
Multi-Echelon Inventory Optimization
Using Deep Reinforcement Learning

Patric Hammler, Nicolas Riesterer, Gang Mu, and Torsten Braun

1 Introduction

The operation of supply chains is amajor cost driver for allmanufacturing companies.
It is imperative to keep this cost at a minimum and the service level at a maximum to
enable companies to redirect investment to their core goals, such as the development
of new drugs in the healthcare industry. The field that deals with this task is called
inventory management and has served as an intensely studied research area for many
decades. In practice, companies often rely on parameterized reorder policies for the
operation of inventory management (e.g., De Kok et al. 2018). These consist, for
example, of a periodic reorder timing (T) and a reorder quantity (Q) that depends
on the difference of the current inventory on hand (IOH) and the target IOH. The
conceptual designs of such parameterized reorder policies are usually hand-crafted
and based on historical experiences, sales forecast information, and safety stock
considerations. Parameterized reorder policies are intuitive and easily applicable—
on the other hand, they tend to be an oversimplified solution for a complex challenge
due to the stochastic characteristics of the problem: E.g., demand anomalies require
a situational T and Q, which highlights the importance of so-called dynamic reorder
policies.

P. Hammler (B) · T. Braun
Universität Bern, Bern, Switzerland
e-mail: patric.hammler@inf.unibe.ch

T. Braun
e-mail: braun@iam.unibe.ch

N. Riesterer
F. Hoffmann-La Roche AG, Basel, Switzerland
e-mail: nicolas.riesterer@roche.com

G. Mu
University of Zurich, Zürich, Switzerland
e-mail: gang.mu@math.uzh.ch

© The Author(s) 2023
J. K. Canci et al. (eds.), Quantitative Models in Life Science Business,
SpringerBriefs in Economics, https://doi.org/10.1007/978-3-031-11814-2_5

73

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-11814-2_5&domain=pdf
mailto:patric.hammler@inf.unibe.ch
mailto:braun@iam.unibe.ch
mailto:nicolas.riesterer@roche.com
mailto:gang.mu@math.uzh.ch
https://doi.org/10.1007/978-3-031-11814-2_5

74 P. Hammler et al.

Finding an optimized, dynamic reorder policy for a given network of inventory
systems is a challenging task. With recent advances in the field of Artificial Intelli-
gence (AI), the question naturally arises: Can AI help to make better decisions, and
thus, reduce the cost for the operation of supply chains? This question is justified,
especially when one considers that the best chess player in the world is not a human
being anymore (Silver et al. 2017). Just like chess, inventory management is a chal-
lenge in which the optimal sequence of decisions is sought. If with chess, we are
looking for the optimal sequence of decisions that maximize the chances of winning,
in the case of inventory management we are looking for the optimal sequence of
decisions that minimize the cost.

Reinforcement Learning (RL) is the paradigm in the field of machine learning
dedicated to learning an optimized policy in sequential decision-making challenges.
At a high level, an agent takes situational decisions and receives feedback on the
quality of the agent’s decision in return. As a consequence, the agent takes the
feedback into account to improve the policy. In the latest research publications,
policies are based on deep neural networks, inwhich case themethodology is referred
to as Deep Reinforcement Learning (DRL). DRL has recently attracted considerable
attention: An RL agent beats professional players in the classic board game Go,
which is considered to be the most challenging board game use-case for AI due to its
high number of possible combinations (Silver et al. 2016). DRL enables autonomous
driving (Kiran et al. 2020) and can potentially be leveraged for precision dosing in
the healthcare sector (Ribba et al. 2020). In this chapter we review the applicability
of DRL for Multi-Echelon Inventory Optimization (MEIO).

This chapter aims to provide an introduction to the domain of MEIO with RL
and is structured into eight sections: Sect. 2 introduces the term MEIO and explains
the multiple challenges that are connected to it from an optimization perspective.
Section3 provides a brief overview of research streams in the field MEIO. Section4
connects the topics MEIO and RL before Sect. 5 provides a detailed introduction to
the concept of RL. Section6 showcases an experiment to evaluate the applicability
of RL in MEIO challenges. In Sect. 7 the results are discussed. Section8 provides an
outlook of potential future research streams. Section9 showcases conclusions and
provides an outlook of future research efforts.

2 Challenges of Multi-Echelon Inventory Management
from an Optimization Perspective

The goal of inventory management optimization is to optimize the reorder policy in a
way so that the cost related to the operation of inventory systems are minimized. This
section introduces five layers of complexity explaining why inventory management
is a highly challenging optimization task:

The major operational cost of inventory systems can be structured into holding-,
shortage-, and reordering costs. This aspect introduces the first layer of complex-

Multi-Echelon Inventory Optimization Using Deep Reinforcement Learning 75

ity with regards to the optimization challenge: Minimizing holding cost through
lowering the inventory level increases the likelihood of a stock-out and the associ-
ated shortage costs. To prevent stock-out, the ordering frequency can be increased,
whereby this impacts the reordering cost on the other hand. This observation suggests
that each cost category is interrelated leading to a complex, non-linear cost function.

The second layer of complexity is due to the stochastic characteristics of an
inventory system: Each day, the IOH is reduced by the number of outgoing items
(e.g., because of sales). This value depends on customer behavior, which can be
estimated but is always associated with uncertainties, which is why this challenge
falls under the category of stochastic optimization. Next to the demand, the lead time,
which is defined as the time duration between order placement and supply delivery
is another stochastic parameter. As a consequence, the decision-making must be
optimal under the consideration of uncertainty.

The third layer is due to the interconnected characteristic of reordering policies
within a supply chain distribution network. This can be briefly illustrated by an exam-
ple: A large reorder from one warehouse can use up the entire reserves of the parent
warehouse, with all further reorders from other warehouses subsequently no longer
being able to be serviced. This example makes clear why the optimization must be
carried out holistically and not in a warehouse-by-warehouse manner. Optimization
approaches addressing this holistic problem characteristic are referred to as MEIO.

The fourth layer results from the third layer: Given the fact that the optimal order-
ing policy of an individual inventory system can only be found if the reorder policy of
the entire inventory system network is optimal, this leads to a high number of param-
eters that have to be optimized. Many algorithms that still meet the requirements
related to a highly complex cost function, stochastic system dynamics, and holistic
optimization fail to scale to real-world supply chain dimensions. The holistic view of
the problem leads to a dilemma: Either one resorts to high-performance algorithms,
which outperform the rule-based approaches by far, or one wants to perform a holis-
tic optimization, in which case the high-performance algorithms are not applicable
anymore. This is probably also the reason why many companies still use comparably
simple methods such as rule-based control.

The fifth layer is the variability of model and optimization goal assumptions:
Multi-Echelon Inventory Systems (MEIS) can be divergent, convergent, sequential,
or mixed (Clark and Scarf 1960). The policy to be optimized can either be periodic
(all reorders at fixed time intervals) or dynamic (De Kok et al. 2018). The same
applies to the reorder quantity: This can be flexible for certain applications—in other
cases, the lot sizes are fixed and the optimization goal is to select the best available
option. It can be seen that optimization algorithms must be adapted to the specific
situation and that the underlying model assumptions are highly variable. In the next
section, it will be shown that many traditional optimization approaches have to be
tailored exactly to the problem—and general applicability is not given.

In the remainder of this section, we want to emphasize a potential solution to this
dilemma—before that we want to have a deeper look at existing research efforts in
the MEIO domain.

76 P. Hammler et al.

3 Literature Review of Inventory Management

Due to the immense relevance and high complexity of multi-echelon inventory man-
agement, many research paths have developed in the areawith the first major research
papers dating back to the 1960s. De Kok et al. (2018) composed a comprehensive
literature overview on stochastic multi-echelon inventory models. In fact, most of the
research efforts from the early days focused on the development of exact models: In
Clark and Scarf (1960) a mathematical proof was presented that the reorder policy
of an individual warehouse can only be optimal if the reorder policy is optimal for
the entire network. However, due to the complexity of the problem, these models
are based on highly-simplified assumptions limiting the applicability to real-world
supply chains (Gijsbrechts et al. 2021). De Kok et al. (2018) state that develop-
ing optimal policy structures has turned out to be intractable. This fact, combined
with the technological development in the semiconductor field and the associated
increase in computational capacities, has led the research focus shifting to other
methodologies such as parameterized, simulation-based, and approximative policy
optimization. These are by no means completely separate fields of research—many
seminal papers proposed a combination of the aforementioned algorithm categories.
In order to provide the reader with an easy-to-understand intuition, the three areas
are discussed separately below.

Parameterized policy optimization experienced its rise in the 1990s (De Kok
et al. 2018). One prominent representative of parameterized policies is the base-
stock policy, also known as (s, S) inventory control policy. Each time when the
inventory level drops below the reorder point s, a reorder is triggered to fill up the
inventory level to a target inventory level S. Now, the entire inventory systembehavior
can be described in two parameters (s, S). The task of optimally configuring these
parameters has been tackled via meta-heuristic or simulation-based approaches.

Heuristic methods aim at solving optimization problems under the constraint of
limited prior knowledge and limited time. Examples of heuristic methods are, e.g.,
genetic algorithms (Grahl et al. 2016).

Unfortunately, there are some disadvantages associated with heuristic methods:
(1) they do not provide optimality guarantees, and (2) they lack general applicability.
If there are changes in the supply chain network structure or in themodel assumption,
the method needs to be revised—whereby finding the right parameters can become
a huge effort.

Simulation-based policy optimization is a frequently used approach with numer-
ous variations (Chu et al. 2015). The main ingredients are: (1) A model simulates
the inventory system network taking policy parameters as an input and outputs the
corresponding performance measures. Three model categories are particularly well
suited: TheMEIS can be interpreted as a classic coupled tank system in control engi-
neering turning the problem into a set of complicated differential equations which
is challenging to be solved. Another option is an agent-based model as performed
in (Chu et al. 2015). Each individual inventory system is modeled by the interaction
of four different agents: A facility agent, an order agent, a shipment agent, and a

Multi-Echelon Inventory Optimization Using Deep Reinforcement Learning 77

customer agent. The characteristic of such an agent-based system can be catego-
rized as a black-box function. The third option is a hybrid model allowing to access
specific model structures while other components remain black-box functions. (2)
A Monte-Carlo method estimating the expected value of the performance measure
for a given set of policy parameters over multiple simulation time steps. (3) An
optimization algorithm evaluating how to update the policy parameters to iteratively
optimize the performance. Two drawbacks are related to this approach. Similar to the
heuristic methods, theMonte-Carlo estimation performed in step (2) is computation-
ally intense leading to poor scaling properties. Secondly, the optimization algorithm
converges to a minimum, but this may be a bad local minimum.

Approximative policy optimization interprets the inventory system as a Markov
Decision Process (MDP) which is covered in more detail in Sect. 4.1 (Powell 2007).
MDPs are typically solved with dynamic programming (DP) approaches. However,
due to the complexity of the system, these methodologies do not have the required
scaling properties to be a suitable solution to a MEIO challenge. Thus, approximate
dynamic programming approaches have been developed to simplify the underlying
dynamic program. According to Gijsbrechts et al. (2021), these can be structured
into three distinct research branches: The first branch exploits the problem structure
by simplifying assumptions such as very short lead times. Another branch aggre-
gates multiple states to a single state based on hand-crafted features. The third
branch approximates the value or the policy function of the MDPs. Two famous
representatives using function approximation are linear programming-approximate
dynamic programmingApproximateDynamic Programming (LP-ADP) andRLwith
the remainder of this chapter focusing on the latter method.

4 Reinforcement Learning for Inventory Management

4.1 Markov (Decision) Processes

The operation of inventory systems is related to multiple stochastic processes
(e.g., the demand and lead times) and can be modeled as a Markov Process (MP)
(e.g., Broyles et al. 2010). The relevant components and quantities describing a
Markov chain are states, transition probabilities, and, optionally, performance met-
rics describing the quality of a state. Figure1a showcases aMarkov chain modeling a
highly-simplified inventory system for explanatory purposes. The state space consists
of two states representing a low IOH-level (LIOH) and a high IOH-level (HIOH).
Each time step, the IOH transitions from one state to another state if the IOH exceeds
(e.g., through backordering) or falls below (e.g., through customer demand) a certain
threshold—otherwise the system remains in the same state. The set of all transition
probabilities is referred to as system dynamics and regulates the probabilities via
which the state of the system changes to another state and remains constant over
the full period of time to fulfill the so-called Markov property. The system dynam-

78 P. Hammler et al.

NR NR

R R

LIOH HIOH

R

π(R | LIOH)

π(R | HIOH) π(NR | HIOH)

π(NR | LIOH)LIOH

NR

HIOH

(2b) Policy

LIOH

∑π(a | LIOH) · P(LIOH | a, LIOH)
a A

∑π(a | LIOH) · P(HIOH | a, LIOH)
a A

∑π(a | HIOH) · P(HIOH | a, HIOH)
a A

∑π(a | HIOH) · P(LIOH | a, HIOH)
a A

LIOH

HIOH

HIOH

(2c) System Dynamics of Markov Decision Process

(2a) Markov Decision Process (MDP)

LIOH HIOH

LIOH

P(st+1 = LIOH | st = LIOH) P(st+1 = LIOH | st = HIOH)

P(st+1 = HIOH | st = LIOH) P(st+1 = HIOH | st = HIOH)

LIOH

HIOH

HIOH

(1b) System Dynamics of Markov Process(1a) Markov Process

Fig. 1 (a) Describes the stochastic behavior of the inventory systems IOH in a highly-simplified
way. In each time step the system can either remain in the same state or transition to the other state.
Processes such as the demand may cause the IOH to decrease. Processes such as reordering may
increase the IOH. The behavior of the system is describedwith the system dynamics displayed in (b).
(d) Displays a MDP with a policy responsible for the reorder decision summarized as π (the policy)
and non-controllable processes such as the demand. In each time step, an agent takes a decision
(reorder or no reorder) according to the policy. The overall system behavior can thus be defined as
a combination of the policy π and the system dynamics P as illustrated in (e)

ics result from processes impacting the state of the inventory systems such as the
demand and reordering activities. In this use-case, we consider one performancemet-
ric describing the overall cost associated with the operation of the inventory system.
To create an intuition, we can associate the state HIOH with low cost and the state
LIOH with high cost. This example is arbitrary and for explanatory purposes only,
but could be justified with a higher likelihood of the event of a stock-out in case
of a LIOH and with shortage cost outweighing the cost for holding a high number
of inventory. The expected cost over multiple time steps depends on the number
of time steps and the equilibrium distribution describing how often the system is in
state LIOH or HIOH respectively. The equilibrium distribution solely depends on the
system dynamics and can be calculated analytically or in case of complex Markov
chains estimated with a Markov Chain Monte Carlo (MCMC) simulation.

The Markov model is a suitable framework for describing stochastic systems—
however, to use it as a basis for finding an optimal control strategy some extensions
need to be applied: Firstly, we need to differentiate processes, which influence the
system dynamics, into controllable and non-controllable processes. With regards to
an inventory system, e.g., the reorder decision is a controllable process,whereby there
are limited options to control the customers demand. The non-controllable processes
remain referred to as system dynamics, whereby controllable processes are denoted
as the policy.Modelwise, thismeans that each system state (LIOH/HIOH) is followed
by a decision (e.g., reorder (R)/not-reorder (NR)) taken by an agent in accordance

Multi-Echelon Inventory Optimization Using Deep Reinforcement Learning 79

with the policy, which by itself is followed by the successor state with a dependency
on the selected action and the corresponding system dynamics. With the possibility
of actively intervening into the system through the policy, we have introduced the
concept of an MDP (Puterman 1990). Figure1c highlights the difference between an
MP and an MDP. The policy is referred to as an optimal policy in case it minimizes
the expected overall cost in a way that no other policy can be associated with a lower
expected overall cost.

As mentioned, however, this is a greatly simplified model and the reality is far
more complex. On the one hand, an order does not immediately lead to an increase
in the inventory level. Instead, it often takes a few days for the delivery. A policy
should be aware of open orders to avoid multiple reorders in a low inventory level
state. In fact, this is one aspect explaining why the state space is of much higher
complexity than displayed in Fig. 1: There must be a specific state for each IOH and
open order combination, whereby the open-order situation can be quantified with
two additional dimensions: the order timing and the order quantity. Furthermore, the
inventory level should be structured in a much more fine-granular way: We need one
state for each possible inventory level—instead of grouping it into low and high IOH-
levels. Moreover, the action choices need to be revised: In Fig. 1 it is distinguished
between reordering and not-reordering. In reality, inventory systems can select one of
the multiple order quantities. These examples should provide the reader an intuition,
why the real state and action space is much more complex and high-dimensional
compared to the simplified variant illustrated in Fig. 1.

5 Introduction to Reinforcement Learning

RL is a promising approach to tackle inventory optimization challenges because of
the following reasons:

• The policy can be represented by a deep neural network with all its related advan-
tages: The representative capacity of neural networks is high, allowing to properly
identify n-order dependencies of the input variables. In addition, deep neural net-
works are capable of generalization: It is not necessary to simulate every situation
in a training stage (which would be computationally impossible)—it is enough to
have encountered a limited set of situations and apply an action that performed
well according to generalized experiences. Furthermore, the input values can be
relatively unstructured and may include information that is redundant to identify
the optimal control.

• RL is generally applicable to every inventory system setups—with only little expert
knowledge or intense model tuning required. Intuitively speaking, the algorithm
finds its own way to the optimal policy. This is the aspect that distinguishes RL
from other methods that are often used in inventory optimization challenges—
especially from heuristic approaches.

80 P. Hammler et al.

• Thanks to the expected reward properties which are discussed in the following
section, RL is optimizing decisions considering the long-term outcomes instead
of optimizing the short-term consequences. This is a very important feature of
many decision-making processes.

5.1 Value-Based Methods

We already introduced five essential components in RL. The current state of a system
is captured in a state vector. In an inventory system context, this state vector may
include the current inventory level on hand and the open-order situation. The agent
then applies a policy taking the state vector as an input and mapping it onto an
action vector. This action vector may include information such as whether to reorder
and how much to reorder. The action is subsequently applied to the environment
causing effects regarding the systems state: The system transitions from one state to
another state. Next to the state, the environment returns another signal that enables
the policy to learn an optimal policy: The reward. The reward provides the agent
with the information, whether the action taken in the last state was actually a good
choice or not. In the case of a supply chain cost optimization use-case, this reward
may represent the overall cost. However, optimizing the immediate reward can be
myopic: In the short term, total cost can be reduced by not ordering and avoiding
transportation cost. In the long term, this causes shortage cost due to stock-out. This
example showcases the need to consider the long-term consequences of an action. A
mathematical basis for integrating these long-term consequences is provided by the
Bellman equation: The quality of a state is defined as the expected sum of rewards
collected in the next time step and all future time steps. This value can be assigned
to every state (state value v), and to every state-action pair (action value q) (Sutton
and Barto 2018a).

The state value is defined as the expected reward Gt at time step t conditioned on
the state St at time step t following a policy π .

V (s) = Eπ [Gt |St = s] (1)

The expected reward Gt can be expressed as the sum of rewards collected at
the next time step and all future time steps k. Since the uncertainty increases with
increasing k, each reward can be considered with a discount factor γ t+k+1, with
γ ∈ [0, 1]. If γ = 1, each future reward is weighted equally, independent of the
moment of occurrence. In contrast to this, a γ close to zero focuses on nearby
rewards through masking out distant future rewards. From this it follows that

V (s) = Eπ

[∞∑
k=0

γ k Rt+k+1|St = s

]
(2)

Multi-Echelon Inventory Optimization Using Deep Reinforcement Learning 81

Agent

Reward rt

Action at

State st

Environment

Fig. 2 An agent applies a policy π(at |st) by mapping a state vector st onto an action vector at .
The action is then applied to a system that is denoted as environment. The systems state is changed
due to the agents action with the new state st+1 and the reward signal rt+1 passed to the agent

The summand related to k = 0 need to be extracted from the sum, to prepare the
following steps introduced in Eq.3–5.

V (s) = Eπ [Rt+1 + γ

∞∑
k=0

γ k Rt+k+2|St = s] (3)

The expected reward depends on the policy π(a|s) and the system dynamics
p(s ′, r |s, a). Taking these equations as deterministic equations helps to move them
out of the expected value:

V (s) =
∑
a

π(a|s)
∑
s ′

∑
r

p(s ′, r |s, a)[r + γEπ [
∞∑
k=0

γ k Rt+k+2|St+1=s ′] (4)

A close look suffices to replace the remaining term in the expected value with
a deterministic expression. The term within the expected value is similar to the
expression in Eq.2. The only difference is that Eq.2 formulates the state value for
state s, where the expected value in Eq.4 refers to the expected value of the successor
state s ′. Therefore Eq.4 can be rewritten as

V (s) =
∑
a

π(a|s)
∑
s ′

∑
r

p(s ′, r |s, a)[r + γ vπ (s ′)] (5)

Equations1–5 andmore details are summarized by Sutton and Barto (2018b). The
expected reward of a state or a state-action combination depends on the policy π ,
system dynamics p, the reward of the current time step r , the discount factor γ , and
the quality of the next state vπ (s ′).While the policy-dependency seems to be intuitive

82 P. Hammler et al.

(the better the decision-making, the better the expected outcome), one challenging
factor must be considered: Both, the system dynamics p and the state-values may
be unknown. One way to deal with this is to try to estimate the value function V (s)
and to further improve the estimation with every additional interaction.

Two common value function estimation methodologies exist: The Monte-Carlo
(MC) method and Temporal Difference (TD) learning (Sutton and Barto 2018a).
Both are based on the Bellman equation. The MC method learns in an episode-by-
episode sense by accumulating the reward encountered after taking action at in state
st in time step t . On the other hand, the TD method allows updating the state value
in every time step.

The TD method is based on the definition of the expected reward:

Gt = Rt+1 + γ Rt+2 + γ 2Rt+3 + γ 3Rt+4 + ... (6)

The γ for the second summand and all following summands can be factored out.

Gt = Rt+1 + γ · (Rt+2 + γ 1Rt+3 + γ 2Rt+4 + ...) (7)

As a consequence, the expected reward of the current time step t can be formulated
as a sum of the reward and the expected reward of the next time step t + 1:

Gt = Rt+1 + γGt+1 (8)

The characteristics illustrated in Eq.8 can be leveraged as a basis for learning:
The expected rewards Gt and Gt+1 are estimates and may originate from a model
output. On the other hand, the right side of the equation incorporates a Rt+1 which
has been encountered by interacting with the environment. Thus, it can be assumed
that the right side of the equation is generally more accurate and can serve as the TD
target. The left-hand side can be seen as a TD prediction. The difference between
TD target and TD prediction can be understood as the TD error. This underlines the
analogy to supervised learning methods. A model can now be trained according to
the prediction and the target, wherein RL the target is only a better estimate and in
supervised learning ground truth. From another perspective, while the goal of super-
vised learning is to minimize the difference between the prediction and the target,
RL faces an additional challenge as the target is a moving target being updated in
every learning step. The procedure of updating an estimate with another estimate is
called bootstrapping and explains why RL is typically more computationally inten-
sive compared to supervised learning. Next to the learning aspect, RL is also more
computationally intensive from a sampling process perspective. In supervised learn-
ing, the labeled dataset is usually static and already given at the beginning of the
learning process. In the case of RL, the data is collected during the learning process
through interacting with an environment.

The value function V (St) can be updated with the temporal difference using the
following update rule:

Multi-Echelon Inventory Optimization Using Deep Reinforcement Learning 83

V (St) = V (St) + α[Rt+1 + γ V (St+1) − V (St)], (9)

with α representing the update step length. An analogous contemplation can also be
carried out for action values.

So far, it was discussed how to estimate and update a value for each specific state.
Each state must be visited multiple times until the value function can estimate the
corresponding value accurately. This is possible if the state of the environment can be
described with a discrete vector and a limited amount of distinct states. However, if
the state space becomes more numerous or even continuous, this approach becomes
infeasible due to computational complexity—the computation time to develop an
appropriate value estimate for each state would grow toward infinity. For this reason,
we need to look at models that can approximate without much loss of performance.
Is it possible to draw conclusions from an experience in one state for similar states?

This question leads inevitably to the topic of neural networks. The idea of lever-
aging Multi-layer Perceptrons (MLPs) as non-linear function approximators in RL
was considered to be unstable until Mnih et al. (2013) proposed Deep Q-Networks
(DQN). Two contributions are responsible for this breakthrough:

Firstly, the concept of an experience replay buffer was introduced: Instead of
learning fromexperiences as they occur, they are stored in a table named replay buffer.
The information stored consists of the state-action pair st , at , the corresponding
reward rt + 1 and the successor state st + 1. Subsequently, the experience-making
and the learningprocess canbe seen as decoupledprocesses as the learning takes place
on the basis of randomly selected samples from the replay buffer. This procedure
removes the temporal correlation between the samples and stabilizes the convergence
properties.

Secondly, the concept of target networks was introduced: Two function approxi-
mators are used instead of one: (1) A target network and (2) a behavior network. The
target network represents a copy of the behavior network and is used to calculate the
Bellman update. The Bellman update is used to update the parameters of the behavior
network. The parameters of the target network are periodically updated according to
the behavior network. This concept keeps the target more stable compared to updat-
ing the target in every time step and has a stabilizing effect on the training process.
Many extensions of DQN have been published such as Double Deep Q-Networks
(Double DQN) (van Hasselt et al. 2015), Prioritized Experience Replay (Schaul et al.
2015), or Dueling Deep Q Networks (Dueling DQN) (Wang et al. 2016).

Despite all advantages, value-based methods cannot handle continuous action
spaces without leveraging an additional optimization technique. According to
(Lillicrap et al. 2015), the idea to simply discretizing a continuous action space
into a fine-granular discrete action space often fails: Even small systems with little
degrees of freedom are related to a sprawling action space leading to a too high
sample complexity. One method to enable the control of continuous action spaces is
introduced in the subsequent section.

84 P. Hammler et al.

5.2 Policy-Based Methods

This section introduces the fundamental concepts of policy-gradient algorithms. The
underlying idea is to represent the policy by a parametric probability distribution
πθ(s) = P(a|s, θ), where θ represents the parameters of the function approxima-
tor. In contrast to value-based methods, the output represents a probability density
function that assigns a probability to each possible action. Typically, policy-gradient
algorithms try to adapt the model parameter θ by estimating the gradient of the
expected return G (Sutton et al. 1999). Intuitively, this can be interpreted to mean
that actions that have led to a positive outcome are more likely to be selected in the
future in the same or similar states:

∇θEa∼πθ (s)[G(a)] (10)

The gradient of the expected value cannot be calculated analytically due to the
infinite set of state-action combinations. Alternatively, two common methods for
estimating the gradient exist REINFORCE (Sutton et al. 1999) and the reparameteri-
zation trick (Kingma andWelling 2013). In the following, REINFORCE is described
in three steps. Firstly, an episodes trajectory τ of length T including state, action,
and reward information is collected:

τ = (s0, a0, r1, s1, a1, r2, s2, ..., aT , rT+1, sT+1), (11)

with st , at , rt representing the state, the action and the reward at time step t .
In a second step, the expected reward of each visited state is estimated: The reward

rk of each time step within the trajectory multiplied with its corresponding discount
factor γ is accumulated:

Gt ←
T+1∑
k=t+1

γ t−k−1Rk (12)

where k denotes the number of time steps ahead of t .
Finally, the model parameters are updated according to the following equation:

θt+1 = θt + αGt
∇θπ(At |St , θt)
π(At |St , θt) (13)

The process of estimating the expected reward is similar to the Monte-Carlo
method, which is related to some advantages and disadvantages: On the one hand,
the estimate is unbiased as it is based on a real trajectory. On the other hand, only a
small change in the policies’ parameters may change to another decision within the
trajectory leading to a completely different outcome. This is why the estimation is
related to a high-variance-affected credit assignment. Furthermore, the weakness of
REINFORCE can be seen from another perspective: Imagine an agent taking a bad
decision in time step t and good decisions in all successor time steps. REINFORCE

Multi-Echelon Inventory Optimization Using Deep Reinforcement Learning 85

rewards the bad action for its long-term positive outcome. This explains, why policy-
based methods are considered to be less sample efficient. An alternative approach
to reduce variance in the update steps can be found in the reparameterization trick.
The policy π(a|s, θ) is reformulated by a probability distribution gθ depending on
an expected value μθ , standard deviation σθ and a stochastic value ε.

gθ (ε) = μθ + εσθ (14)

This transformation decouples the expectation of the policy parameter θ and has a
simplifying effect on the calculation of the gradient. Research papers demonstrate
that the reparameterization trick has a variance-reducing effect (Xu et al. 2018).

5.3 Actor-Critic Methods

Actor-critic methods consist of a policy-gradient-based actor and a value-function-
based critic. The actor maps the state vector onto an action vector and its correspond-
ing update step works in the same way compared to the policy-gradient techniques
introduced in Sect. 5.2. The critic takes the state vector and the action vector chosen
by the actor as input and maps it on a scalar critic value. The critic value serves as a
reward signal for the actor. In contrary to policy-based methods, the expected return
is not estimated according to the Monte-Carlo method as denoted in Eq.12. Instead,
the expected reward is estimated according to the critic network. Two fundamental
representatives are presented in Eq.15 and in Eq.16.

∇θ J (θ) = E

T−1∑
t=0

∇θ logπθ(at |st)Q(s, a) (15)

and the Advantage Actor-Critic as denoted in Eq.16,

∇θ J (θ) = E

T−1∑
t=0

∇θ logπθ(at |st)A(s, a), (16)

whereas the advantage is defined as A(s, a) = Q(s, a) − V (s). Substituting the
Monte-Carlo-based expected reward estimate with a value-function-based expected
reward estimate counteracts the high-variance issue related to pure policy-gradient-
based methods.

The field of actor-critic methods has evolved rapidly in recent years and numer-
ous extensions have been developed. One measure to stabilize the training process
is to parallelize the learning process (Mnih et al. 2016). Asynchronous Actor-Critic
(A3C) uses multiple agents with identical model architecture interacting with their
own copy of the environment and collecting their own experiences. Two novel update

86 P. Hammler et al.

strategies are to be considered: Firstly, the decentralized agents perform an asyn-
chronous update step of the centralized agent using their own network gradients.
These gradients contain information on how to update the network parameters based
on the individual agent’s experiences accumulated over multiple timesteps. Further-
more, the decentralized network parameters are substituted with the parameters of
the global network. This parallelization has a stabilizing effect since the learning
process is based on decoupled learning experiences similar to the experience replay
buffer proposed in Sect. 5.1. In addition to the parallelization, the authors pointed out
another important property: Adding the policy entropy H (π(·|st)) as a regularizer
to the objective function reduces the risk of converging to a bad local optimum.

6 Evaluation

In the previous sections, many theoretical points have been discussed. Now, we are
interested in how well RL works in practice. Thus, a small experiment is conducted:

The environment: A divergent 2-layer MEIS is considered. One middle warehouse
orders supply from a factory and distribute supply to two leaf warehouses. The
following assumptions are applied: The factory-level inventory system always has
enough supplies to serve orders from a middle warehouse. The middle warehouse
and the leaf warehouses can be affected by stock-out. The demand at the leaf ware-
houses is triggered by local wholesalers and hospitals and is modeled with a normal
distribution. The demand at the middle warehouse corresponds to the orders of the
two leaf warehouses (Fig. 3).

The cost. The delivery of an order is accomplished after a stochastic lead time,
provided that sufficient supplies are available on the upstream level. Unserved orders
due to stock-out are backlogged. The longer the waiting time for unserved demand
gets, the higher is the likelihood of a buyer withdrawing the order leading to shortage
cost at leaf warehouse level. Stock-out may occur at the middle warehouse level as
well, however, this does not directly lead to lost sales since the middle warehouse
is not directly connected to the market and therefore the shortage cost at middle
warehouse level are assumed to be zero. In addition to shortage cost, there are holding
cost and reordering cost. The overall cost in each time step is denoted in Eq.17:

ctotal(t) =
∑
iεM

ci,shortage(t) + ci,reordering(t) + ci,holding(t), (17)

while each cost type is defined as

Multi-Echelon Inventory Optimization Using Deep Reinforcement Learning 87

Factory

Middle
Warehouse

Leaf
Warehouse

2

Leaf
Warehouse

1

In
fo
rm
at
io
n
Fl
ow

(R
eo
rd
er
s)

M
at
er
ia
lF
lo
w

(S
up
pl
ie
s)

Fig. 3 The environment setup consists of four inventory systems, whereby three of them are to be
controlled by the RL agent. The material flow is from top to bottom while the information flow (the
orders) is from bottom to top

cshortage(t) = kshortage · min(0, iohi (t)) · pppi (18)

creordering(t) =
{
0, if no reorder

min(cmin.reordercost , kreorder ∗ qireorder), otherwise
(19)

cholding(t) = kholding · max(0, iohi (t)) · pppi , (20)

whereby cshortage(t), creordering(t), cholding(t) denote the shortage, reordering, and
holding cost at time step t. kshortage and kreorder denote cost specific constants and
pppi , iohi (t) represent the price per product and the IOH at inventory system i and
time step t. To transform the cost minimization challenge to a maximization task, we
define reward = −ctotal .

The state. The state vector consists of four elements per warehouse: (1) the current
IOH, (2) the order quantity of the oldest open order, (3) the number of dates since
the oldest open order was placed, and (4) the reorder quantity of all open orders.
The respective state vectors for each warehouse are concatenated into a global state
vector. The resulting state dimension is 12, if we consider three warehouses with
four corresponding state dimensions.

The action. The output space is 13-dimensional as the agent has the choice to choose
one out of 13 options. The first option is that no warehouse orders—all remaining

88 P. Hammler et al.

Table 1 Specifications

Category Variable Value

Environment specifications

Factory IOH Always sufficient

Overall cost Always zero

Middle warehouse Lead time distribution Normal distributed

Lead time exp. [days] 2

Lead time std. [days] 1

Price per product [CHF] 50

Min. reorder cost [CHF] 1000

Reorder cost constant [CHF] 0

Shortage cost constant [CHF] 0

Holding cost constant [CHF] 0.1

Leaf warehouse Demand distribution Normal distributed

Daily demand exp. [days] 3300

Daily demand var. [days] 100

Lead time distribution Normal distributed

Lead time exp. 2

Lead time std. 1

Price per product [CHF] 100

Min. reorder cost [CHF] 5000

Reorder cost constant [CHF] 0.5

Shortage cost constant [CHF] 10

Holding cost constant [CHF] 0.1

Max. backlog duration [days] 7

Agent Specifications

Agent Approach A3C

Model Actor model FCMLP

Actor model: No. layers 3

Actor model: No. neurons per
layer

64

Critic model FCMLP

Critic model: No. layers 3

Critic model: No. neurons per
layer

64

Training No. episodes 500K

No. time steps per training
episode

365

Optimizer Adam

Learning rate 0.0001

Discount factor (γ) 0.99

Multi-Echelon Inventory Optimization Using Deep Reinforcement Learning 89

Fig. 4 Visualization of the RL model training performance. The blue line reflects the smoothed
scores, i.e., smoothedmeans of negative cost achieved during training. The blue shaded area denotes
standard deviations of these score values. The orange line denotes the overall best result obtained
so far during training

options represent the situation that only one warehouse can reorder at the same time
step while the reorder quantity can be small, medium, large or extra large.

The agent. The optimal policy is developed with the A3C approach. The model
consists of two Fully-Connected Multi-layer Perceptrons (FCMLPs)—one for the
actor and one for the critic. Further model and training hyperparameters are listed in
Table1.

Figure4 illustrates the training performance progress. It can be observed that the
cost converges to an annual cost of below 10M CHF. However, the cost fluctuation
remains on a high level. This issue is further discussed in Sect. 8.

7 Discussion of Results

Section6 describes an experiment on MEIO with the A3C approach. The RL agent
is capable of learning a reorder policy with minimized overall cost for a small,
divergent multi-echelon network. It remains a research question to be answered, how
good the performance is compared to other optimization methods. Gijsbrechts et al.
(2021) performed a similar experiment by comparing two different kinds of base-
stock policies: One base-stock policy is associated with constant base-stock values,
while the other is state-dependent, whereby the corresponding base-stock values are
selected by an A3C agent. The experiment shows, that the A3C-based approach
outperformed the other approach by 9–12% less overall cost. On the other hand, the
experiment performed in Sect. 6 shows, that the training converges to a minimized
cost—on the other hand, the variance of the performance remains comparably high
and no performance guarantees are given. In summary, RL shows promising results

90 P. Hammler et al.

for inventory management tasks and many other sequential decision-making use-
cases, however, a number of research challenges complicate the applicability to
real-world systems. Some of them are introduced in Sect. 8.

8 Outlook

The most important open research challenge in the field of MEIOwith RL is to make
DRL-agents reliable and trustworthy. The experiment presented in Sect. 6 demon-
strated, that A3C learns an optimized policy. Numerous very good runs alternate
with a few very bad runs. With a deep neural network as a function approximator, the
policy remains a black-box function with limited interpretability and thus no perfor-
mance guarantees can be given. It still needs to be clarified how the trustworthiness
of DRL can be increased and guaranteed. One research branch targeting this is anal-
ysed by Garcýa and Fernández (2015). Another aspect targets the environment: This
is based on simplifying assumptions that often do not match the properties of real
supply chains. One example is perishability and associated write-off cost in case of
product expiry. Other examples are physical constraints (e.g., constraint workloads
regarding the number of processible orders) or legal constraints (e.g., fixed safety
stock regulations). Furthermore, the demand, which is sampled from a normal dis-
tribution in Sect. 6 may oversimplify the real demand characteristics and make the
simulation-based learned policy not suitable for the application in real-world set-
tings. Special events (e.g., a pandemic leading to demand artifacts) or low demands
in the rare disease area facing high uncertainty may lead to poor results in reality if
they are not considered in the simulation. In future research efforts, this characteristic
could be captured with temporal point processes (e.g., Reinhart 2018).

9 Conclusions

DRL is a rapidly evolving research field. Experiments show two-fold results: On the
one hand, DRL learns an optimized reorder policy with a low overall cost. On the
other hand, the performance variance is relatively high with many good episodes
alternating with some poor episode results. This makes DRL a promising approach
to optimizing inventorymanagement in the future—however, with the current lack of
performance stability, DRL inventory management requirements and state of the art
are too remote to be considered as a serious alternative for application to real-world
supply chains.

Multi-Echelon Inventory Optimization Using Deep Reinforcement Learning 91

10 Acronyms

AI Artificial Intelligence
A3C Asynchronous Actor-Critic
FCMLP Fully-Connected Multi-layer Perceptron
DDPG Deep Deterministic Policy Gradient
DPG Deterministic Policy Gradient
DQN Deep Q-Networks
DRL Deep Reinforcement Learning
LP-ADP Approximate Dynamic Programming
MARL Multi-agent Reinforcement Learning
MC Monte Carlo
MDP Markov Decision Process
MDP’s Markov Decision Processes
MEIO Multi-echelon Inventory Optimization
MEIS Multi-echelon Inventory Systems
MLP Multi-layer Perceptron
MLP’s Multi-layer Perceptrons
PPO Proximity Optimisation
RL Reinforcement Learning
SAC Soft Actor-Critic
TD Temporal Difference
TRPO Trust Region Policy Optimisation
Double DQN Double Deep Q Networks
Dueling DQN Dueling Deep Q Networks
IOH Inventory on hand
T Reorder timing
Q Reorder quantity
MCMC Markov Chain Monte Carlo
LIOH Low IOH-level
HIOH high IOH-level
R Reorder
NR Not-reorder
MP Markov Process

References

Broyles, J. R., Cochran, J. K., &Montgomery, D. C. (2010). A statistical markov chain approxima-
tion of transient hospital inpatient inventory. European Journal of Operational Research, 207(3),
1645–1657.

92 P. Hammler et al.

Chu, Y., You, F., Wassick, J. M., & Agarwal, A. (2015). Simulation-based optimization framework
for multi-echelon inventory systems under uncertainty. Computers & Chemical Engineering, 73,
1–16.

Clark, A. J., & Scarf, H. (1960). Optimal policies for a multi-echelon inventory problem.Manage-
ment Science, 6(4), 475–490.

De Kok, T., Grob, C., Laumanns, M., Minner, S., Rambau, J., & Schade, K. (2018). A typology and
literature review on stochastic multi-echelon inventory models. European Journal of Operational
Research, 269(3), 955–983.

Garcýa, J., &Fernández, F. (2015). A comprehensive survey on safe reinforcement learning. Journal
of Machine Learning Research, 16(1), 1437–1480.

Gijsbrechts, J., Boute, R. N., Van Mieghem, J. A., & Zhang, D. (2021). Can deep reinforcement
learning improve inventory management? performance on dual sourcing, lost sales and multi-
echelon problems. Manufacturing & Service Operations Management.

Grahl, J., Minner, S., & Dittmar, D. (2016). Meta-heuristics for placing strategic safety stock in
multi-echelon inventorywith differentiated service times.Annals of Operations Research, 242(2),
489–504.

Kingma, D. P., & Welling, M. (2013). Auto-encoding variational bayes. arXiv:1312.6114.
Kiran, B. R., Sobh, I., Talpaert, V., Mannion, P., Sallab, A. A. A., Yogamani, S., & Pérez, P. (2020).
Deep reinforcement learning for autonomous driving: A survey. arXiv:2002.00444

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., . . . Wierstra, D. (2015).
Continuous control with deep reinforcement learning. arXiv:1509.02971.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., . . . Kavukcuoglu, K. (2016).
Asynchronous methods for deep reinforcement learning. In International conference on machine
learning (pp. 1928–1937).

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., & Riedmiller, M.
A. (2013). Playing atari with deep reinforcement learning. Retrieved from arXiv:1312.5602

Powell, W. B. (2007). Approximate dynamic programming: Solving the curses of dimensionality
(Vol. 703). Wiley.

Puterman, M. L. (1990). Markov decision processes.Handbooks in Operations Research and Man-
agement Science, 2, 331–434.

Reinhart, A. (2018).A reviewof self-exciting spatio-temporal point processes and their applications.
Statistical Science, 33(3), 299–318.

Ribba, B., Dudal, S., Lavé, T., & Peck, R. W. (2020). Model-informed artificial intelligence: Rein-
forcement learning for precision dosing. Clinical Pharmacology & Therapeutics, 107(4), 853–
857.

Schaul, T., Quan, J., Antonoglou, I., & Silver, D. (2015). Prioritized experience replay.
arXiv:1511.05952.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., . . . others
(2016). Mastering the game of go with deep neural networks and tree search. Nature, 529(7587),
484–489.

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., . . . Hassabis, D.
(2017).Mastering chess and shogi by self-play with a general reinforcement learning algorithm.
arxiv:1712.01815, https://doi.org/10.48550/ARXIV.1712.01815

Sutton, R. S., & Barto, A. G. (2018a). Reinforcement learning: An introduction (2nd Ed.). The MIT
Press. Retrieved from http://incompleteideas.net/book/the-book-2nd.html

Sutton, R. S., & Barto, A. G. (2018b). Reinforcement learning: An introduction. MIT press.
Sutton, R. S., McAllester, D. A., Singh, S. P., Mansour, Y., et al. (1999). Policy gradient methods
for reinforcement learning with function approximation. In Nips (Vol. 99, pp. 1057–1063).

van Hasselt, H., Guez, A., & Silver, D. (2015). Deep reinforcement learning with double q-learning.
arxiv:1509.06461.

Wang, Z., Schaul, T., Hessel, M., Hasselt, H., Lanctot, M., & Freitas, N. (2016). Dueling network
architectures for deep reinforcement learning. In International conference on machine learning
(pp. 1995–2003).

http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/2002.00444
http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1511.05952
http://arxiv.org/abs/1712.01815
https://doi.org/10.48550/ARXIV.1712.01815
http://incompleteideas.net/book/the-book-2nd.html
http://arxiv.org/abs/1509.06461

Multi-Echelon Inventory Optimization Using Deep Reinforcement Learning 93

Xu, M., Quiroz, M., Kohn, R., & Sisson, S. A. (2018). Variance reduction properties of the repa-
rameterization trick.

Patric Hammler is a Ph.D. student at University of Berne and a Data Scientist at the Roche
Pharma International Data and Analytics chapter. His research focuses on Deep Reinforcement
Learning and its applications in the areas of Supply Chain Optimization and Building Automa-
tion.

Nicolas Riesterer Ph.D. student in Computer Science with a strong focus on AI and Machine
Learning. Currently working at Roche as a Data Scientist in the Data & Analytics Department.

Gang Mu Holds a Ph.D. degree in mathematics. Comprehensive experiences to connect Mathe-
matics, Healthcare and Technology together driving impacts and outcomes for patients and health-
care systems. Founded Swiss Network for Mathematics in Industry. Head of AI for Partnerships
at Roche and Visiting Research Scholar at the University of Zurich.

Torsten Braun Professor in Computer Science at University of Bern and director of the Research
Group “Communication and Distributed Systems”. Director of the Institute of Computer Science,
former Vice Dean of the Faculty of Science, former Vice President of SWITCH foundation, partly
as interim President.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropri-
ate credit to the original author(s) and the source, provide a link to the Creative Commons license
and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	 Multi-Echelon Inventory Optimization Using Deep Reinforcement Learning
	1 Introduction
	2 Challenges of Multi-Echelon Inventory Management from an Optimization Perspective
	3 Literature Review of Inventory Management
	4 Reinforcement Learning for Inventory Management
	4.1 Markov (Decision) Processes

	5 Introduction to Reinforcement Learning
	5.1 Value-Based Methods
	5.2 Policy-Based Methods
	5.3 Actor-Critic Methods

	6 Evaluation
	7 Discussion of Results
	8 Outlook
	9 Conclusions
	10 Acronyms
	References

