ws (0 ≤ s < t) has the Gaussian distribution with zero
mean and variance (t − s);

• for any 0 = t0 < t1 < . . . < tn , the increments {Wti+1 − Wti | 0 ≤ i ≤ n − 1} are
independent.

A discretization of a Brownian motion is a random walk, or in other words a
Brownian motion is the continuous version of a random walk.

One denotes a Brownian motion with the letter W because the mathematical
theory of Brownian motions was formalized and studied by Wiener in the middle of
the twentieth century. The name “Brownian” comes from the botanist Robert Brown,
who used this model of motion (without formalizing it) for describing the movement
of a particle (pollen) in water.

Nowadays, Brownian motion is used in finance (e.g., for evaluating assets, port-
folio, gains, wealth...) and healtcare, see for example, Donnet and Samson (2013) or
Ferrante et al. (2005) in the case of pharmacokinetic/pharmacodynamic models (aka
PK/PC models).
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Brownian motion has the advantage to be a good tool for modeling in finance by
using mathematical models, and so via equations.

The mathematical disadvantage is that a Brownian motion, considered as a func-
tion of the time t is continuous but not always derivable. But, this disadvantage
turns into an advantage, because it may cover a large set of examples in real-world
problems.

Thus, the integral
∫ b

a f (t)dW in the case of a Brownianmotion W has nomeaning
in the traditional sense as Riemann–Stieltjes Integral. The notion of Ito’s integral
gives a definition for the integral

∫ b
a f (t)dW in the case of a Brownian motion W .

1.2 Ito’s Integral and Solutions of Geometric Brownian
Motions (GBM)

In this section, we show the definition of Ito’s integral and some of its applications.
Everything is considered in dimension 1; thus, every function considered is a function
of the time t and assumes values inR (real numbers). The extension of the case where
the outputs of our functions are d-dimensional vectors in Rd is straightforward.

Definition 1.2 (Ito’s Integral) Let f be a continuous function with respect to time t
on an interval [a, b]. Assume that W is a Brownian motion. Then we define the Ito’s
integral of f with respect to W as

∫ b

a
f (t)dW = lim

n→∞

n−1∑
i=0

f (ti )(Wti+1 − Wti ),

where t0 = a < t1 < . . . < tn−1 < tn = b represent the endpoints of a subdivision
of the interval [a, b] in n subintervals.

One can see that the limit converges in probability.
The condition f continuous can be weakened. Since we are considering t belong-

ing to intervals, we are considering the σ -algebra of borelian on R (i.e., the Borel
algebra, which is generated by open sets in R). In Definition 1.2, it is enough to
ask that f is Borel-measurable (preimages of Borel sets are Borel sets). Continuous
functions are Borel-measurable, but there are Borel-measurable functions that are not
continuous. For example, piecewise functions areBorel-measurable.Amore “exotic”
example is the indicator function χQ (which is 1 in the rational numbers Q and zero
otherwise), it is a Borel-measurable function even if it is highly non-continuous.

One can find the definition of Ito’s integral in (Shreve 2004, Sect. 4.3, precisely on
page 134). In Shreve (2004) the assumption on f is that the function f is an adapted
stochastic process, that can be essentially translated into being a Borel-measurable
function over time. Alternatively, one can read (Gobet 2022, Sect. 4.2, pages 132–
135).
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Roughly speaking, Ito’s integral is defined as a Riemann Integral, where we sub-
stitute a “linear deterministic variable x” with a stochastic one. So, in other words,
we can say that an Ito’s integral is a limit of a sequence of stochastic Riemann’s sums
(or in case a stochastic Legesque Integral). But note that, in the definition of Ito’s
integral, one always take a “left” stochastic Riemann’s sum.

In Eq. (1), the integral
∫ t
0 α(s, Vs)ds is a deterministic one (i.e., no random vari-

able appears), thus this is Riemann’s integral (or Lebesgue’s one). The integral∫ t
0 σ(s, Vs)dWs is an Ito’s one.
For a given realization (or simulation) of the Brownian motion Wt , it is possible to

determine an approximation for Vt . But sometimes, an exact value for the determin-
istic integral or an exact value of the Ito’s integral are not determinable. It is always
possible to give an approximated value for the integrals.

For some special cases, it is possible to find exact solutions of the equation in (1),
for example, in the case of a Brownian motion, where α and σ are constant. If so,
the function Vt is (1) is called geometric Brownian motion.

As a straightforward application of Ito’s formula (see for example, (Shreve 2004,
Theorem 4.4.1, p. 138), or (Gobet 2022, Theorem 4.2.5 p. 137) for a more general
formulation) proves that

Vt = V0 · e
(
α− σ2

2

)
t+σ ·Wt

is the solution of the Eq. (1) in the case Vt is a geometric Brownian motion.

1.3 Existence of Solutions of Stochastic Differential
Equations

Under certain hypotheses, Eq. (1) admits a solution, which is unique. Thiswas proven
by Pardoux and Peng in Pardoux and Peng (1990).

Theorem 1.1 (Pardoux and Peng 1990) Let W be a Brownian motion and α, σ

the functions of Eq. (1). Let T > 0 be a given real number. Suppose that α, σ are
continuous functions and there exist a constant Cα,σ (depending of α and σ ) such
that, for all t ∈ [0, T ] and x, y, we have

• |α(t, x) − α(t, y)| + |σ(t, x) − σ(t, y)| ≤ Cα,σ |x − y|;
• sup0≤t≤T (|α(t, 0)| + |σ(t, 0)|) ≤ Cα,σ .

Then, for each V0 ∈ R, there exists a unique solution of Eq. (1).

Unfortunately, the above theorem does not give a method for determining the
solution for the Eq. (1). In some cases, for example, for geometric Brownian motion,
the solution is explicitly determinable. But in general, there is no general approach
for solving all equations of the shape as in (1). Only in a few cases, we are able to
apply an algorithm or formula for solving exactly a stochastic differential equation.
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The conditions contained in the above theorem are “uniform Lipschitz condi-
tions”. This is not so surprising. For deterministic equations and so ordinary dif-
ferential equations, the Picard–Lindelöff Theorem requires Lipschitz condition as
well (recall that the Picard–Lindelöff Theorem gives sufficient conditions for the
existence and uniqueness of ordinary first-degree differential equations). Actually,
the proof in the stochastic case of SDEs looks like the analogous of the ODEs case,
where there is a somewhat fixed point theorem. In the Picard–Lindelöff Theorem,
the Banach–Caccipoli’s fixed point theorem is used.

In Theorem 1.1, they use a fixed point theorem. The proof could inspire a way to
find a method for finding a numerical approximation of the solution, which is not so
efficient. For more details about the proof of Theorem 1.1, see for example, Pardoux
and Peng (1990) or Ma and Zhang (2002).

2 Numerical Methods for SDEs

Theorem 1.1 only provides the assumptions that Eq. (1), equipped by the initial value
V (0) = V0, for the existence and uniqueness of its solution. However, this result is
only qualitative and does not provide any methodological tool to compute such a
solution. It is also worth highlighting that analytical solutions to SDEs can only
be provided for a limited amount of simple cases; the most realistic ones, due to
their complex structure, can only be numerically solved. The design and the analysis
of reliable, efficient, and accurate numerical methods for SDEs have attracted the
literature of the last couple of decades.A very brief—and far frombeing exhaustive—
list of references contains Bouchard and Touzi (2004), Gobet et al. (2005), Arnold
(1974), Buckwar and D’Ambrosio (2021), Buckwar et al. (2005), Buckwar et al.
(2010), Burrage and Burrage (2012), Burrage and Burrage (2014), Burrage and Tian
(2004), Chen et al. (2020), D’Ambrosio and Giovacchino (2021a), D’Ambrosio and
Giovacchino (2021b), D’Ambrosio and Scalone (2021b), Fang and Giles (2020),
Vom Scheidt (1989), Gardiner (2004), Higham (2001), Higham (2000), Higham
(2021), Higham and Kloeden (2005), Hutzenthaler and Jentzen (2015), Hutzenthaler
et al. (2011), Kloeden (2002), Kloeden and Platen (1992), Ma et al. (2012), Mao
(2007),Melbø andHigham(2004), Saito andMitsui (1996),Milstein (1994),Milstein
et al. (2002), Misawa (2000), Neuenkirch et al. (2019), Rössler (2010), Rössler
(2009), Rössler (2006), Ruemelin (1982), Abdulle et al. (2014), Chartier et al. (2014),
Abdulle et al. (2013), Abdulle et al. (2012), Cohen and Vilmart (2022), Chen et al.
(2016), Cohen and Dujardin (2014), Cohen (2012), de la Cruz (2020), de la Cruz
et al. (2019), de la Cruz et al. (2017), Jimenez and de la Cruz Cancino (2012), de la
Cruz et al. (2010) and references therein. In the remainder of the treatise, we aim to
provide a few examples of such methods taken from the most famous ones. Anyway,
before listing specific methods, let us recover two fundamental notions in stochastic
numerics, that provide a measure for the accuracy of the corresponding scheme: the
concepts of strong and weak convergence.

Given the uniform partition
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Ih = {tn = nh, n = 0, 1, . . . , N = T/h} (3)

of the interval I = [0, T ]; let us denote by Vn the numerical solution to (1) in the
point tn , computed by a given numerical scheme. The main question is the following:
how far is the numerical solution from the exact one? Does the gap between them
collapse as N goes to infinity? The following definition (see Kloeden and Platen
1992; Higham 2001, 2021 and references therein) helps clarify this scenario.

Definition 2.1 Given a numerical method computing Xn ≈ X (tn), with tn ∈ Ih , we
say that the method

• is strongly convergent with strong order p if there exist three positive constants
C , p and h∗ such that

sup
tn∈ Ih

E

[∣∣Xn − X (tn)
∣∣
]

≤ Ch p, (4)

for any h ≤ h∗. The strong order p is the biggest number such that (4) holds true;
• chosen a functional space S and given � ∈ S, we say that the methods are weakly
convergent with weak order q if there exist three positive constants D, q, and h̃
such that

sup
tn∈ Ih

∣∣∣∣E
[
�(Xn)

] − E
[
�(X (tn))

]∣∣∣∣ ≤ Dhq , (5)

for any h ≤ h̃. The weak order q is the biggest number such that (5) holds true.

Usually, S is the space of algebraic polynomials of degree q. In other terms,
Definition 2.1 gives two possible measures for the accuracy of a stochastic numerical
method: the expected error (strong convergence) and the gap between the expecta-
tions of the numerical and the exact solutions (weak convergence). One can prove
that strong convergence implies weak convergence, while the vice versa is generally
not true.

2.1 Euler–Maruyama Method

The simplest numerical method for deterministic differential equations y′(t) =
f (t, y(t)) (i.e., the famous Euler method) is obtained by means of truncated Taylor
series arguments as follows. First of all, let us compute

y(tn+1) = y(tn + h) = y(tn) + hy′(tn) + O(h2)

= y(tn) + h f (tn, y(tn)) + O(h2).

Neglecting the term O(h2) and reading the corresponding approximate equality
among exact values as an exact equality among approximate values yields
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yn+1 = yn + h f (tn, yn), n = 0, 1, . . . , N . (6)

Last equality provides the nonlinear difference equation defining the Euler method.
Clearly, solving such a nonlinear difference equation is not simpler than solving the
original ODE and, indeed, it is used to start a step-by-step procedure for the pointwise
computation of the numerical solution.

This approach does not directly apply to SDEs, due to the nowhere differentiability
of the involved stochastic processes. However, Taylor expansions generalize in the
so-called Ito–Taylor expansions, thanks to the Ito formula. Indeed, specifying (1) to
a subinterval [tn, tn+1) of the discretization Ih leads to

V (tn+1) = V (tn) +
∫ tn+1

tn

α(s, V (s))ds +
∫ tn+1

tn

σ(s, V (s))dW (s).

Computing α(s, V (s)) and σ(s, V (s)) by the Ito formula and considering only the
very first term, i.e., α(s, V (s)) ≈ α(tn, V (tn)) and β(s, V (s)) ≈ α(tn+1, V (tn+1)),
yields

V (tn+1) ≈ V (tn) + hα(tn, V (tn)) + σ(tn, V (tn))�Wn,

with�Wn = W (tn+1) − W (tn) (it is worth recalling that, by definition of theWiener
process,�Wn is a normal randomvariablewith 0meanandvarianceh).Recasting this
approximate equality among exact values as an exact equality among approximate
values get

Vn+1 = Vn + α(tn, Vn)h + σ(tn, Vn)�Wn. (7)

Equation (7) gives the so-called Euler–Maruyama method for SDEs. Clearly, if the
diffusion coefficient σ is identically zero (i.e., the problem is deterministic), then the
Euler–Maruyama method (7) recovers the deterministic Euler method (6).

One can prove that the strong order of the Euler–Maruyama method is p = 1/2,
while its weak order is q = 1. For a formal proof of the strong and weak convergence
of the Euler–Maruyama method, the interested reader can refer to Higham (2021)
and references therein.

2.2 ϑ–Maruyama Methods

The Euler method can be merged into a larger family of methods, well-known as ϑ–
Maruyama methods (see, for instance, Buckwar andSickenberger 2011;D’Ambrosio
and Giovacchino 2021a; D’Ambrosio and Scalone 2021a; Higham 2000, 2021 and
references therein). The starting point to develop ϑ-Maruyama methods is similar to
that for Euler–Maruyama method, i.e.,
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V (tn+1) = V (tn) +
∫ tn+1

tn

α(s, V (s))ds +
∫ tn+1

tn

σ(s, V (s))dW (s),

but the deterministic integral is approximated by the following quadrature formula:

∫ tn+1

tn

f (t, X (t))dt = [
(1 − ϑ) f (tn, X (tn)) + ϑ f (tn+1, X (tn+1))

]
�t.

Then, the corresponding approximate solution to (1) is given by

Vn+1 = Vn + (1 − ϑ)hα(tn, Vn) + ϑhα(tn+1, Vn+1) + σ(tn, Xn)�Wn, (8)

n = 0, 1, . . . , N − 1. Equation (8) collects the family ofϑ–Maruyamamethods. Rel-
evant cases are given for ϑ = 0, leading to Euler–Maruyama method, for ϑ = 1/2,
leading to the stochastic trapezoidal method and ϑ = 1, leading to the stochastic
implicit Euler method. It has been proved (see Higham 2021 and reference therein)
that allϑ–Maruyamamethods have a strong order 1/2 andweak order 1, as it happens
for Euler–Maruyama method. However, even if the accuracy is the same, selecting
proper values of ϑ may provide very good stability improvements (Buckwar and
Sickenberger 2011; Higham 2000; D’Ambrosio and Giovacchino 2021a).

2.3 Stochastic Runge–Kutta Methods

The relevant class of Runge–Kutta methods has its own stochastic counterpart in
the family of stochastic Runge–Kutta methods (SRK; see, for instance, Buckwar
et al. 2010; Burrage and Burrage 2012, 2014; Burrage and Tian 2004; D’Ambrosio
and Giovacchino 2021b; Ma et al. 2012; Rössler 2010, 2009, 2006 and references
therein). In this section, we look at SRKmethods for (1) as the stochastic perturbation
of deterministic Runge–Kutta methods as follows:

Vn+1 = Vn + h
s∑

i=1

biα(tn + ci h, V̂i ) + �Wn

s∑
i=1

diσ(ti + ci�t, V̂i ), (9)

with

V̂i = Vn + h
s∑

j=1

ai j α(tn + c j h, V̂ j ) + �Wn

s∑
j=1

γi j σ(ti + c j �t, V̂ j ), i = 1, 2, . . . , s. (10)

The number s appearing above is the number of internal stages and an s-stage SRK
method in the form (9)–(10) is uniquely identified by its coefficients bi , di , ai j , and
γi j , i, j = 1, 2, . . . , s, that can be collected in the following Butcher tableau:
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c1 a11 a12 . . . a1s γ11 γ12 . . . γ1s

c2 a21 a22 . . . a2s γ21 γ22 . . . γ2s
...

...
...

...
...

...
...

...
...

cs as1 as2 . . . ass γs1 γs2 . . . γss
b1 b2 . . . bs d1 d2 . . . ds

. (11)

The internal stages V̂i , i = 1, 2, . . . , s, provide approximations to V (tn + ci h)

and the way they relate to each other makes the corresponding methods implicit or
explicit. Explicit methods, i.e., with ai j = γi j = 0 for j ≥ i , have been developed
in Vom Scheidt (1989); Ruemelin (1982) and provided the condition for the mean-
square convergence

s∑
i=1

bi =
s∑

i=1

di = 1.

Further results, including the development and analysis of implicit methods, have
been investigated in Buckwar et al. (2010), Burrage and Burrage (2012), Burrage
and Tian (2004), D’Ambrosio and Giovacchino (2021b), Rössler (2010), Rössler
(2009), Rössler (2006) and references therein.A two-step generalization of stochastic
Runge–Kuttamethods has been introduced and analyzed inD’Ambrosio and Scalone
(2021b).

3 A Numerical Evidence on PK/PD Models

Let us now provide a brief selection of numerical experiments showing the effective-
ness of the aforementioned approaches. The test is focused on the application of ϑ

methods (8) to the following pharmacokinetic/pharmacodynamic (PK/PD) models,
given by the stochastic Gompertz PD model of the bacterial count under the effect
of an antibiotic Ferrante et al. (2005)

dNt = (r − b log(Nt ) − kCt )Ntdt + γ NtdWt , (12)

where r is the intrinsic growth rate, b is the growth deceleration rate, k is the bacterial
effect of the drug, and γ is a constant parameter. This equation is coupled with a
deterministic constraint on the antibiotic concentration Ct , given by

Ct = Dka

V (ka − ke)

(
e−ket − e−ka t

)
, (13)

where D is the dose of antibiotic, V the volume of distribution, ka and ke are the
absorption and elimination constants, respectively. The profile of the numerical solu-
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Fig. 1 Numerical solution of the PK/PD model (12)–(13), computed by the ϑ method (8) with
ϑ = 1/2, with D = 1, ka = 0.1, ke = 0.2, V = 10, r = 0.1, b = 0.2, k = 0.1, γ = 1

tion of the overall PK/PD model (12)–(13) is depicted in Fig. 1. Such a graph is
obtained by applying the ϑ method (8) with ϑ = 1/2 and shows the usual functional
Gompertzian growth, in coherence with the behavior expected from the model.

References

Abdulle, A., Cohen, D., Vilmart, G., & Zygalakis, K. C. (2012). High weak order methods for
stochastic differential equations based on modified equations. SIAM Journal of Scientific Com-
puting, 34(3), a1800–a1823. https://doi.org/10.1137/110846609

Abdulle, A., Vilmart, G., & Zygalakis, K. C. (2013). Weak second order explicit stabilized methods
for stiff stochastic differential equations. SIAM Journal on Scientific Computing, 35(4), A1792–
A1814. Retrieved from https://doi.org/10.1137/12088954X.

Abdulle, A., Vilmart, G., & Zygalakis, K. C. (2014). High order numerical approximation of the
invariant measure of ergodic sdes. SIAM Journal on Numerical Analysis, 52(4), 1600–1622.
Retrieved from https://doi.org/10.1137/130935616.

Arnold, L. L. (1974). Stochastic differential equations: Theory and applications. New York: Wiley.
Bouchard, B., & Touzi, N. (2004). Discrete-time approximation and montecarlo simulation of
backward stochastic differential equations. Stochastic Processes and their Applications, 111(2),
175–206. Retrieved from https://EconPapers.repec.org/RePEc:eee:spapps:v:111:y:2004:i:2:p:
175-206.

https://doi.org/10.1137/110846609
https://doi.org/10.1137/12088954X
https://doi.org/10.1137/130935616
https://EconPapers.repec.org/RePEc:eee:spapps:v:111:y:2004:i:2:p:175-206
https://EconPapers.repec.org/RePEc:eee:spapps:v:111:y:2004:i:2:p:175-206


An Invitation to Stochastic Differential Equations in Healthcare 107

Buckwar, E., & D’Ambrosio, R. (2021). Exponential mean-square stability properties of stochastic
linear multistep methods. Advances in Computational Mathematics, 47(4), 14. (Id/No 55) https://
doi.org/10.1007/s10444-021-09879-2.

Buckwar, E., Horváth-Bokor, R., & Winkler, R. (2005). Asymptotic meansquare stability of two-
step methods for stochastic ordinary differential equations. Humboldt-Universität zu Berlin,
Mathematisch-Naturwissenschaftliche Fakultät II, Institut für Mathematik. https://doi.org/10.
18452/2597.

Buckwar, E., RöSSler, A., &Winkler, R. (2010). Stochastic runge–kutta methods for itô sodes with
small noise. SIAM Journal on Scientific Computing, 32(4), 1789–1808. Retrieved from https://
doi.org/10.1137/090763275.

Buckwar, E., & Sickenberger, T. (2011). A comparative linear meansquare stability analysis of
maruyama- and milstein-type methods. Mathematics and Computers in Simulation, 81(6), 1110–
1127. Retrieved from https://www.sciencedirect.com/science/article/pii/S0378475410003058,
https://doi.org/10.1016/j.matcom.2010.09.015.

Burrage, K., & Burrage, P. M. (2012). Low rank runge–kutta methods, symplecticity and stochas-
tic hamiltonian problems with additive noise. Journal of Computational and Applied Mathe-
matics, 236(16), 3920–3930. Retrieved from https://www.sciencedirect.com/science/article/pii/
S0377042712001240 (40 years of numerical analysis: “Is the discrete world an approximation of
the continuous one or is it the other way around?”) https://doi.org/10.1016/j.cam.2012.03.007.

Burrage, K., & Burrage, P. M. (2014). Structure-preserving runge-kutta methods for stochastic
hamiltonian equations with additive noise. Numerical Algorithms, 65(3), 519–532. Retrieved
from https://doi.org/10.1007/s11075-013-9796-6.

Burrage, K., & Tian, T. (2004). Implicit stochastic runge-kutta methods for stochastic differential
equations. BIT (Copenhagen), 44(1), 21–39.

Chartier, P., Makazaga, J., Murua, A., & Vilmart, G. (2014). Multi-revolution composition methods
for highly oscillatory differential equations.Numerische Mathematik, 128(1), 167–192. Retrieved
from https://doi.org/10.1007/s00211-013-0602-0.

Chen, C., Cohen, D., D’Ambrosio, R., & Lang, A. (2020). Drift-preserving numerical integrators
for stochastic hamiltonian systems. Advances in Computational Mathematics, 46(2). Retrieved
from https://doi.org/10.1007/s10444-020-09771-5.

Chen, C., Cohen, D., & Hong, J. (2016). Conservative methods for stochastic differential equations
with a conserved quantity. International Journal of Numerical Analysis and Modeling, 13(3),
435–456.

Cohen, D. (2012). On the numerical discretisation of stochastic oscillators. Mathematics and Com-
puters in Simulation, 82(8), 1478–1495. Retrieved from https://www.sciencedirect.com/science/
article/pii/S0378475412000286, https://doi.org/10.1016/j.matcom.2012.02.004.

Cohen, D., & Dujardin, G. (2014). Energy-preserving integrators for stochastic poisson systems.
Communications in Mathematical Sciences, 12(8), 1523–1539. https://doi.org/10.4310/CMS.
2014.v12.n8.a7

Cohen, D., & Vilmart, G. (2022). Drift-preserving numerical integrators for stochastic poisson
systems. International Journal of Computer Mathematics, 99(1), 4–20. Retrieved from https://
doi.org/10.1080/00207160.2021.1922679

de la Cruz, H. (2020). Stabilized explicit methods for the approximation of stochastic sys-
tems driven by small additive noises. Chaos, Solitons & Fractals, 140, 110195. Retrieved
from https://www.sciencedirect.com/science/article/pii/S0960077920305919, https://doi.org/
10.1016/j.chaos.2020.110195.

de la Cruz, H., Biskay, R., Jimenez, J., Carbonell, F., & Ozaki, T. (2010). High order local lineariza-
tion methods: An approach for constructing a-stable explicit schemes for stochastic differential
equations with additive noise. BIT Numerical Mathematics, 50(3), 509–539. Retrieved from
https://doi.org/10.1007/s10543-010-0272-6.

de la Cruz, H., Jimenez, J., & Biscay, R. (2019). On the oscillatory behavior of coupled stochastic
harmonic oscillators driven by random forces. Statistics & Probability Letters, 146(C), 85–89.

https://doi.org/10.1007/s10444-021-09879-2
https://doi.org/10.1007/s10444-021-09879-2
https://doi.org/10.18452/2597
https://doi.org/10.18452/2597
https://doi.org/10.1137/090763275
https://doi.org/10.1137/090763275
https://www.sciencedirect.com/science/article/pii/S0378475410003058
https://doi.org/10.1016/j.matcom.2010.09.015
https://www.sciencedirect.com/science/article/pii/S0377042712001240
https://www.sciencedirect.com/science/article/pii/S0377042712001240
https://doi.org/10.1016/j.cam.2012.03.007
https://doi.org/10.1007/s11075-013-9796-6
https://doi.org/10.1007/s00211-013-0602-0
https://doi.org/10.1007/s10444-020-09771-5
https://www.sciencedirect.com/science/article/pii/S0378475412000286
https://www.sciencedirect.com/science/article/pii/S0378475412000286
https://doi.org/10.1016/j.matcom.2012.02.004
https://doi.org/10.4310/CMS.2014.v12.n8.a7
https://doi.org/10.4310/CMS.2014.v12.n8.a7
https://doi.org/10.1080/00207160.2021.1922679
https://doi.org/10.1080/00207160.2021.1922679
https://www.sciencedirect.com/science/article/pii/S0960077920305919
https://doi.org/10.1016/j.chaos.2020.110195
https://doi.org/10.1016/j.chaos.2020.110195
https://doi.org/10.1007/s10543-010-0272-6


108 D. Breda et al.

Retrieved from https://ideas.repec.org/a/eee/stapro/v146y2019icp85-89.html https://doi.org/10.
1016/j.spl.2018.11.001.

de la Cruz, H., Jimenez, J., & Zubelli, J. P. (2017). Locally Linearized methods for the simulation
of stochastic oscillators driven by random forces. BIT Numerical Mathematics, 57(1), 123–151.
Retrieved from https://doi.org/10.1007/s10543-016-0620-2.

D. Higham, P. K. (2021). An introduction to the numerical simulation of stochastic differential
equations. SIAM, xvi+277. Retrieved from https://doi.org/10.1365/s13291-021-00242-4.

Donnet, S., & Samson, A. (2013). A review on estimation of stochastic differential equations for
pharmacokinetic/pharmacodynamic models. Advanced Drug Delivery Reviews, 65(7), 929–939.
Retrieved from https://www.sciencedirect.com/science/article/pii/S0169409X13000501 (Math-
ematical modeling of systems pharmacogenomics towards personalized drug delivery) https://
doi.org/10.1016/j.addr.2013.03.005.

D’Ambrosio, R., & Giovacchino, S. D. (2021a). Mean-square contractivity of stochastic q-
methods. Communications in Nonlinear Science and Numerical Simulation, 96, 105671.
Retrieved from https://www.sciencedirect.com/science/article/pii/S1007570420305013, https://
doi.org/10.1016/j.cnsns.2020.105671.

D’Ambrosio, R., & Giovacchino, S. D. (2021). Nonlinear stability issues for stochastic runge-kutta
methods. Communications in Nonlinear Science and Numerical Simulation, 94, 105549.

D’Ambrosio, R., & Scalone, C. (2021a). On the numerical structure preservation of nonlinear
damped stochastic oscillators. Numerical Algorithms, 86(3), 933–952. Retrieved from https://
doi.org/10.1007/s11075-020-00918-5.

D’Ambrosio, R., & Scalone, C. (2021b). Two-step runge-kutta methods for stochastic differential
equations. Applied Mathematics and Computation, 403, 125930. Retrieved from https://www.
sciencedirect.com/science/article/pii/S0096300320308833, https://doi.org/10.1016/j.amc.2020.
125930.

Fang, W., & Giles, M. B. (2020). Adaptive Euler–Maruyama method for SDEs with nonglobally
Lipschitz drift. The Annals of Applied Probability, 30(2), 526–560. Retrieved from https://doi.
org/10.1214/19-AAP1507

Ferrante, L., Bompadre, S., Leone, L., & M.P., M. (2005). A stochastic formulation of the gom-
pertzian growthmodel for in vitro bactericidal kinetics: parameter estimation and extinction prob-
ability. Biometrical journal. Biometrische Zeitschrift, 470(2), 309–318. Retrieved from https://
pubmed.ncbi.nlm.nih.gov/16053255/, https://doi.org/10.1002/bimj.200410125.

Gardiner, C. W. (2004). Handbook of stochastic methods, for physics, chemistry and the natural
sciences. Springer. https://link.springer.com/book/9783540707127

Gobet, E. (2022). Monte-carlo methods and stochastic processes: From linear to non-linear (1st
ed.). Chapman and Hall/CRC. https://doi.org/10.1201/9781315368757.

Gobet, E., Lemor, J.-P., & Warin, X. (2005). A regression-based Monte Carlo method to solve
backward stochastic differential equations. The Annals of Applied Probability, 15(3), 2172–2202.
Retrieved from https://doi.org/10.1214/105051605000000412.

Higham, D. J. (2000). Mean-square and asymptotic stability of the stochastic theta method.
SIAM Journal on Numerical Analysis, 38(3), 753-769. Retrieved from https://doi.org/10.1137/
S003614299834736X.

Higham., D. J. (2001). An algorithmic introduction to numerical simulation of stochastic dif-
ferential equations. SIAM Review, 43(3), 525–546. Retrieved from https://doi.org/10.1137/
S0036144500378302.

Higham, D. J., & Kloeden, P. (2005). Numerical methods for nonlinear stochastic differential
equations with jumps. Numerische Mathematik, 101(1), 101–119. Retrieved from https://doi.
org/10.1007/s00211-005-0611-8.

Hutzenthaler, M., & Jentzen, A. (2015). Numerical approximations of stochastic differential equa-
tions with non-globally lipschitz continuous coefficients.Memoirs of the American Mathematical
Society. https://doi.org/10.1090/memo/1112

Hutzenthaler, M., Jentzen, A., &Kloeden, P. E. (2011). Strong and weak divergence in finite time of
euler’s method for stochastic differential equations with non-globally lipschitz continuous coef-

https://ideas.repec.org/a/eee/stapro/v146y2019icp85-89.html
https://doi.org/10.1016/j.spl.2018.11.001
https://doi.org/10.1016/j.spl.2018.11.001
https://doi.org/10.1007/s10543-016-0620-2
https://doi.org/10.1365/s13291-021-00242-4
https://www.sciencedirect.com/science/article/pii/S0169409X13000501
https://doi.org/10.1016/j.addr.2013.03.005
https://doi.org/10.1016/j.addr.2013.03.005
https://www.sciencedirect.com/science/article/pii/S1007570420305013
https://doi.org/10.1016/j.cnsns.2020.105671
https://doi.org/10.1016/j.cnsns.2020.105671
https://doi.org/10.1007/s11075-020-00918-5
https://doi.org/10.1007/s11075-020-00918-5
https://www.sciencedirect.com/science/article/pii/S0096300320308833
https://www.sciencedirect.com/science/article/pii/S0096300320308833
https://doi.org/10.1016/j.amc.2020.125930
https://doi.org/10.1016/j.amc.2020.125930
https://doi.org/10.1214/19-AAP1507
https://doi.org/10.1214/19-AAP1507
https://pubmed.ncbi.nlm.nih.gov/16053255/
https://pubmed.ncbi.nlm.nih.gov/16053255/
https://doi.org/10.1002/bimj.200410125
https://link.springer.com/book/9783540707127
https://doi.org/10.1201/9781315368757
https://doi.org/10.1214/105051605000000412
https://doi.org/10.1137/S003614299834736X
https://doi.org/10.1137/S003614299834736X
https://doi.org/10.1137/S0036144500378302
https://doi.org/10.1137/S0036144500378302
https://doi.org/10.1007/s00211-005-0611-8
https://doi.org/10.1007/s00211-005-0611-8
https://doi.org/10.1090/memo/1112


An Invitation to Stochastic Differential Equations in Healthcare 109

ficients. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences,
467(2130), 1563–1576. Retrieved from https://royalsocietypublishing.org/doi/abs/10.1098/rspa.
2010.0348, https://doi.org/10.1098/rspa.2010.0348.

Jimenez, H., & de la Cruz Cancino, J. C. (2012). Convergence rate of strong local linearization
schemes for stochastic differential equations with additive noise. BIT Numerical Mathematics,
52(2), 357–382. Retrieved from https://doi.org/10.1007/s10543-011-0360-2.

Kloeden, P. E. (2002). The systematic derivation of higher order numerical schemes for stochastic
differential equations. Milan Journal of Mathematics, 70(1), 187–207. Retrieved from https://
doi.org/10.1007/s00032-002-0006-6

Kloeden, P. E., & Platen, E. (1992). Numerical solution of stochastic differential equations. Berlin,
Heidelberg: Springer. https://doi.org/10.1007/978-3-662-12616-5.

Ma, J.,&Zhang, J. (2002). Path regularity for solutions of backward stochastic differential equations.
Probability Theory and Related Fields, 1222(2), 163–190. Retrieved from https://doi.org/10.
1007/s004400100144.

Ma, Q., Ding, D., & Ding, X. (2012). Symplectic conditions and stochastic generating func-
tions of stochastic runge–kutta methods for stochastic hamiltonian systems with multiplicative
noise. Applied Mathematics and Computation, 219(2), 635–643. Retrieved from https://www.
sciencedirect.com/science/article/pii/S0096300312006613, https://doi.org/10.1016/j.amc.2012.
06.053

Mao, X. (2007). Stochastic differential equations and applications. Chichester: Horwood.
Melbø, A. H., & Higham, D. J. (2004). Numerical simulation of a linear stochastic
oscillator with additive noise. Applied Numerical Mathematics, 51(1), 89–99. Retrieved
from https://www.sciencedirect.com/science/article/pii/S0168927404000285 https://doi.org/10.
1016/j.apnum.2004.02.003.

Milstein, G. N. (1994). Numerical integration of stochastic differential equations. Translation from
the Russian (Vol. 313). Dordrecht: Kluwer Academic Publishers.

Milstein, G. N., Repin, Y.M., & Tretyakov,M. V. (2002). Numerical methods for stochastic systems
preserving symplectic structure. SIAM Journal on Numerical Analysis, 40(4), 1583–1604. https://
doi.org/10.1137/S0036142901395588

Misawa, T. (2000). Energy conservative stochastic difference scheme for stochastic Hamilton
dynamical systems. Japan Journal of Industrial and Applied Mathematics, 17(1), 119–128.
https://doi.org/10.1007/BF03167340

Neuenkirch, A., Szölgyenyi, M., & Szpruch, L. (2019). An adaptive Euler- Maruyama scheme
for stochastic differential equations with discontinuous drift and its convergence analysis. SIAM
Journal of Numerical Analysis, 57(1), 378–403. https://doi.org/10.1137/18M1170017

Pardoux, E., & Peng, S. G. (1990). Adapted solution of a backward stochastic differential equation.
Systems and Control Letters, 14(1), 55–61. https://doi.org/10.1016/0167-6911(90)90082-6

Rössler, A. (2006). Runge-Kutta methods for Itô stochastic differential equations with scalar noise.
BIT, 46(1), 97–110. https://doi.org/10.1007/s10543-005-0039-7

Rössler, A. (2009). Second order Runge-Kutta methods for Itô stochastic differential equations.
SIAM Journal of Numerical Analysis, 47(3), 1713–1738. https://doi.org/10.1137/060673308

Rössler, A. (2010). Runge-Kutta methods for the strong approximation of solutions of stochastic
differential equations. SIAM Journal of Numerical Analysis, 48(3), 922–952. https://doi.org/10.
1137/09076636X

Ruemelin, W. (1982). Numerical treatment of stochastic differential equations. SIAM Journal of
Numerical Analysis, 19, 604–613. https://doi.org/10.1137/0719041

Saito, Y., & Mitsui, T. (1996). Stability analysis of numerical schemes for stochastic differen-
tial equations. SIAM Journal of Numerical Analysis, 33(6), 2254–2267. https://doi.org/10.1137/
S0036142992228409.

Shreve, S. E. (2004). Stochastic calculus for finance. II: Continuous-time models. New York, NY:
Springer.

https://royalsocietypublishing.org/doi/abs/10.1098/rspa.2010.0348
https://royalsocietypublishing.org/doi/abs/10.1098/rspa.2010.0348
https://doi.org/10.1098/rspa.2010.0348
https://doi.org/10.1007/s10543-011-0360-2
https://doi.org/10.1007/s00032-002-0006-6
https://doi.org/10.1007/s00032-002-0006-6
https://doi.org/10.1007/978-3-662-12616-5
https://doi.org/10.1007/s004400100144
https://doi.org/10.1007/s004400100144
https://www.sciencedirect.com/science/article/pii/S0096300312006613
https://www.sciencedirect.com/science/article/pii/S0096300312006613
https://doi.org/10.1016/j.amc.2012.06.053
https://doi.org/10.1016/j.amc.2012.06.053
https://www.sciencedirect.com/science/article/pii/S0168927404000285
https://doi.org/10.1016/j.apnum.2004.02.003
https://doi.org/10.1016/j.apnum.2004.02.003
https://doi.org/10.1137/S0036142901395588
https://doi.org/10.1137/S0036142901395588
https://doi.org/10.1007/BF03167340
https://doi.org/10.1137/18M1170017
https://doi.org/10.1016/0167-6911(90)90082-6
https://doi.org/10.1007/s10543-005-0039-7
https://doi.org/10.1137/060673308
https://doi.org/10.1137/09076636X
https://doi.org/10.1137/09076636X
https://doi.org/10.1137/0719041
https://doi.org/10.1137/S0036142992228409
https://doi.org/10.1137/S0036142992228409


110 D. Breda et al.

Vom Scheidt, J. (1989). T. C. Gard (Ed.), Introduction to Stochastic Differential Equations, 1988
(Vol. XI, 234, p. $ 78). New York-Basel, Marcel Dekker Inc. ISBN 0-8247-7776-X (Pure and
Applied Mathematics 114). Zeitschrift Angewandte Mathematik und Mechanik, 69(8), 258–258.
https://doi.org/10.1002/zamm.19890690808.

Dimitri Breda Associate Professor of numerical analysis at the Department of Mathematics, Com-
puter Science and Physics, University of Udine, where he founded and leads the
CDLab—Computational Dynamics Laboratory. His research interests are in the numerical and
applied mathematical analysis of infinite-dimensional dynamical systems from population dynam-
ics and control engineering.

Jung Kyu Canci Senior lecturer and researcher at University of Basel and of Applied Science in
Lucerne. His research is in pure mathematics, Number Theory with particular interests in Arith-
metic of Dynamical Systems, and in applied mathematics, Stochastic Processes in Finance. He is
also the founder of several companies.

Raffaele D’Ambrosio Professor of Numerical Analysis at the University of L’Aquila, in Italy.
He has been Fulbright Research Scholar in the Academic Year 2014–15 at Georgia Institute of
Technology. His main research interests regard the numerical approximation of deterministic and
stochastic evolutive problem and their geometric numerical integration.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropri-
ate credit to the original author(s) and the source, provide a link to the Creative Commons license
and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

https://doi.org/10.1002/zamm.19890690808
http://creativecommons.org/licenses/by/4.0/

	 An Invitation to Stochastic Differential Equations in Healthcare
	1 Introduction
	1.1 Brownian Motions
	1.2 Ito's Integral and Solutions of Geometric Brownian Motions (GBM)
	1.3 Existence of Solutions of Stochastic Differential Equations

	2 Numerical Methods for SDEs
	2.1 Euler–Maruyama Method
	2.2 –Maruyama Methods
	2.3 Stochastic Runge–Kutta Methods

	3 A Numerical Evidence on PK/PD Models
	References


