
Chapter 9 
Foliage Feeders 

Joseph Elkinton and Artemis Roehrig 

9.1 Introduction 

One of the most significant categories of insects that cause damage to trees are the 
defoliators. While many orders of insects feed on tree foliage, in this chapter we 
will focus on Lepidoptera, as there are so many Lepidopter larvae (caterpillars) that 
are known for their extensive tree damage. In this chapter we review the impact 
of foliage feeders on forest trees and stand composition, and the ways in which 
densities of these species or the defoliation they cause are monitored. We do not 
cover insects attacking ornamental trees in the landscape, nor do we cover insects 
feeding exclusively on foliage tips or buds. The species we include live and feed 
externally on the leaves and remove or consume leaf tissue that may or may not 
include leaf veins. Other species, called leaf miners, live and feed as larvae between 
the upper and lower surface of the leaf and produce characteristic patterns of leaf 
damage. Most of those species are considered pests of ornamental trees and are 
not included in this chapter. We provide more detail on two key species as case 
studies: winter moth, Operophtera brumata L, and spongy moth, Lymantria dispar 
L. These species are two of the most widely studied of all foliage-feeding insects 
attacking forest trees. Treatment of other important species such as spruce budworm, 
Choristoneura fumiferana, would produce a chapter too long for the current volume. 
That species, and others like it, are included in a table (Table 9.1) of the  world’s  
most forest-damaging Lepidoptera and Hymenoptera, along with key references that 
provide access to the most recent and important literature.
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9.2 Effects of Defoliation on Forest Trees 

The general public often views defoliation in terms of aesthetics and potential 
economic effects. Beyond simply affecting the growth and life of the defoliated 
trees, defoliation has many indirect effects that have implications for future defo-
liator population dynamics and forest nutrient cycling, in turn affecting overall forest 
composition. 

Defoliation that removes some or all of the leaf canopy of trees has a large impact 
on the ability of trees to produce carbohydrates, and most studies have shown foliage 
loss to be directly proportional to reductions in tree growth. While defoliation can 
cause tree mortality, this often occurs indirectly, as defoliation increases the suscep-
tibility of trees to secondary insects and disease, which then are the ultimate cause 
of tree mortality (Kulman 1971). Outbreaks of defoliators are major events in forests 
worldwide and may produce landscape-wide patterns of tree mortality and result in 
major changes in stand tree species composition. 

Even if there is no current folivore outbreak, trees may still be suffering the effects 
of past defoliation events. For instance, a study done in Cerro Castillo National Park 
by Piper, Gundale and Fajardo (2015) on  Nothofagus pumilio, a South American 
deciduous tree, found that natural defoliation by Ormiscodes amphimone (Saturni-
idae) did not cause tree mortality. However, defoliated trees showed significantly 
stunted growth in comparison to non-defoliated trees. Contrary to previous assump-
tions, this growth limitation could not be explained by limitations in C and N avail-
ability. Defoliation by the larvae of the invasive winter moth (Operophtera brumata 
L.) has been shown to cause a significant reduction in radial growth and latewood 
production of Quercus trees in the same year as defoliation, as well as a reduction in 
earlywood production the subsequent year (Simmons et al. 2014). 

Many trees produce defensive compounds in their leaves, such as phenolics or 
tannins, to defend themselves against free-feeding insects (Feeny 1970). On the other 
hand, many foliage-feeding insects are well adapted to cope with these compounds in 
their diet. There exists a very large literature dealing with the mode of action of tannin 
or phenolic compounds on insect performance, and whether or not trees respond to 
defoliation by producing more defensive compounds (Salminen and Karonen 2011). 

When it comes to tree resistance to defoliators, there are two main types of resis-
tance: constitutive (always present) and induced (as the result of defoliation). These 
effects may be either direct, wherein the plant produces either mechanical or molec-
ular herbivore deterrents, or indirect, whereby they put up defenses, chemical or 
otherwise, that attract defoliator predators or parasitoids (War et al. 2012). 

An important molecular mechanism plants use for defoliation resistance is the 
production of phenolic compounds, such as tannins, which include hydrolysable 
tannins, proanthocyanidins, and phlorotannins. Different kinds of tannins have 
greater impacts on different types of herbivores. In insects, different parts of the 
digestive system have different pH levels, and, as a result, differently structured 
tannins will react and metabolize differently in different sections of the gut, as they
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are hydrolyzed or oxidized. Rather than tannins themselves, it is possible that tannin 
metabolites are what actually affect herbivores (Salminen and Karonen 2011). 

Tannins may serve as an important factor in tree constitutive resistance. Although 
some herbivore species have adapted to feed on certain tannins, for non-adapted 
defoliators they can serve as a feeding deterrent. Tannins may also be important for 
induced defenses, as multiple studies have shown tannin production increases with 
insect damage. However, there are many other factors at play, and tannin concentra-
tion is affected by things such as environmental stress. There are so many different 
specific types of tannins produced by plants and so many potential interactions that 
most current studies are correlative rather than causative (Barbehenn and Constabel 
2011). For instance, there have been disparate findings on the relationship between 
tannin content and amount of defoliation. A recent study on spongy moth defoliation 
on Quercus ilex found no relationship (Solla et al. 2016). 

Haukioja (1991) reviewed studies on tree-induced resistance to insect defoliation. 
While in general insect growth rate declined with decreased food quality, there were 
very mixed results about the effect of induced responses. Some studies showed that 
foliage damage induced changes in present and future leaves that were detrimental to 
insects, while others showed no effect of induced resistance. To complicate matters, 
other studies mentioned in the review showed improved performance of insects that 
fed on defoliated trees. Haukioja’s review made an important distinction between 
rapid and delayed induced resistance. The latter refers to changes in foliage chem-
istry that persist one or more years beyond the defoliation event, rather than those 
immediately following the defoliation in the same year. Only delayed induced resis-
tance can cause the delayed density-dependent responses (see Chapter 7) that might 
cause forest insects to exhibit population cycles. Such effects have been proposed for 
autumnal moth (Haukioja 1991) and for larch budmoth (see Chapter 7; Baltensweiler 
and Fischlin 1988). In many cases it is not clear whether the changes in foliage chem-
istry involve defensive compounds or delayed effects on foliage that affect their 
nutrient quality. 

White spruce (Picea glauca) trees resistant to defoliation by spruce budworm 
had different phenolic compounds present than non-resistant trees. Those phenolic 
compounds present in resistant trees were found to reduce fitness of spruce budworms 
(Delvas et al. 2011). However, as shown in a recent study, spruce budworm (Chori-
stoneura fumiferana (Clem.)) that fed on resistant white spruce trees (Picea glauca 
(Moench) Voss) had greater fitness than those that fed on susceptible trees (Quezada-
Garcia et al. 2015). Hodar et al. (2015) found that the chemical defenses in three 
species of pine were constitutive rather than induced. Several important herbivores 
are undeterred by these defenses, such as the pine processionary moth (Thaume-
topoea pityocampa). Ultimately, as summarized by War et al. (2012), there is still 
much work needed to understand the biochemical response of induced resistance and 
how it is invoked by insect feeding.
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9.3 Monitoring for Defoliation and Changes in Defoliator 
Population Densities 

Defoliation has typically been mapped by aerial survey. For example, aerial maps of 
spruce budworm outbreaks have long been produced by the Canadian Forest Service 
(Fig. 9.1a). Annual defoliation maps of spongy moth in the eastern United States 
have been analyzed extensively to detect multi-annual cycles and spatial synchrony 
of spongy moth populations (Liebhold et al. 2004; Johnson et al. 2006b; Bjørnstad 
et al. 2008, 2010; Haynes et al. 2013, 2018a). Elkinton et al. (2014) used aerial 
survey maps of winter moth defoliation to estimate rates of spread of winter moth 
in the northeastern United States. More recently, imagery obtained from satellites or 
other forms of remote sensing has been used to map and analyze the expansion of 
defoliator outbreaks. Pasquarella et al. (2018) used Landsat imagery to portray the 
extent, severity and spread of spongy moth outbreak in the northeastern United States 
(Fig. 9.1b). Jepsen et al. (2009a) analyzed MODIS satellite data to relate winter moth 
defoliation to the timing of spring bud-burst in northern Fennoscandia. See reviews 
by Hall et al. (2006) and Chapter 19 for more detailed discussion of this topic. 

Pheromone traps have often been used to map the spread of invasive species on 
the landscape. For example, Elkinton et al. (2010) used pheromone-baited traps to 
monitor the extent of the new invasion of winter moth in the northeastern United 
States (Fig. 9.2a) and its subsequent spatial spread (Elkinton et al. 2014). By far the 
most extensive use of pheromone traps anywhere in the world has been the Slow the 
Spread Program (Tobin and Blackburn 2007) to monitor the spread of spongy moth 
(Fig. 9.2b). Each year more than 100,000 traps are deployed along this invasion 
front. Pheromone traps are less frequently used to monitor changes in density of 
outbreak species in regions where they are native or widely established because such 
traps often fill to capacity even in low-density populations. Therefore, it is more

Fig. 9.1 (a) Years of defoliation by spruce budworm in eastern Canada 1954–1988 mapped by 
aerial survey (Williams and Birdsey 2003); (b) Defoliation by spongy moth mapped from Landsat 
satellite images (Pasquarella et al. 2018; Elkinton et al. 2019) 
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Fig. 9.2 (a) Distribution of winter moth and Bruce spanworm in pheromone-baited traps in north-
eastern North America in 2005–2007. Winter moths use the same pheromone compound as the 
native species Bruce spanworm, Operophtera bruceata. Identification of moths is based on male 
genitalia and the DNA sequence of the COI mitochondrial gene (Elkinton et al. 2010); (b) Isopleths 
of numbers of spongy moth males per trap captured in more than 100,000 pheromone-baited traps in 
2019 from Wisconsin to North Carolina (US Forest Service Slow the Spread Annual Report 2019) 

common to use sampling of other life stages, such as egg mass counts for spongy 
moth, to measure changes in population density. See Chapter 19 for a more thorough 
discussion of this topic. 

9.4 Case Study 1: Winter Moth 

9.4.1 Biology and Host Range 

The winter moth, Operophtera brumata L, is a geometrid species that is native to 
Europe, where it is one of the most common Lepidoptera feeding on a wide range of 
tree species. These include oaks (Quercus), maples (Acer), birches (Betula) and many 
others (Wint 1983). It is an occasional orchard pest, because it performs extremely 
well on apple (Malus). It is also especially damaging to blueberry (Vaccinium) crops, 
because the larvae feed inside the buds, where they are inaccessible to most pesticides 
and destroy developing berries before the buds open. In Europe, outbreaks of winter 
moth have occurred on Sitka spruce (Picea sitchensis) (Stoakley 1985; Watt and 
Mcfarlane 1991), on heather (Calluna vulgaris) in Scotland (Kerslake et al. 1996), 
and on mountain birch (Betula pubescens czereapanovii) in Fennoscandia (Jepsen 
et al. 2008). 

Winter moth gets its name from the fact that adults typically emerge in November 
or December. The females attract males with a pheromone (Roelofs et al. 1982) 
and, after mating, lay eggs singly on the bark of host trees and overwinter in this 
stage. Winter moth larvae typically hatch at or before budbreak of their host trees
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and then bore into the expanding buds, so much of the damage occurs before leaf 
expansion. Classic work by Feeny (1970) proposed that winter moth is one of a 
suite of early spring-feeding Lepidoptera larvae that are relatively intolerant to accu-
mulated tannins in oak foliage. Even though there may be many larvae per bud in 
outbreak populations, defoliation of oak and maple in New England, at least, rarely 
approaches 100%, presumably because the larvae finish feeding and pupate before 
defoliation is complete. Given that pupation occurs before the end of May, Pepi 
et al. (2016) showed that winter moth larvae disperse from partially defoliated oak 
leaves, possibly in response to tannins or other compounds induced by defoliation. 
Although the typical damage caused by winter moth results in only partially defo-
liated leaves, this can cause lasting damage to the tree, especially when defoliation 
persists year after year, as it did in Nova Scotia in the 1950s (Embree 1965, 1967) 
and Massachusetts after 2004 (Elkinton et al. 2014). Simmons et al. (2014) showed  
that defoliation by winter moth caused significant decline in tree growth in red oak 
(Quercus rubra L.) in Massachusetts, as measured by growth rings in increment 
cores of tree stems. Embree (1967) reported that repeated defoliation by winter moth 
resulted in as much as 40% tree mortality in red oak stands in Nova Scotia. 

9.4.2 Geographical Range 

Winter moth occurs in every European country, as well as Iran and Tunisia. Early 
reports included the Russian Far East and Japan, but the Japanese population was 
redescribed as Operophtera brunnea (Nakajima 1991). Recent collections from the 
Russian Far East suggest that those populations also are closely related to O. brunnea 
(Andersen et al. unpublished). Winter moth has been introduced to four distinct loca-
tions in North America: Nova Scotia in the 1930s (Hawboldt and Cuming 1950), 
Oregon in the 1950s (Kimberling et al. 1986), the region around Vancouver, British 
Columbia in the 1970s (Gillespie et al. 1978) and in the northeastern United States in 
the 1990s (Elkinton et al. 2010). Recent studies of winter moth DNA (microsatellites) 
from these populations by Andersen et al. (2021a) indicate that all four populations 
represent separate introductions from different European sources. The same tech-
niques show that European populations of winter moth arose from distinct eastern 
and western forested glacial refugia that existed at the height of the last Ice Age 
20,000 years ago (Andersen et al. 2017). Molecular analyses also have shown that in 
North America winter moth readily hybridizes with a native congener Bruce span-
worm, O. bruceata, (Elkinton et al. 2010; Havill et al. 2017), that hybridization 
occurs in all regions where winter moth is known to have invaded (Andersen et al. 
2019a), and that, at least in the northeastern United States, the hybrid zone appears 
to be stable in nature, existing under a tension hybrid zone model (Andersen et al. 
2022).
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9.4.3 Early Ecological Studies 

Winter moth is one of the most famous of all forest insects, due in large part to the 
classic work by Varley and Gradwell (1960, 1963, 1968, 1970) and Varley et al. 
(1973), who collected annual life table data on this species on four oak trees near 
Oxford University in England during the 1950s and 1960s. They introduced important 
methodology for collecting annual data on density and mortality of different life 
stages and how to analyze the data to detect the presence of density-dependent factors 
regulating density and the causes of year-to-year changes in density. Based on these 
studies, they concluded that winter moth densities were typically regulated at low 
density by a community of predators that preyed upon winter moth pupae in the leaf 
litter beneath the infested trees. Subsequent research suggested that pupal predation 
was caused mainly by staphylinid and carabid beetles (Frank 1967). Other sources 
of mortality, including overwintering mortality and larval mortality combined, were 
not density-dependent, but experienced large year-to-year variation in impact and 
were thus responsible for the observed changes in population density. Varley and 
Gradwell used the term ‘key factor’ to describe such mortality factors. 

Varley and Gradwell (1960, 1968) believed that the main cause of overwintering 
mortality was the periodic failure of winter moth hatch to adequately synchronize 
with budburst of their principal host trees, mainly oaks (Quercus). These ideas have 
been supported by research in North America (Embree 1965) and by Jepsen et al. 
(2009b), who studied outbreaks of winter moth in northern Fennoscandia. 

9.4.4 Pathogens 

Like most outbreak species of forest Lepidoptera, winter moth larvae are killed by 
a nuclear polyhedrosis virus (NPV) (Wigley 1976; Raymond et al. 2002; Raymond 
and Hails 2007). This virus has been recovered from winter moth in North America 
(Burand et al. 2011; Broadley et al. 2017), but it rarely, if ever, causes a major 
epizootic resulting in the collapse of outbreak populations. The virus is thus different 
from those that occur in other forest Lepidoptera such as spongy moth, Lymantria 
dispar, (Campbell and Podgwaite 1971) or forest tent caterpillar, Malacosoma diss-
tria (Cooper et al. 2003), whose outbreaks are typically terminated by these agents. 
Broadley et al. (2017) showed that the NPV of winter moth was closely related to, 
but distinct from, an NPV recovered from Bruce spanworm (O. bruceata), the North 
American congener of winter moth. These two NPV’s were not cross-infective in the 
other species, discounting an earlier suggestion (Murdoch et al. 1985) that declines 
of winter moth in Nova Scotia in the 1950s might have been partially caused by 
infection of winter moth populations with viruses derived from Bruce spanworm. 

Microsporidia are another pathogen that have been recovered from winter moth 
in Europe (Canning 1960; Canning et al. 1983) and were recorded by Varley et al. 
(1973). Broadley (2018) showed that microsporidia in North America (Donahue et al.
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2019) were a major source of mortality in the rare outbreak populations of the North 
American congener of winter moth, Bruce spanworm, O. bruceata. They have not 
been recovered from winter moth in North America (Broadley 2018). 

9.4.5 Biological Control in North America 

Winter moth invaded Nova Scotia in Canada sometime before 1930 and soon caused 
widespread defoliation of oak forests in that region (Hawboldt and Cuming 1950). 
Beginning in 1954, Embree and colleagues undertook what would become one of the 
most famous biological control successes in forest entomology of all time (Embree 
1966; Murdoch et al. 1985; Roland and Embree 1995; Kenis et al. 2017). Embree 
and his colleagues introduced several parasitoid species from Europe, two of which, 
the tachinid Cyzenis albicans and the ichneumonid Agrypon flaveolatum, began  to  
cause high levels of mortality in winter moth populations after 4–5 years (Fig. 9.3a). 
By 1962, winter moth densities had declined to non-pest status, where they have 
remained ever since (Fig. 9.3a). Hassell (1980) presented a simulation model of C. 
albicans impact on winter moth that appears to explain why in Nova Scotia it was 
effective at suppressing winter moth populations, whereas it seemed to play a minor 
role in the population studied by Varley and Gradwell in England. The model was 
built on his earlier life table studies of C. albicans in England (Hassell 1968, 1969a, 
1969b). 

Similar biological control efforts were undertaken in the 1970s following an intro-
duction of winter moth to Southwest British Columbia in Canada. Winter moth 
densities there soon declined following the onset of high levels of parasitism, mainly 
by the tachinid C. albicans (Roland 1986; Roland and Embree 1995). Yet another 
successful biological control effort was initiated by Elkinton et al. (2018, 2021)

Fig. 9.3 (a) Defoliation by winter moth and percent parasitism by C. albicans and Agrypon flave-
olatum in Nova Scotia in the 1950s following parasitoid release in 1954 (adapted from Embree 
1965); (b) Density of winter moth pupae and percent parasitism by C. albicans at six widely spaced 
release sites in Massachusetts (Elkinton et al. 2018) 
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(Fig. 9.3b) against an outbreak of winter moth that appeared in the northeastern 
United States in the late 1990s (Fig. 9.1a) Elkinton et al. (2010). This effort was 
based solely on the release of the tachinid C. albicans, because Agrypon flaveo-
latum, the other parasitoid released in Canada, was deemed too much of a generalist 
and also of uncertain taxonomy. Over 14 years Elkinton and his colleagues estab-
lished the fly at 41 release sites in New England and observed a substantial decline 
in winter moth densities (Fig. 9.3b) (Elkinton et al. 2018, 2021). 

9.4.6 Population Ecology in North America 

Roland (1990b) analyzed the decline of winter moth densities associated with the 
onset of parasitism by C. albicans in Nova Scotia and in British Columbia. He 
concluded that the decline was caused mainly by predation rather than parasitism 
and that the presence of C. albicans enhanced predation rates on winter moth pupae. 
He proposed several possible mechanisms for this phenomenon, which included 
reductions of winter moth densities to levels below which predators were satu-
rated and caused inversely density-dependent mortality, or that parasitized pupae 
provided a food resource available in the spring months following the emergence of 
un-parasitized pupae in November and December. He further provided evidence that 
pupal predators caused density-dependent mortality that regulated the low-density 
populations of winter moth following the population decline induced by the pres-
ence of C. albicans (Roland 1994, 1995). Broadley et al. (2022) analyzed data from 
the recent biological control success in the northeast United States and confirmed 
Roland’s findings that low-density populations of winter moth following the onset of 
high parasitism by C. albicans were regulated by density-dependent predation by a 
suite of pupal predators. Broadley et al. (2019) also discovered a parasitoid, Pimpla 
aequalis that consisted of two cryptic species causing density-dependent mortality of 
winter moth pupae. Broadley et al. (2022) found no evidence in support of Roland’s 
findings that the presence of C. albicans enhanced predation on winter moth pupae. 

Other research on winter moth population ecology in North America includes 
the life table studies of outbreak populations of winter moth in stands of red oak, 
Qurecus rubra, in Nova Scotia prior to the establishment of parasitoids (Embree 
1965). Embree found that the main cause of population change in outbreak popula-
tions was synchrony of winter moth hatch with budburst, confirming similar conclu-
sions reached by Varley et al. (1973) in England. In years where spring occurred 
phenologically early, hatch was well synchronized with budburst, yielding high larval 
survival. In contrast, in years where springtime warming came later, synchrony was 
poor and larval survival low. Embree’s research was followed up by MacPhee et al. 
(1988), who studied the lower-density populations of winter moth that existed on 
apple trees in Nova Scotia over the decade that followed the population decline 
induced by C. albicans in the early 1960s. He found that both C. albicans and A. 
flaveolatum caused parasitism in the range of 10 to 20%, far lower than the values 
observed by Embree in high-density populations in the early 1960s. These findings
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reinforce the idea that C. albicans has its biggest impact on high-density populations 
of winter moth. A principal reason is that this species is attracted to defoliated trees 
and oviposits tiny (micro-type) eggs on partially eaten leaves (Hassell 1968, 1980; 
Roland 1990a; Roland et al. 1995). Winter moth becomes parasitized by C. albicans 
only when the larva consumes the egg. These eggs then hatch, and the larval fly 
migrates to the salivary glands of the winter moth larva, where it stays until the moth 
stops feeding and drops to the ground to pupate. After this, the larval fly completes 
development, kills the winter moth pupa and forms a puparium inside the pupal 
cadaver. 

9.4.7 Recent European Studies 

In recent years, European research has focused mainly on the outbreaks of winter 
moth in northern Fennoscandia (Tenow et al. 2007; Jepsen et al. 2008). Winter 
moth outbreaks occur approximately every 10 years in the mountain birch (Betula 
pubescens czereapanovii) forests of that region in synchrony with, but lagging 2–3 
years behind, those of another well-studied geometrid, the autumnal moth, Epirrita 
autumnata (Tenow et al. 2007). Jepsen et al. (2008) showed that outbreak populations 
of winter moth in this region were moving to higher altitudes in response to climate 
change (Fig. 9.4a) and were moving into forests formerly occupied only by autumnal 
moth. Consecutive outbreaks of both species are threatening widespread mortality of 
the mountain birch forests. Vindstad et al. (2022) documented the more recent spread 
of winter moth into willow (Salix) stands in the subarctic tundra of northeastern 
Fennoscandia.

Jepsen et al. (2009a, 2009b) used multitemporal remotely-sensed data of leaf-out 
and defoliation to show that favorable synchrony of winter moth hatch with budbreak 
fueled the synchronous outbreak of winter moths during the increase phase of the 
population cycle. The spatial synchrony was reduced during the peak and declining 
phase of the outbreak. Analyses by Tenow et al. (2013) indicated that waves of 
defoliation by winter moth spread from east to west across Europe approximately 
every 10 years. However, subsequent analyses challenged that conclusion (Jepsen 
et al. 2016), and no underlying mechanism for such a phenomenon has been proposed, 
especially since weather systems at that latitude move from west to east and winter 
moth females are incapable of flight. 

Vindstad et al. (2013) reported the complex of larval parasitoids attacking winter 
moth and autumnal moth in Norway and compared it to the complex from other 
sites in Western Europe. These parasitoids included a total of 18 species, including 
five ichneumonids, three braconids, nine tachinids and one eulophid. The majority 
of these species occur in winter moth in northern Fennoscandia, with the exception 
of the tachinids, such as C. albicans, which do not occur there, despite being very 
common elsewhere (Vindstad et al. 2013). Recent studies by Schott et al. (2010) of  
winter moth mortality caused by these other larval parasitoid species often showed 
levels of mortality exceeding 50% in northern Norway. However, they do not appear
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Fig. 9.4 (a) Contours connecting years of first outbreaks of winter moth in northern Fennoscandia 
abetted by climate change (Jepsen et al. 2008); (b) Spatial synchrony of winter moth outbreaks 
and; (c) spring bud-burst phenology in mountain birch forests in the incipient, epidemic and crash 
phases of the winter moth outbreak (Jepsen et al. 2009b)

to be responsible for the decline of outbreak populations. In contrast, Klemola et al. 
(2010) concluded from manipulative experiments that larval parasitoids are respon-
sible for the decline of outbreak populations of the autumnal moth in northern Finland. 
Meanwhile, Schott et al. (2013) reported that outbreaks of winter moth in northern 
Norway are not caused by the release of winter moth populations from regulation at 
low density by invertebrate predation. It is evident that, despite all this research, the 
role of natural enemies in the dynamics of winter moth in northern Fennoscandia 
remains unresolved. 

Other recent research has used modern molecular techniques to analyze the expan-
sion of the winter moth’s range across Europe and the European origins of winter moth 
in North America. Gwiazdowski et al. (2013) sequenced the CO1 barcoding gene in 
a world-wide study of winter moth males collected using pheromone traps and found 
that nearly all the sampled individuals in the four North American populations shared 
a single haplotype. However, this haplotype was also found in winter moths collected 
from 10 of the 11 sampled European countries. This study was thus unable to deter-
mine the European origins of winter moth in North America. The lack of genetic 
diversity revealed by Gwiazdowski et al. (2013) was surprising given the fact that 
female winter moths are flightless, and thus strong biogeographic patterns might be 
expected. In a follow-up study, Andersen et al. (2017) examined gene regions called
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“microsatellites” that have greater sensitivity than the CO1 barcode gene for exam-
ining the genetic structure of populations. They showed that one possible explanation 
for the lack of genetic diversity in Europe found by Gwiazdowski et al. (2013) is that 
winter moth populations in central and western Europe (Fig. 9.5) represent a blend 
of populations from eastern Europe and the Iberian peninsula. They argue that this 
pattern arose as a result of widely separated forest refugia on the Iberian peninsula 
and in southeastern Europe during the last glacial maximum (Fig. 9.5). 

Subsequent analyses of moths collected in the Mediterranean region have iden-
tified two additional glacial refugia: one in southern Italy and another in North 
Africa (Andersen et al. 2019b). A follow-up analysis showed that winter moth 
invaded northern Scandinavia via the United Kingdom instead of alternate routes via 
Denmark or eastern Europe (Andersen et al. 2021b). More recently, these microsatel-
lite markers have been used to reexamine the geographic origins of the invasive winter 
moth populations in North America (Andersen et al. 2021a). These analyses show

Fig. 9.5 Genetic diversity of winter moth in Europe with populations that utilized glacial refugia 
of the forests in southern Europe on the Iberian peninsula at the height of the last glacial maximum 
about 20 thousand years ago shown in white, eastern Europe shown in black, and populations that 
are admixed shown in grey. The populations into northern Europe represent a merger of these two 
populations following the retreat of the ice sheet (adapted from Andersen et al. 2017). The hash-
marked lines represent the likely locations of glacial refugia during the last glacial maximum, and 
the arrows represent the likely post-glacial recolonization route of winter moth similar to that of 
another European Lepidoptera, the meadow brown, Maniola jurtina (adapted from Schmitt 2007) 
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that each one of the four North American populations of winter moth (Nova Scotia, 
New England, British Columbia and Oregon) are all quite distinct from one another 
and probably represent separate introductions (Andersen et al. 2021a). In addition, 
the populations from Nova Scotia, British Columbia, and New England all appear to 
be introduced from western Europe (likely France or Germany), while the population 
in Oregon appears to be introduced from somewhere in the British Isles. 

Other European studies have focused on the effects of climate change on the timing 
of winter moth hatch in spring. Winter moth larvae have been hatching earlier and 
earlier as spring temperatures have become warmer over the last several decades. 
Although winter moth is rarely a significant defoliator in central Europe, it is an 
important source of food for nesting birds in the spring. Migratory birds have timed 
their arrival based on solar cues and in recent years have arrived too late after winter 
moth larvae have finished feeding and dropped to the forest floor to pupate (Visser 
et al. 1998). Visser and Holleman (2001) showed that warmer springs have caused 
winter moths to desynchronize with budbreak of oaks (Quercus spp.), their principal 
host tree, and shift to other tree species that break bud earlier. They also showed that 
egg hatch in spring is influenced by factors more complex than predicted by growing-
degree-day models that are widely used to predict hatch of most insects in the spring. 
Hatch times in their model were also influenced by the number of winter days below 
freezing. Hibbard and Elkinton (2015) applied this model with some success to egg 
hatch data in North America. Salis et al. (2016) proposed a revised model, wherein 
developmental rate of winter moth eggs as a function of temperature increased with 
egg age or egg development (see also Gray, 2018). Elkinton is currently attempting to 
fit versions of these models for egg hatch and bud-break to data from North America. 
Van Dis et al. (2021) have provided detailed information on the effects of temperature 
on embryonic development of winter moth eggs. 

9.5 Case Study 2: Spongy Moth 

9.5.1 Biology 

Spongy moth, Lymantria dispar L. (formerly called gypsy moth) is another major 
defoliator, mainly of deciduous trees, that is native to both Europe and Asia. Three 
subspecies have been described (Pogue and Schaefer 2007): European spongy moth 
(Lymantria dispar dispar), Asian spongy moth (Lymantria dispar asiatica), and 
Japanese spongy moth (Lymantria dispar japonica). Although spongy moth females 
have wings and the Asian subspecies tend to be capable of flight, most populations of 
the European subspecies L. dispar dispar do not fly (Keena et al. 2008). Spongy moth 
females mate in mid-summer and lay egg masses that contain from 100–1000 eggs on 
the stems of trees, rocks or other objects and cover them with their tawny brown body 
hairs. Larvae hatch in spring coincident with host tree budburst and develop through 
five (males) or six (females) larval instars until late June or early July, depending on
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latitude. Late-instar larvae in low-density populations seek daytime resting locations 
under bark flaps or on the forest floor, presumably as a defense against day active 
predators and parasitoids (Lance et al. 1987). Pupation typically occurs in these 
resting locations. Adults emerge in mid-summer. There is one generation per year. 

9.5.2 Introduction to North America 

European spongy moths (L. dispar dispar) were introduced into North America in 
1868 or 1869 by Leopold Trouvelot for the purpose of various experiments. The 
insect escaped from his home in a suburb of Boston, Massachusetts and began to 
spread across the landscape. Trouvelot tried to notify local officials of the potential 
problem resulting from his accident, but his efforts were ignored until widespread 
defoliation in his neighborhood became apparent in the late 1880s. The Massachusetts 
state legislature allocated funds to eradicate spongy moth by mechanical removal of 
egg masses and applications of primitive pesticides such as lead arsenate (Spear 
2005). This effort failed and spongy moth continued to spread, albeit quite slowly, 
since the females of the European strain of the species do not fly. Indeed, 140 years 
later, spongy moths are still spreading south and west in North America as shown in 
Fig. 9.2a and only occupy about 1/3 of their potential range (Figs. 9.6 and 9.7). 

Fig. 9.6 Forest types susceptible to spongy moth invasion. Orange represents highly susceptible 
forest, green low susceptibility (Morin et al. 2005). Blue line indicates the current invasion front of 
spongy moth in N. America (see Fig. 9.2b)
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Fig. 9.7 Spread of spongy moths in northeastern North America after 1900 (Figure from Leibhold 
et al. 2007) 

9.5.3 Host Preferences 

Like winter moths, spongy moths feed on a wide range of host tree species, but 
perform best on oaks (Quercus spp), aspen (Populus), and birches (Betula) (Lieb-
hold et al. 1995; Davidson et al. 1999). They will feed on many conifers and indeed 
on most tree species, especially if preferred hosts are unavailable or already defoli-
ated. A handful of species are avoided altogether, even in stands that are otherwise 
completely defoliated. These species include ash (Fraxinus spp), silver maple (Acer 
saccharinum) and tulip poplar (Liriodendron tulipifera). 

9.5.4 Impact on Forests and Trees 

Defoliation is more frequent in forest stands that are dominated by tree species 
preferred by spongy moths, as described above, than in stands dominated by other tree 
species. In eastern North America, oaks (Quercus) dominate the forests in southern 
New England, the mid-Atlantic states and the Midwest. Aspen (Populus) dominated 
forests are often defoliated in the region around the Great Lakes (Fig. 9.6). These
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forests are most frequently defoliated by spongy moth and experience the greatest 
tree mortality (Campbell and Sloan 1977; Davidson et al. 1999). 

Most hardwood trees defoliated > 50% by spongy moths will re-foliate in 
midsummer. However, those that fail to re-foliate at that time, or fail to re-foliate the 
following spring, will be killed, due to insufficient carbohydrate reserves (Kulman 
1971). Defoliated trees become susceptible to attack by secondary organisms, such as 
the two lined chestnut borer, Agrilus bilineatus, or the shoestring fungus, Armillaria 
spp., and these agents are often the main causes of tree death (Campbell and Sloan 
1977; Wargo 1977). Repeated defoliations in consecutive years can lead to levels of 
tree mortality exceeding 50% (Kegg 1973; Campbell and Sloan 1977). Other studies 
show less mortality following defoliation (Brown et al. 1979; Gansner et al. 1993). 
Campbell and Sloan (1977) analyzed the impact of spongy moth on stands from 
1911 to 1931 in New England and reported that defoliation occurred most frequently 
on oak-dominated stands and that oaks were the most likely to die. Dominant trees 
survived better than ones that were subdominant or suppressed. Non-favored host 
trees, such as white pine and red maple, were more likely to die after one defolia-
tion than oak trees. Morin and Liebhold (2016) analyzed the impact of spongy moth 
defoliation on changes in the tree species composition data collected by the USDA 
Forest Service between 1975 and 2010. They found that most of the stands with 
repeated defoliation in the northeastern USA were oak-dominated, and the effect of 
defoliation was to hasten the process of replacement of overstory oaks with other 
species such as maple (Acer), which are less preferred by spongy moth. Even though 
the volume or basal area of oak was increasing across this region due to tree growth, 
mortality of the younger age classes of oaks contributed to the overall decline of oaks 
and replacement by other species. 

9.5.5 Spread of Spongy Moth 

The enormous spatial detail evident in the spongy moth pheromone trap catch data 
(Fig. 9.2a) across the landscape, and the long time period over which spread has been 
monitored, have allowed investigators to study the rate of spread of spongy moths 
and make important contributions to the theory of spread of invasive organisms. 
Liebhold et al. (1992) compared historical rates of spongy moth spread (1900–1989) 
with predictions made using the spread model of Skellam (1951). The Skellam model 
consists of two components: exponential population growth defined by the parameter 
‘r’ and diffusion analogous to molecular diffusion defined by the parameter D. The  
model predicts that the rate of spread V of an invasion front is constant: V = 2

√
rD. 

Liebhold et al. (1992) estimated both parameters from earlier studies of spongy 
moth population growth and diffusion based on dispersal of first-instar larvae that 
spin down on threads from tree canopies and are blown in the wind. Experimental 
studies of that process (Mason and McManus 1981) suggest that most such larvae 
spread only a few hundred meters, but a few of them spread several kilometers. The 
Skellam model based on these parameters predicted that spongy moth dispersal would
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be about 2 km/year. The spongy moth spread prior to 1966 varied between 2 and 10 
km/year compared to 20.78 km/year after 1996. Liebhold et al. (1992) concluded 
that the discrepancy between predicted and observed spread was due to accidental 
human movement of spongy moth life stages which form isolated populations ahead 
of the advancing population front and thereby accelerate spread. 

Analyses of spongy moth spread were greatly enhanced by implementation of 
regional grids of pheromone traps (Fig. 9.2a, 9.8a). Analyses of such data from the 
central Appalachians (Sharov et al. 1995, 1996, 1997) indicated a rate of spread that 
varied yearly and ranged from 17 to 30 km/year. These data show that clumps of 
small populations of spongy moths arise many kilometers in front of the infested zone 
(Figs. 9.2a, 9.8a), and their growth and coalescence contribute significantly to the rate 
of spread. These data suggest that spread of spongy moth is an excellent example of 
stratified dispersal (Hengeveld 1989), consisting of a short-range process governed 
by larval dispersal and a longer-range process governed by human transport of spongy 
moth egg masses. The latter process has long been understood to be a central feature 
of the spongy moth system. Spongy moths lay the overwintering egg masses in 
midsummer on backyard objects, such as lawn furniture, that are readily transported 
in succeeding months elsewhere in the United States. As a result, new infestations 
arise many kilometers from the generally infested area or indeed anywhere else in 
North America. Models of stratified dispersal (Shigesada and Kawasaki 1997) were  
fit to the spongy moth system (Sharov and Liebhold 1998a). These analyses form 
the theoretical basis of the spongy moth Slow the Spread Program (Sharov et al. 
1997, 1998, 2002a; Sharov and Liebhold 1998a, 1998b; Tobin and Blackburn 2007) 
discussed below. Suppression of these incipient populations, arising ahead of the 
invasion front, slows the spread. 

Fig. 9.8 (a) Leading edge of spongy moth infestation arising ahead of the invasion front, resulting 
in stratified spread and; (b) Allee effect showing population growth as a function of density. Below 
the horizontal dashed line populations decline; above the line they increase (from Liebhold et al. 
2007)



254 J. Elkinton and A. Roehrig

Understanding the survival and expansion of incipient populations thus became 
a key feature of managing spongy moth. Such populations are governed by Allee 
effects (Fig. 9.8b), which express the survival or growth of populations as a function 
of population densities. At the very low densities characteristic of newly founded 
populations, survival or population growth of many species increases with population 
density. At higher densities, in virtually all populations survival or growth rates 
decline to an equilibrium that represents either the carrying capacity, or else a lower-
density equilibrium maintained by natural enemies. Allee effects refer to the positive 
density dependence at lower densities, and they can be weak or strong (Taylor and 
Hastings 2005). If they are strong, then at very low densities there exists what is 
called the Allee threshold (Fig. 9.8b). At densities above the threshold, populations 
steadily increase. When populations are below the threshold, however, densities 
typically decline to extinction. In other words, the low-density Allee threshold is an 
unstable equilibrium. There are several possible causes of low-density Allee effects 
in spongy moth populations, including predation (see below), but probably the most 
common cause at the very lowest densities characteristic of incipient populations is 
failure to locate mates. The implication of this is that many incipient populations 
of spongy moth will decline to extinction on their own accord. Indeed, data suggest 
that this frequently occurs (Liebhold et al. 2016). Eradication of such populations 
with pesticides or indeed mating disruption (Sharov et al. 2002b) is entirely feasible 
because even if the treatment fails to kill all the spongy moths it will surely vastly 
lower their densities and thus hasten their natural tendency to decline to extinction. 

Subsequent analyses of spongy moth spread have shown that the rate of spongy 
moth spread declines with the strength of Allee effects (Tobin et al. 2007, 2009), 
which varies in time and space across the landscape. The strength is measured by 
the intercept of the plot shown in Fig. 9.8b with the vertical axis; it is strongest when 
the intercept with the vertical axis (below the figure) is most negative. For example, 
Tobin (2007) reported that there were strong Allee effects and, as a result, slower 
spread in parts of the Midwest compared to Great Lakes or Appalachian regions. 

An exciting recent finding (Tobin et al. 2014) is that spongy moth populations in 
North Carolina have stopped spreading, and indeed have retreated northward in recent 
years. Tobin et al. (2014) suggest that in that region spongy moths have exceeded 
temperature maximums that inhibit optimal growth and further spread to southern 
states, and the northward retreat may be due to climate change. These findings imply 
that spongy moths may never occupy southern regions of the Midwest with highly 
susceptible oak forests (Fig. 9.6). 

9.5.6 History of Spongy Moth Control 

Efforts to control spongy moth in Massachusetts began in 1890, with a large program 
funded by the state legislature. The program focused on an attempt to mechanically 
destroy spongy moth egg masses, which are present on the trunks of trees from August 
through April each year. In addition, there was a large effort to spray the larvae with
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pesticides, mainly with lead and copper arsenate. There was little or no appreciation 
in those days of the environmental danger posed by these toxins. Furthermore, they 
were largely ineffective and failed to stem the spread of the population. 

In 1905, the US Department of Agriculture launched what became the most 
extensive worldwide effort for biological control of an invasive forest insect ever 
conducted. Twelve species of parasitoids became established of the 34 species that 
were released over several decades. Fuester et al. (2014) provide the most recent of 
several reviews of this effort. These included the egg parasitoid Ooencyrtus kuvanae 
(Howard) [Hymenoptera Encyrtidae]; three tachinid [Diptera] species: Compsilura 
concinnata (Meigen), Parasetigena silvestris (Robineau-Desvoidy), and Blepharipa 
pratensis (Meigen); a braconid Cotesia melanoscelus (Ratzeburg) and an ichneu-
monid Phobocampe disparis (Viereck) which attack the larval stage of spongy moth. 
Pupal parasitoids established were two hymenopterans: the chalcid Brachymeria 
intermedia (Ness) (Chalcidae) and the ichneumonid Pimpla disparis (Viereck). Of 
these, O. kuvanae and P. disparis were introduced from Japan, the other species from 
Europe. Compsilura concinnata was introduced to North America in 1906 and has 
gained some notoriety because Boettner et al. (2000) showed that it has become the 
dominant source of mortality on several native species of giant silk moths (Saturni-
idae) and is probably responsible for the decline of these species since the nineteenth 
century. On the other hand, Elkinton et al. (2006) showed that the same parasitoid was 
probably responsible for the extirpation of the invasive brown tail moth, Euproctis 
chrysorrhea, over much of its invasive range in the northeastern United States. 

Unfortunately, these parasitoids did not prevent spongy moth outbreaks. Williams 
et al. (1992) published the only long-term data on parasitism by these species and 
concluded that none of them regulated spongy moth density. The results of this study 
confirmed the conclusions drawn by earlier investigators: that parasitoids played 
a limited or equivocal role in the population dynamics of spongy moth in North 
America (Campbell 1975; Reardon 1976; Elkinton and Liebhold 1990). In addi-
tion to parasitoids, biological control introductions included predatory beetles, such 
as Calosoma sychophanta (Weseloh 1985) and pathogens such as Entomophaga 
maimaiga from Japan (Fuester et al. 2014). That pathogen was initially collected 
and released in 1910 and 1911 in the Boston area but was not established (Speare 
and Colley 1912). The recent invasion of spongy moth populations by E. maimaiga 
in North America that began in 1989 (see below) was evidently an accidental or inad-
vertent introduction (Hajek 2007). Entomophaga maimaiga was recently established 
in Bulgaria from where it has spread to other European countries and has become 
quite common (Hajek et al. 2020). But with the notable possible exception of E. 
maimaiga after 1989, none of these introductions prevented spongy moth outbreaks. 

Following World War II, the pesticide DDT became widely available. It was 
cheaper and more effective than any previous pesticide. In the succeeding decades, 
widespread aerial application of DDT was made against spongy moth. Applying 
pesticide by air allowed application at a landscape level, something that was never 
feasible or affordable from the ground. Entomologists in those days were convinced 
that DDT was a new tool that would solve most insect problems. By the 1960s, 
however, the environmental costs of DDT and related compounds were evident and
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were popularized by the famous book Silent Spring by Rachel Carson. DDT and 
its breakdown products persist indefinitely in the environment and accumulate in 
the fatty tissue of many animals. It was particularly damaging to birds, especially 
those at the end of long food chains, such as eagles and ospreys. DDT and other 
chlorinated hydrocarbon insecticides were banned in the late 1960s and 1970s. The 
Environmental Protection Agency was established, and laws were passed to require 
safety testing of all pesticides. Nevertheless, populations of birds such as eagles and 
ospreys took many decades to recover, a process that goes on to this day. 

Meanwhile, new pesticides were developed and used against spongy moth. In the 
early 1980s aerial applications of carbaryl were very popular. Carbaryl gave way 
to diflubenzuron, an insect growth regulator. By the end of the decade the bacterial 
insecticide Bacillus thuringiensis (Bt.) became popular. Its advantage was that it 
affected only foliage-eating insects, and not the adult stages of their insect natural 
enemies. Other bacterial insecticides such as spinosad were added to the mix in 
subsequent decades. Thus, in the modern era, we now have much safer pesticides 
that affect a more narrow spectrum of target and nontarget insects. In the northeastern 
states large scale aerial application of pesticides largely ceased after 1990 (Fig. 9.9b), 
coincident with the arrival of a new fungal pathogen of spongy moth, E. maimaiga 
(see below). It appears likely that the days of aerial application of any pesticides 
against spongy moth in New England are finished. We now know that the spongy 
moth outbreaks will subside on their own, and the forests will recover, even if there 
is significant tree mortality. Even the modern pesticides with a narrow spectrum will 
kill many nontarget insects and aerial applications are too expensive to justify for the 
governmental agencies charged with carrying them out. Applications to individual 
shade trees, however, are another matter. Homeowners place high value on these trees 
which provide beauty and shade to their yards. If a shade tree dies, it is expensive 
to remove. Homeowners are thus willing to spend significant funds to protect their 
trees, and many tree care professionals are available to help them to do that. The small 
scale of such applications presumably has a limited impact on non-target species at 
the landscape scale.

The federal effort against spongy moth in recent years has focused on the “Slow 
the Spread” project (Tobin and Blackburn 2007) (Fig. 9.2a). This involves annually 
deploying 80,000 to 100,000 traps baited with spongy moth pheromone each year 
in a grid along a front that extends from Minnesota to North Carolina. The objective 
of this effort is to identify incipient populations arising ahead of the invasion front 
that facilitate spread, as described above. Efforts are thus made to suppress them 
and slow the overall rate of spread of spongy moth. While this effort is expensive, 
cost–benefit analyses have shown that it is justified (Sharov and Liebhold 1998c). 
To suppress isolated populations, the program mostly relies on aerial applications 
of pheromones in small slow-release dispensers such that spongy moth males in 
treated areas are unable to locate females. Consequently, many females go unmated 
(Sharov et al. 2002b). This approach is called mating-disruption or the confusion 
technique (Carde and Minks 1995). It has been widely applied against agricultural 
pests such as pink bollworm, Pectinophora gossypiella, on cotton, but this is one of 
the only applications that has been widely applied against a forest insect. Another
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Fig. 9.9 (a) Aerial application from 1945 to 1985 of DDT, carbaryl (Sevin®) and Dylox in the 
northeastern United States and; (b) other more recently developed pesticides, including LdNPV 
(Gypchek), Mimic, diflubenzuron (Dimilin®)and Bacillus thuringiensis (Bt) after 1960 (figure 
courtesy of A. Liebhold)

more widely used eradication technique involves application of microbial pesticides 
such as Bacillus thuringiensis (Bt) (Hajek and Tobin 2010). 

A parallel effort is used to detect and eradicate isolated populations of spongy moth 
that arise far from the invasion front in the western and southern United States, where 
spongy moth egg masses are transported inadvertently by homeowners arriving from 
the infested region in the east. Again, the strategy is to annually deploy networks 
of thousands of traps that are used to detect newly-founded populations. Following 
detection, these populations are eradicated, mostly using aerial applications of the 
microbial pesticide Bacillus thuringiensis. Of particular concern are populations 
of Asian spongy moths arriving on ships from East Asia, where the flying female 
spongy moths are attracted to lights associated with various ports in Asia and thus 
often deposit egg masses in large numbers on ships in the ports. Asian spongy moths 
represent a major threat to North America, because, once established, they can spread 
across the continent very rapidly, and they attack different tree species, including 
conifers (Baranchikov and Sukachev 1989). Thus, a major effort has been made 
to locate spongy moth egg masses on cargo and ships arriving from East Asian 
ports and prohibit imports of contaminated cargo. Recent theoretical studies show 
that eradication of incipient populations is far more feasible than originally thought 
(Liebhold et al. 2016). 

9.5.7 Population Ecology of Spongy Moth 

Robert Campbell, of the US Forest Service, in the 1960s and 1970s, led the first 
comprehensive research aimed at understanding the population ecology of spongy 
moth in North America. Campbell and Sloan (1978a) suggested that predation by 
small mammals, in particular the white-footed mouse, Peromyscus leucopis, feeding 
on the late larval and pupal stages, was the key to maintaining populations at low
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density in the years between outbreaks. Predation by birds, in contrast, was much 
less important. Many bird species feed to some extent on spongy moth caterpillars, 
but many are also deterred by the hairs on the integument. 

Elkinton et al. (1996) presented results of research initiated in the 1980s at two 
sites in Massachusetts that confirmed the importance of small mammal predation 
on low-density spongy moth populations. They showed that spongy moth popula-
tions would rise when populations of white-footed mice declined. Furthermore, they 
showed that mouse populations fluctuate with the acorn crops, their major overwin-
tering food source. As is true with many tree species, acorn crops vary enormously 
from year to year. A variety of weather conditions, such as a late spring frost or 
mid-summer drought, can nearly eliminate the acorn crop. They also showed that 
when acorn crops failed, as in the autumn of 1992 (Fig. 9.10), mouse populations 
had declined dramatically by the following summer, and spongy moth populations 
therefore increased (Fig. 9.10). All of this occurred at low spongy moth density, when 
they were in a non-outbreak phase (egg mass densities < 100/ha).

Somewhere above one hundred egg masses per acre, a density threshold is reached, 
beyond which predation by mice or other small mammals, such as shrews, declines 
with increasing spongy moth density. Unlike spongy moth parasitoids, changes in 
the density of vertebrate predators such as mice or birds are fairly constrained. Birds 
defend territories and so do mice. Thus, the population densities of mice rarely 
increase beyond about 100 mice per ha. Spongy moths, in contrast, can increase 
from 1 to 100 to 10,000 egg masses per ha, which is characteristic of outbreak 
populations. At these higher densities, mice or birds can feed all day on spongy moth 
and never make a dent in the population, whereas, at lower spongy moth densities, 
the mice may consume most of the spongy moth pupae in the forest. Therefore, as 
spongy moth density increases, there is decline in the percent mortality caused by 
mice and other generalist predators. Thus, vertebrate predators play almost no role 
in regulating outbreak populations. With many caterpillar species, parasitoids can 
regulate density and prevent outbreaks because their numbers can increase along 
with their hosts. Unfortunately, introduced and native parasitoids that attack spongy 
moth in North America do not do this effectively. Their numbers are constrained 
for reasons that are poorly understood, and they never cause very high levels of 
parasitism. So, once spongy moth densities reach a threshold in the vicinity of 100 
egg masses per acre, the spongy moth population will grow inexorably over the next 
one or two years into an outbreak phase that results in widespread defoliation. 

Outbreak populations become limited only by the availability of green foliage. 
Few spongy moth larvae actually starve in outbreak populations, but many fail to 
get sufficient food resources. As a consequence, the adults that arise from such 
populations are smaller and the females might lay 100 eggs per mass, instead of 600 
(Campbell and Sloan 1978a). More importantly, there is a virus disease called nuclear 
polyhedrosis virus (LdNPV ) that causes epidemics in these outbreak populations and 
may kill 99% of larvae before they reach the pupal stage (Campbell and Podgwaite 
1971). Such viruses are common in outbreak populations of many insect species. 
Virus diseases reach epidemic proportions in outbreak populations because high 
caterpillar densities increase disease transmission. When the caterpillar dies from
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Fig. 9.10 Yearly estimates of (a) spongy moth egg masses per ha; (b) densities of white-footed 
mice and; (c) acorn crops at eight different plots near the Quabbin reservoir in central Massachusetts 
(Elkinton et al. 1996)

LdNPV, the virus causes the caterpillar cadaver to liquefy and spread virus particles 
over the leaf surface. Transmission occurs when a healthy caterpillar consumes virus 
particles released by these liquefied cadavers. Mortality from LdNPV starts in the 
early larval stages but grows exponentially in the late larval stage and peaks just 
before the caterpillars form pupae (Campbell and Podgwaite 1971; Murray et al. 
1989). It is this epidemic that brings an end to spongy moth outbreaks and causes 
the populations to retreat back to low density. Therefore, outbreaks will typically 
last for 1 to 3 years before this population collapse happens. In the years following 
collapse of the outbreak, predation by small mammals resumes as the dominant force 
of mortality that maintains spongy moth at low density (Campbell and Sloan 1978b). 

Campbell and Sloan (1978b) believed that spongy moth was a multi-equilibrium 
system (see Chapter 5) with a low-density equilibrium maintained by predators, 
mainly mice, and a high-density equilibrium wherein foliage supply and the resulting
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decline in fecundity, coupled with epizootics of LdNPV, limited further expansion of 
spongy moth densities and ultimately caused the collapse of outbreak populations. 
While it is very clear that there is indeed an upper limit to spongy moth densities, 
and that LdNPV plays a major role in the collapse of outbreaks, evidence for the 
low-density equilibrium remains undemonstrated. Campbell believed that predation 
rates by small mammals increased with spongy moth density at the lowest spongy 
moth densities but lacked supporting evidence. Unlike parasitoids, densities of small 
mammal predators do not increase in response to increased spongy moth density. 
Mouse densities are governed in large part by acorn crops, their principal overwin-
tering food source. In contrast, spongy moth pupae and late instar larvae represent 
an extremely ephemeral food resource for mice at a time of year when they have 
many other things to feed on. Predation rates, if they are to increase with spongy 
moth density, must, in response, entail a change in foraging behavior of the predator 
(a Type III functional response) (Holling 1959) to increasing density of prey. In field 
experiments, Elkinton et al. (2004) showed that mice exhibited a Type II functional 
response, wherein rates of predation decline steadily as densities increase from the 
lowest spongy moth densities. This implies that mice cannot serve to regulate spongy 
moth populations at low density. This type of predation may contribute to the Allee 
effect in low-density spongy moth populations, as discussed above. 

Dwyer et al. (2004) developed a model of spongy moth populations that combined 
the effects of LdNPV and small mammal predators. The model predicted regular 
outbreaks of spongy moths with an approximate 10-year periodicity. Fundamentally, 
this was a pathogen-driven model analogous to earlier models (e.g. Anderson and 
May 1981), but the addition of predators added an unstable low-density equilibrium 
to the system. Even a minor amount of stochasticity, however, resulted in quasi-
periodic oscillations (Fig. 9.11B) that matched those of spongy moth defoliation data 
in New Hampshire (Fig. 9.11A) characterized by chaotic dynamics (May 1975) that 
make them susceptible to dynamical change with small environmental perturbations 
or small changes in model parameter values (Fig. 9.11C). Subsequent analyses of 
spongy moth defoliation data confirmed the existence of such periodicities in the 
spongy moth system (Bjørnstad 2000).

The Dwyer et al. (2004) model was elaborated by Bjørnstad et al. (2010) and 
applied to defoliation data. The revised model replaced the Type III functional 
response of predation with a Type II functional response, which made a low-density 
equilibrium caused by predators impossible. Indeed, there exists no evidence to 
support such an equilibrium. These analyses suggested the existence of a dominant 
10-year cycle with a subdominant four-year cycle (Johnson et al. 2006a; Haynes 
et al. 2009a). Allstadt et al. (2013) analyzed 86 years of defoliation data, the longest 
available for/in North America, and concluded that population cycles appeared or 
disappeared four times over the duration of the spongy moth infestation in North 
America (Fig. 9.12B).
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Fig. 9.11 (a) Time series of spongy moth population model of Dwyer et al. (2004) showing quasi-
periodic dynamics similar to those exhibited by; (b) spongy moth defoliation in New Hampshire 
and; (c) a phase plot of model with stochasticity

Fig. 9.12 (a) Spongy moth population dynamics model of Bjornstad et al. (2008, 2010) versus 
defoliation data (figure courtesy of A. Liebhold) and; (b) wavelet analysis by Allstad et al. (2013) 
showing changes in periodicity of spongy moth defoliation in N. America over 86 years. Vertical 
axis shows cycle period in years; orange/yellow colors indicate statistically significant periodicities. 
Only patterns above the curved black line in this figure are statistically significant 

Another conspicuous feature of the spongy moth population system is that popu-
lations fluctuate in synchrony with one another across the landscape (Williams and 
Liebhold 1995a, 1995b; Peltonen et al. 2002; Liebhold et al. 2004; Johnson et al. 
2006a, 2006b; Bjørnstad et al. 2008; Haynes et al. 2013; Allstadt et al. 2015). This 
phenomenon is nearly ubiquitous with most forest insects (Liebhold and Kamata
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2000). Dispersal from one population to another can synchronize adjacent popula-
tions, but for spongy moth, and most other forest insects, this occurs over far too 
short a distance to account for the regional synchronies observed (Peltonen et al. 
2002). Instead, the standard explanation for this phenomenon involves the Moran 
(1953) effect. Moran was a statistician who studied the famous snowshoe hare-
lynx predator prey oscillation in Canada. He showed that model time series of such 
populations in different locations would come into synchrony with one another, 
provided they were influenced by a common random factor, such as synchronous 
weather. The shared weather conditions are not responsible for the oscillation, but 
they do explain why snowshoe hares or forest insects typically oscillate in synchrony 
with one another across much of northern Canada. The synchrony breaks down at 
greater distances because weather conditions become uncorrelated at these distances. 
Bjørnstad et al. (1999) developed statistical methods to detect such synchrony and 
how it declines with distance between two or more populations (see Fig. 9.4b, c). 
Moran’s model assumed that the dynamics of spatially separated populations were all 
governed by the same density-dependent processes. In fact, these dynamics undoubt-
edly vary somewhat in space. Peltonen et al. (2002) showed that populations with 
similar but distinct dynamical parameters still exhibited spatial synchrony, as Moran 
described, but the synchrony declined with distance more sharply than the synchro-
nizing weather conditions. Haynes et al. (2009b) utilized the model of Bjørnstad et al. 
(2010) and analyzed data on the spatial synchrony of spongy moths, white-footed 
mice, and acorn crops in the northeastern United States. All three are synchronized 
out to a distance of approximately 1000 km. They concluded that synchrony of acorn 
crops was the main cause of spongy moth and mouse synchrony, as opposed to the 
independent regional stochasticity (i.e. weather conditions) directly affecting each 
of the latter two species. The synchrony of all three is evident on a small spatial scale 
(ca 10 km) in Fig. 9.10. 

In 1989, a dramatic change occurred to spongy moth populations with the acci-
dental introduction of a fungal pathogen of spongy moth, Entomophaga maimaiga, 
from Japan (Andreadis and Weseloh 1990; Hajek et al. 1990b). That year, the fungus 
caused extensive mortality in both high and low-density populations throughout 
southern New England. The following year, the infection spread over the rest of New 
England and halfway across Pennsylvania (Elkinton et al. 1991). The rapid spread 
was due to the fact that spongy moth cadavers killed by the fungus produce conidia 
that are blown in the wind across the landscape. Subsequent research showed the 
fungus depends on rainy conditions in May and June for successful transmission to 
healthy larvae, and, indeed, 1989 was an especially rainy year. Beginning in 1991, 
spongy moth researchers worked to spread E. maimaiga to Michigan (Smitley et al. 
1995) and to Virginia (Hajek et al. 1996), but the fungus spread rapidly on its own, 
so that by about 1996 all of the areas infested by spongy moth in the northeastern 
United States were infested with the fungus (Hajek 1997, 1999). The fungus caused 
a major change in status of spongy moth as a serious forest pest in New England 
states. Spongy moth populations in that region declined to low density where they
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have mostly remained for the last 35 years (Fig. 9.13). In contrast, spongy moth 
populations in areas further south, such as Pennsylvania, have continued to have 
periodic outbreaks despite the presence of the fungus (Morin and Liebhold 2016). 
Laboratory tests demonstrated that the fungus does best in cooler conditions (Hajek 
et al. 1990a). Temperatures in May and June in the mid-Atlantic states are much 
warmer than in New England. 

Studies of the interaction of spongy moth fungal and viral pathogens demon-
strated that E. maimaiga develops more quickly and outcompetes LdNPV when both 
pathogens affect the same larva (Malakar 1997; Malakar et al. 1999). The same 
is true for infections of E. maimaiga and parasitoid larvae in spongy moth larvae. 
Hajek et al. (2015) (Fig. 9.14a) demonstrated that E. maimaiga has now become the 
dominant mortality factor in both low and high-density populations of spongy moth. 
However, Liebhold et al. (2013) demonstrated that LdNPV still causes comparable 
levels of density-dependent mortality in outbreak populations in the presence of E. 
maimaiga as it had before the fungal pathogen was introduced in 1989 (Fig. 9.14b).

Fig. 9.13 (a) Spongy moth defoliation before and; (b) after the introduction of Entomophaga 
maimaiga in 1989 in the northeast United States (Morin and Liebhold 2016); (c) The annual hectares 
defoliated by spongy moth 1975–2010 in the United States 
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Various studies indicate that rainfall in May and June are critical to transmission of E. 
maimaiga (Hajek et al. 1990a; Hajek 1999; Reilly et al. 2014). A recent outbreak of 
spongy moth in New England (Fig. 9.1b; Pasquarella et al. 2018), the first widespread 
one since 1981, was likely caused or facilitated by three consecutive years of drought 
conditions in May and June beginning in 2014. Thus, rainfall has likely become a 
critical feature in promoting or suppressing spongy moth outbreaks. Most of the 
time series analyses of spongy moth defoliation data described above were applied 
to data collected prior to widespread establishment of E. maimaiga, so perhaps it 
is still too early to tell how it will affect the overall dynamics of spongy moth. For 
example, the disappearance of the population cycles after 1996 described by Allstadt 
et al. (2013) might be due to this major new source of mortality. Unlike the viral 
pathogen LdNPV, which only causes major epizootics in outbreak populations of 
spongy moth, E. maimaiga causes high levels of mortality in both low- and high-
density populations (Hajek 1999; Fig.  9.14c). As such, it may play a significant role 
in preventing the onset of outbreaks in contrast to LdNPV. Even so,  E. maimaiga is 
weakly density dependent because transmission depends on conidia that spread from 
nearby high-density populations (Bittner et al. 2017; Elkinton et al. 2019). Thus, E. 
maimaiga might contribute to the development of a low-density equilibrium, whose 
existence has not yet been demonstrated in spongy moth populations. Kyle et al. 
(2020) developed a population model of the impact of E. maimaiga on spongy moth 
population dynamics. Recent analyses by Liebhold et al. (2022) demonstrate that 
E. maimaiga has reduced the intensity of spongy moth outbreaks but not neces-
sarily their frequency. Further studies and longer population time series are needed 
to resolve its role in low-density population dynamics of spongy moth. 

Fig. 9.14 (a) Proportions of spongy moth larvae dying from E maimaiga, LdNPV and parasitoids 
in Pennsylvania, Maryland and West Virginia (Hajek et al. 2015); (b) Mortality of spongy moth 
larvae in Pennsylvania from LdNPV and; (c) from E maimaiga  vs. egg mass density before and 
after the introduction of E maimaiga. (Liebhold et al. 2013)
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As described above, spongy moth has been exhaustively researched both from 
a population dynamic and from a management perspective. The extensive data on 
spongy moth defoliation and pheromone trap catch is almost certainly the most 
extensive such data for any species and has allowed researchers to make significant 
contributions to the general theory of population spread and eradication of invasive 
species. Analysis of spongy moth population data has made important contributions 
to the general theory of population cycles, Allee effects, and spatial synchrony of 
population fluctuations. 

In Table 9.1, we list what we believe are the most important or damaging foliage-
feeding forest insects in the world. We list the geographical range, the host tree 
species, and key references that give readers access to the literature on these species. 
We do not include the two species we have already discussed at length: winter moth, 
Operophtera brumata and spongy moth, Lymantria dispar.
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