
Chapter 12 
Woodborers in Forest Stands 

Kevin J. Dodds, Jon Sweeney, and Jeremy D. Allison 

12.1 Introduction 

The term woodborer is used to describe a polyphyletic group of insects that primarily 
inhabit the wood of angiosperm and conifer trees in various stages of decay. In the 
broadest sense, this term includes any insect that inhabits tissues of living woody 
plants or wood at any stage of the decay process. Common wood associates include 
Coleoptera (beetles), Hymenoptera (ants, wasps), Lepidoptera (moths), Diptera 
(flies) and Blattodea (termites and cockroaches). For this chapter, however, we focus 
on woodborer families that represent the majority of both ecologically and econom-
ically important species worldwide. These will include members of two beetle fami-
lies (Buprestidae, Cerambycidae) as well as woodwasps (Hymenoptera: Siricidae) 
(Fig. 12.1). Another woodborer group, ambrosia beetles (Coleoptera: Curculionidae: 
Scolytinae) are covered in depth in Chapter 11. Finally, while there is some overlap 
in pests of urban and natural forests, this chapter will focus on woodborers of natural 
and managed forested ecosystems.

While woodborers have gained notoriety based on invasion success of a 
few species, such as the emerald ash borer (Agrilus planipennis Fairmaire) in
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Fig. 12.1 Examples of common woodborers, including a Dicerca divaricata (Buprestidae), b 
Monochamus scutellatus (Cerambycidae), and c Sirex noctilio (Siricidae). Photo credit: Kevin 
Dodds

North America and Russia, Asian longhorned beetle [Anoplophora glabripennis 
(Motschulsky)] in North America and Europe, and Sirex woodwasp (Sirex noctilio 
F.) throughout much of the Southern Hemisphere, the majority of insects in these 
families provide important ecosystem services and rarely develop into epidemic 
populations that cause economic losses or severe ecological impacts. Most of these 
species inhabit dead woody material, with the exception being species colonizing 
and sometimes killing living, healthy trees. Woodborers are cornerstones of decay 
processes through material fragmentation, introduction of fungi, and wood digestion 
(Edmonds and Eglitis 1989; Martius 1997; Hadfield and Magelssen 2006; Parker  
et al. 2006; Ulyshen 2016). They create and/or facilitate access to habitat for other
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species (Georgiev et al. 2004; Buse et al.  2008) and are important components of 
forest food webs (Murphy and Lehnhausen 1998; Hunt 2000). 

The Buprestidae and Cerambycidae represent diverse families that can be found 
in all woody plant parts and most wood decay stages. Worldwide, there are between 
12,000 and 15,000 species of Buprestidae (Bright 1987; Bellamy 2002; Evans et al. 
2004), while there are approximately 36,300 cerambycid species (Monné et al. 
2017). Siricidae have much less diversity in the family compared to buprestids and 
cerambycids, with ~122 species worldwide from 10 genera (Schiff et al. 2012). 

12.2 Natural History/Ecology of Woodborers 

12.2.1 Woodborer Habitat 

Some cerambycids and buprestids are found in vines and herbaceous plants (Bellamy 
and Nelson 2002), however, the majority, along with siricids, are found in hardwood 
and conifer tree tissues. Collectively, these insects inhabit all vertical portions of 
trees, from the roots up to small twigs in crowns, and even within leaves (Hespenheide 
1991; Bellamy and Nelson 2002). Horizontally in wood, all tissues from the outer 
bark to heartwood are also colonized by woodborers during some portion of the 
decay process, with insects and their associates capable of gaining nutrition from 
even seemingly poor habitat (Haack and Slansky 1987). Woodborers spend most of 
their lives developing within host material, then emerge to locate hosts, mate, and 
reproduce. Eggs are laid on or within specific plant tissues on which early instar 
larvae establish and feed. Some species may feed sequentially on different tissues 
in later instars as development progresses (Donley and Acciavatti 1980; Hu et al.  
2009). 

Generically, woodborers are often referred to by the plant tissues or tree portions 
on which they feed, such as phloem, sapwood, heartwood, root and bole borers, or 
twig girdlers. In regard to nutrition, phloeophagous species gain all their nutrition 
from the phloem/cambium layer, but some may also enter the sapwood for further 
feeding and/or pupation (e.g. Monochamus Guérin spp., Anoplophora Hope spp.). 
Xylophagous species generally gain most of their nutrition from sapwood and/or 
heartwood and are found deeper inside trees. However, some of these species may 
briefly feed in the phloem. Aside from the outer bark that is of limited nutritional 
value, nutritional quality diminishes from the bark of trees inwards to the heartwood 
(Haack and Slansky 1987). Outside of the phloem/cambium layer, tissues are domi-
nated by cellulose, hemicellulose, and lignin, all compounds that are more difficult 
to digest and require specialized enzymes to aid in acquisition (Stokland 2012). 
Woodborers developing within these tissues may take longer to develop (Haack 
and Slansky 1987). In addition to vertical and horizontal feeding on trees, there is 
a temporal aspect to food resources where woodborers are often associated with
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specific stages of tree death or wood decay (Howden and Vogt 1951; Saint-Germain 
et al. 2007; Ulyshen and Hanula 2010; Ferro et al. 2012). 

Both spatial and temporal partitioning occurs with woodborers that utilize the 
same habitat. For example, succession and resource partitioning, similar to what has 
been observed in conifer inhabiting bark beetles (Paine et al. 1981; Ayres et al. 2001) 
likely occurs among woodborers in dying or recently dead conifers. On available 
stressed or dying trees, or fresh stumps and windfall, woodborer genera such as 
Tetropium Kirby and Asemum Eschscholtz may colonize lower bole positions (Lowell 
et al. 1992), while genera such as Monochamus, Sirex, and Xylotrechus Chevrolat 
colonize mid- and upper-bole positions. Other genera of buprestids and cerambycids 
also colonize the crowns. Horizontal partitioning can occur simultaneously to vertical 
partitioning, with some cerambycids, buprestids, and siricids in the sapwood, while 
other species of buprestids and cerambycids feed primarily in the phloem and occur 
only shallowly in the sapwood. 

Temporally, phloeophagous woodborers arrive early where some may compete 
with bark beetles colonizing the same material (Dodds and Stephen 2002). Some 
of these woodborers, like Monochamus spp., utilize kairomones (e.g. host volatiles, 
bark beetle pheromones) to locate freshly killed or stressed trees quickly (Allison 
et al. 2001; Miller 2006; Miller et al. 2011). Species that specialize on sapwood or 
heartwood may arrive later. Their colonization period may be longer as their habitat is 
less ephemeral and remains suitable longer after tree death. As trees begin to decay, 
species such as Orthosoma brunneum (Forster) that specialize on more decayed 
material arrive and colonize the trees or logs (Craighead 1950). 

12.2.2 Live Tree Inhabitants 

With the exception of invasive species, it is rare for woodborers to kill healthy living 
trees. However, living trees do provide habitat for cerambycid and buprestid species. 
Tree roots, boles, crowns, and leaves provide habitat for specialized species that can 
tolerate or avoid host defenses. For example, some Prionus F. species colonize roots 
of living host trees (Duffy 1946; Benham and Farrar 1976). Bole specialists, like 
the sugar maple borer [Glycobius speciosus (Say)] and locust borer [Megacyllene 
robiniae (Forst.)], colonize living trees and cause damage through their feeding activ-
ities (MacAloney 1971) (Fig. 12.2a). The buprestid Coraebus undatus (F.) colonizes 
the boles of living cork oak trees and can negatively impact cork harvesting (Jiménez 
et al. 2012). In some cases, these trees may be slow growing or under some other form 
of stress that allows the establishment of these woodborers (Newton and Allen 1982; 
O’Leary et al. 2003). Feeding damage by woodborers often causes stem failure, or 
further degrade of tree health that eventually results in tree mortality (Galford 1984).

Another woodborer guild of live tree inhabitants specializes in colonizing crowns 
of trees and includes twig girdlers, twig pruners, and leaf-mining species. Twig 
girdlers such as Oncideres cingulata (Say) can damage >40% of twigs (Forcella 
1984), and as a result can reduce timber quality and height growth in hickory
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Fig. 12.2 Two examples of woodborer damage to living trees: a Damage caused to a living sugar 
maple (Acer saccharum) by the sugar maple borer, Glycobius speciosus in central New York, USA. 
b Wound periderm surrounding an unsuccessful attempt at colonization by Agrilus planipennis on 
stem of a Fraxinus mandshurica tree in Jilin province, China. The typical sinusoidal larval gallery 
is apparent but lack of an exit hole indicates the larva did not complete development. Photo credits: 
a Kevin Dodds; b Jon Sweeney

(Kennedy et al. 1961). Even though trees attacked by twig girdlers may appear 
healthy, there is some evidence that these beetles are attracted to stressed trees 
(Ansley et al. 1990). Twig pruners, such as Anelaphus villosus (F.) that colonizes 
various hardwoods, have larval stages that feed within branches, effectively killing 
those sections of trees. Similarly, some buprestids, such as Agrilus arcuatus Say in 
hickories, colonize and kill branches of healthy trees (Brooks 1926). Some species 
of buprestids are leafminers and do not bore in wood at all (Weiss and Nicolay 1919; 
Bellamy 2002; Queiroz 2002). 

While few woodborers use living trees for larval development, many species 
use living plant material as an adult food resource. Adult feeding in woodborers is 
common in cerambycids and buprestids (Bright 1987; Hanks 1999; Bellamy 2002; 
Haack 2017) but does not occur in siricids. Many buprestids and cerambycids feed 
as adults and need a period of maturation feeding before mating and oviposition can 
occur (Linsley 1961; Hanks 1999; Poland and McCullough 2006; Lopez and Hoddle 
2014). The primary source of nutrition for woodborer adults that do feed is plant 
material, including phloem tissue, floral resources (nectar, pollen, etc.), thin bark 
tissue, and leaves and needles (Linsley 1959; Hanks 1999).
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12.2.3 Generic Life Cycle 

The following is a generalized life cycle and given the size of the guild, it is not 
surprising that exceptions exist. The woodborers covered in this chapter are all 
holometabolous insects. Sexual reproduction is typical for buprestids and ceram-
bycids, while siricids are parthenogenetic and can lay viable eggs (males) without 
mating. Fertilized eggs are necessary to produce female brood. Mating generally 
occurs on the host plant for most woodborers, with females laying eggs on the bark 
or under bark scales, in the phloem/cambium region or directly into the sapwood. 
In most species, males are not present when the female oviposits. However, post-
copulation mate guarding does occur in some species (Hughes 1979; Hanks et al. 
1996a; Wang and Zeng 2004; GodÍnez-Aguilar et al. 2009). Developing larvae of all 
woodborers either feed directly on plant tissue, or on associated fungi that females 
inoculate into trees (Madden 1981; but see Thompson et al. 2013), or on plant material 
that has been partially digested and broken down by associated organisms (Adams 
et al. 2011; Thompson et al. 2014). Larvae may go through as few as 3 or as many 
as 15 larval instars before they pupate; the number of instars varies both intra- and 
interspecifically and can be affected by temperature, photoperiod, and food quan-
tity and quality (Esperk et al. 2007). Most species developing in the phloem tissue 
pupate in this region (Ness 1920) or go into the sapwood to pupate (Webb 1910) but  
some in the Lepturinae subfamily leave the larval host and pupate in the soil (Iwata 
et al. 2004). Most sapwood colonizers pupate within the same region where larval 
development occurs. After successful pupation, newly formed adults chew through 
the sapwood and/or bark to emerge and disperse from host trees. 

12.2.4 Importance of Symbionts 

There has been a longstanding understanding that symbionts are important in the 
nutrition of wood-feeding insects (Graham 1967) and molecular techniques are illu-
minating the diversity and function of these relationships (Grünwald et al. 2010). 
Common symbionts of cerambycids include bacteria, fungi, and yeasts (Douglas 
1989; Schloss et al. 2006; Grünwald et al. 2010; Calderon and Berkov 2012). These 
symbionts can aid insects in several ways, but a primary role is the conversion of 
difficult-to-digest plant material (lignin, cellulose, hemicellulose) into useable nutri-
ents (Delalibera et al. 2005). Some buprestids can digest cellulose (Martin 1991), 
but less is known about symbionts in this family. Siricids have an obligate symbiotic 
relationship with associated white-rot fungi (Gilbertson 1984). Cerambycids and 
siricids also ingest fungal enzymes that help break down wood (Kukor and Martin 
1983, 1986; Kukor et al. 1988).
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12.3 Population Regulation 

Woodborer populations are affected by many abiotic and biotic factors and their 
interactions. Temperature, rainfall, and other weather variables affect woodborers 
directly (e.g. development rate, overwintering survival, foraging activity) as well as 
indirectly through the host plant (e.g. trees stressed by drought, flooding, wind storms 
or disturbances are often more susceptible to woodborer colonization) (Juutinen 
1955; Hanks et al. 1999) and their impact on symbionts. The relative impact of these 
factors on woodborer populations varies among species according to their life histo-
ries, and within species, both temporally and spatially. We provide some examples 
of how climate, fire, and other disturbances affect the distribution and abundance of 
woodborers. We then discuss the influence of biotic factors on woodborer popula-
tions, including bottom-up effects like host tree availability and host defenses, intra-
and interspecific competition, and top-down effects like parasitoids, predators, and 
pathogens. 

12.3.1 Abiotic Factors 

12.3.1.1 Climate 

Each species has optimum temperatures for development and activity as well as 
minimum and maximum lethal temperatures and these play a large role in determining 
its geographic range. These temperature optima and limits may vary depending on 
the life stage and season, especially in temperate climates (Wellington 1954). There 
are also minimum and maximum threshold temperatures for development of each 
life stage and a minimum number of heat units (e.g. degree-hours or degree-days 
= accumulated time between the minimum and maximum threshold temperatures) 
required to complete development. For example, emerald ash borer larvae need at 
least 150 frost-free days for feeding (Wei et al. 2007) and have a 2-year life cycle in 
the most northern province of Heilongjiang in China (Yu 1992), a 1-year life cycle 
in the more southern Liaoning Province (Zhao et al. 2004) and a 1–2 year life cycle 
at intermediate latitudes in Jilin province (Wei et al. 2007) and the USA (Tluczek 
et al. 2011). 

Rate of egg and larval development (Schimitschek 1929) as well as adult wood-
borer activity (Sánchez and Keena 2013) normally increases with temperature above 
the minimum threshold until temperatures exceed the optimum, beyond which devel-
opment rate and survival are reduced (Keena and Moore 2010). Temperatures expe-
rienced by woodborer larvae in the microclimate under the bark of host trees often 
differ from ambient air temperatures, and this can affect predictions of overwintering 
mortality and development rates (Bolstad et al. 1997). For example, the minimum 
daily temperatures measured under the bark of ash trees were significantly warmer 
than those measured in the air (Vermunt et al. 2012). Although temperature is a
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dominant factor affecting woodborer development rate, host condition also affects 
development rate, i.e. healthy vs. stressed or moribund, as discussed in Sect. 12.2.1. 

Upper lethal temperature thresholds vary with species, life stage, and duration of 
exposure. For example, brown spruce longhorn beetle, Tetropium fuscum F., adults 
died after 30 min exposure to 40 °C and 15 min exposure to 45 °C, whereas mortality 
of pre-pupal larvae required 30 min exposure to 50 °C or 15 min exposure to 55 °C 
(Mushrow et al. 2004). Larvae of the emerald ash borer, on the other hand, have 
survived 30 min exposures to 60 °C (Myers et al. 2009). However, few life stages of 
woodboring species appear to survive exposure to temperatures >55 °C for 30 min 
(Pawson et al. 2019) and thus, heat treatment is a common phytosanitary treatment 
for solid wood packaging used for international shipping of goods. The International 
Standard for Phytosanitary Measures 15 (ISPM 15) requires that wood packaging be 
either fumigated or heated to 55 °C for 30 min to reduce the risk that it contains live 
woodborers (Humble 2010). 

In temperate regions, overwintering success is a critical factor affecting the poten-
tial geographic range of woodborer populations. Cold hardiness is the capacity of 
insects to survive exposure to cold temperatures and it varies with species, develop-
mental stage, season, intensity, frequency and duration of exposure, and nutritional 
status (Lee 1989; Marshall and Sinclair 2015). Some insects avoid freezing and 
enhance their cold hardiness by increasing the concentration of cryoprotectants (e.g. 
glycerol, glycogen) in the hemolymph (Danks 2000). The supercooling point (SCP) 
is the temperature at which ice crystals form in the hemolymph and is a useful index 
of cold hardiness. In general, the lower the SCP, the greater the cold hardiness. The 
SCP may vary significantly among species, among different geographic populations 
within species, and among individuals within populations (Feng et al. 2014). Cold 
hardiness also varies with time of year, e.g. the SCP of Japanese sawyer beetle larvae 
(Monochamus alternatus Hope) ranged from −6 °C in the  summer to  −15 °C in 
the winter (Ma et al. 2006). If minimum winter temperatures increase because of 
climate change, then distributions of woodborer populations may shift northwards, 
similar to what has been documented in bark beetles (Lesk et al. 2017). In addition 
to affecting development and survival of immature life stages, temperature affects 
adult activity and flight in wood boring beetles, e.g. in a mark-release-recapture 
study of the Eucalyptus longhorned beetle, Phoracantha semipunctata (F.), Hanks 
et al. (1998) concluded that adult dispersal flights declined sharply as air temperature 
dropped below about 22 °C. 

12.3.1.2 Natural Disturbances 

Natural disturbances can significantly increase populations of some woodborer 
species by greatly increasing the volume of weakened or freshly-felled host trees 
suitable for colonization (Gandhi et al. 2007). Haack et al. (2017) list many ceram-
bycid genera whose populations increase following disturbances like drought, ice 
and windstorms, and fire, due to increased availability of stressed host trees. Infesta-
tions of Tetropium spp. and Monochamus spp. increased in spruce forests weakened
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by windstorms in eastern North America, and their damage far exceeded that of the 
spruce beetle, Dendroctonus rufipennis (Kirby), which often erupts following severe 
wind events (Gardiner 1975). Both drought and flooding can increase tree moisture 
stress and susceptibility to woodborer colonization (Craighead 1937, 1950; Mattson 
and Haack 1987). Larval survival and damage by the locust borer, M. robiniae, 
increased during drought conditions (Craighead 1937). Drought is considered to be 
an important factor associated with the unprecedented outbreak of red oak borer, 
Enaphalodes rufulus (Haldeman), in red oak forests in Arkansas from 1999 to 2003 
(Stephen et al. 2001; Haavik and Stephen 2010; Haavik et al. 2012b). 

Fire can significantly affect woodborer populations by changing the distribution 
and abundance of suitable host trees and can directly suppress woodborer populations 
by destroying brood in infested trees. Felling and burning of infested trees in winter is 
sometimes used in sanitation control of satellite infestations of invasive woodborers, 
e.g. the brown spruce longhorn beetle in Nova Scotia, Canada (Fig. 12.3). Depending 
on the severity and extent of a forest fire, and the species of woodborer, fire can have 
positive and negative effects on host availability. For example, conversion of a mature 
forest to an early successional stage by a severe fire will reduce host availability for 
many years for woodborer species that favor large diameter, mature trees or other 
structural components associated with these forests. On the other hand, many species 
of woodborers prefer to colonize trees weakened or freshly killed by fire, so fires 
may greatly increase host availability and increase populations of these woodborers 
(Costello et al. 2013). Females of the longhorn beetle Arhopalus ferus (Mulsant) 
prefer to lay eggs on trees that have been damaged by fire (Hosking and Bain 1977) 
as do those of the buprestid, Melanophila acuminata (DeGeer) (Linsley 1943). The 
latter species has infrared-sensitive pit organs on the underside of their metathorax 
(Evans 1964, 1966) and it has been suggested that these are used to detect infrared 
radiation from forest fires as far away as 50 km (Linsley 1943) (Fig. 12.4).

12.3.2 Biotic Factors 

12.3.2.1 Host Availability 

Woodborer populations and their distribution on the landscape are significantly 
affected by the availability of suitable hosts, i.e. those in which broods can be success-
fully produced (Haavik et al. 2016), and this is affected by abiotic factors (discussed 
above) as well as biotic factors such as inter- and intraspecific competition (see 
Sect. 12.3.2.3). Host availability especially affects woodborers that specialize on 
one or few host species or genera and/or ephemeral host conditions. For example, 
Tetropium spp. and Monochamus spp. typically colonize stressed, dying or recently 
dead trees, and their populations have increased in conifer stands weakened by 
defoliator outbreaks (Basham and Belyea 1960; Haack 2017). 

Some woodborer species are polyphagous while others breed in a single plant 
genus or species. For example, the linden borer, Saperda vestita Say, breeds only
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Fig. 12.3 Sanitation burn of red spruce trees and stumps suspected of infestation by the brown 
spruce longhorn beetle, Tetropium fuscum, at a satellite infestation near Glenholme, Nova Scotia. 
Photo credit: Wayne MacKinnon, Natural Resources Canada, Canadian Forest Service 

Fig. 12.4 a Adult of the “fire-loving” jewel beetle Melanophila acuminata; b Scanning electron 
microscope image of one of two infrared (IR) pit organs located between the base of the middle legs 
on the underside of the beetle’s thorax. Each IR pit organ has about 70 hemi-spherical IR sensilla. 
Reproduced with permission from Schmitz et al. (2009)

in dead and dying linden trees, Tilia L. spp. (Yanega 1996), whereas Neoclytus 
acuminatus (F.) breeds in at least 26 genera of broadleaf trees (Haack 2017). Larval 
feeding by most of the >3000 described species of jewel beetles in the genus Agrilus 
is restricted to a single genus or family of host plants, but there are several exceptions,
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e.g. Agrilus viridis (L.) will colonize many genera such as Betula L., Salix L., and 
Fagus L. (Jendek and Poláková 2014). 

Typically, species that feed in healthy trees tend to specialize on one or few host 
genera whereas those that feed in dead hosts tend to be polyphagous (Hanks 1999). 
But there are exceptions like Anoplophora chinensis (Forster) whose larvae can 
complete development in live healthy plants from at least 13 different genera (Sjöman 
et al. 2014). Even for polyphagous woodborers, there are differences among host 
species in terms of preference (by ovipositing females) and performance (survival 
and reproduction of offspring). For example, A. glabripennis has been recorded 
from 24 tree genera (Sjöman et al. 2014) but extensive surveys of infestations in 
Toronto, Canada (Turgeon et al. 2016) and Chicago, USA (Haack et al. 2006) found 
that Acer L. and Ulmus L. were clearly preferred to other tree species. Similarly, 
A. glabripennis has been recorded in seven genera in Northern Italy but 98% of 
infested trees belonged to only four genera (Acer, Ulmus, Salix, Betula) and both 
oviposition and larval survival was greatest on Acer (Faccoli and Favaro 2016). There 
are also differences in host preference or performance within genera. For example, 
oviposition and reproductive success of A. glabripennis were greater on Acer rubrum 
L. than on A. platanoides L. or A. saccharum Marsh. (Dodds et al. 2014b), emerald 
ash borer females lay significantly more eggs on highly susceptible North American 
ash species than on the more resistant Manchurian ash (Fraxinus mandshurica Rupr.) 
(Rigsby et al. 2014), and reproductive potential of Monochamus galloprovincialis 
Olivier was greater on Pinus sylvestris L. than on Pinus nigra Arnold (Akbulut 2009). 

Host suitability also varies within tree species according to variables such as 
tree vigor, diameter, and bark thickness. Host condition (e.g. healthy versus stressed 
live trees, recently dead versus partially decomposed) affects the preference and/or 
performance of many wood boring species (Haack 2017). For example, colonization 
success of P. semipunctata larvae in Eucalyptus was significantly greater in fresh logs 
and moisture-stressed trees than in healthy trees (Hanks et al. 1991). As trees die and 
advance through stages of decay, there are successional changes in the woodborer 
community following changes in host condition and suitability for different species 
(Haack 2017). 

Variability in host quality combined with the inability of woodborer larvae 
to move from the brood host selected by females may be responsible for the 
large intraspecific variation in adult body size (Andersen 1983). According to the 
preference-performance hypothesis (Jaenike 1978), females should preferentially 
oviposit in hosts that optimize offspring fitness. Results of some woodborer studies 
have supported this hypothesis and others have not. Survival and development rate 
of brown spruce longhorn beetles were greater in stressed than in healthy spruce 
(Flaherty et al. 2013a) and females landed 10 times more frequently and laid 3 times 
as many eggs on stressed trees than on healthy trees (Flaherty et al. 2013b). However, 
Hanks et al. (1993) found that survival of eucalyptus longhorn beetles in field trials 
was actually lower in preferred hosts, due to high larval densities and intense intraspe-
cific competition; brood survival was greater in the preferred hosts only when larval 
densities were kept artificially low in laboratory studies.
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12.3.2.2 Host Defenses 

Tree defenses may be constitutive (always present) or induced (e.g. by herbivore 
feeding or fungal infection) and both types can significantly reduce survival and 
colonization success of herbivores, including woodborers (Raffa 1991; Phillips and 
Croteau 1999). Constitutive and induced resins (complex mixtures of phenolics and 
terpenoids) may prevent establishment of early instar larvae physically by drowning 
them or chemically by reducing food digestibility. Drowning of early instar larvae 
in host oleoresin is a major mortality factor in T. fuscum (Juutinen 1955), Semanotus 
japonicas Lacordaire (Shibata 1987, 2000; Kato  2005), and other woodborers that 
attack live but weakened hosts. 

Trees may also increase toxin concentrations at the site of feeding and surround 
larvae with tougher, less digestible wound periderm tissue (Lieutier et al. 1991). 
Establishment and survival of early instar buprestid larvae in healthy trees is usually 
low due to callus formation (Evans et al. 2004; Chakraborty et al. 2014) (Fig. 12.2b). 
When trees are stressed, these defenses are reduced and larval establishment, colo-
nization success, and woodborer populations increase. For example, incipient root 
rot in Eucalyptus was correlated with attack by the bullseye borer, Phoracantha 
acanthocera (Macleay) (Farr et al. 2000), extensive areas of P. sylvestris weakened 
by root rots were infested and killed by Phaenops cyanea (F.) in Germany in the late 
1960s (Evans et al. 2004), and oaks undergoing temporary periods of stress from 
defoliation may be colonized and killed by Agrilus bigutattus (F.) in Europe (Moraal 
and Hilszczanski 2000) and Agrilus bilineatus (Weber) in North America (Dunbar 
and Stephens 1975). 

Tree defenses are also less effective at preventing woodborer colonization of naïve 
hosts, i.e. tree species that have not coevolved with a woodborer species introduced 
to a new range. A good example of this phenomenon is the devastating mortality 
of North American ash, Fraxinus L. spp., caused by the exotic invasive emerald 
ash borer compared to the relatively benign effect of this insect on Fraxinus spp. 
in its native range (Poland and McCullough 2006; Herms and McCullough 2014). 
Similarly, “evolutionary naïve” Eurasian species of birch are far more susceptible to 
colonization and mortality by the Nearctic bronze birch borer, Agrilus anxius Gory, 
than are North American species of birch (Muilenburg and Herms 2012). 

Development rate and survival of woodborer larvae that normally attack weakened 
hosts (e.g. brown spruce longhorn beetle, emerald ash borer) is lower in healthy 
trees than in stressed trees, likely due to differences in defensive compounds or host 
nutrients (Flaherty et al. 2011, 2013a; Tluczek et al. 2011). Growth rate of Hylotrupes 
bajulus L. larvae was negatively correlated with increases in secondary carbon-based 
compounds in P. sylvestris (Heijari et al. 2008). Low host nutritional quality and 
low moisture content can also prolong the development time of cerambycids and 
buprestids, with several cases where adults emerged from finished wood products up 
to 40 years after the presumed oviposition (Duffy 1953; Haack 2017). 

Resistance of Eucalyptus L’Hér. to colonization by P. semipunctata is related to 
bark moisture content (Hanks et al. 1991) and resistance of Populus tomentosa Carr. 
to colonization by Asian longhorned beetle is related to bark glycoside and phenolic
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acid content (Wang et al. 1995). The maintenance of healthy, vigorous trees is the 
best defense against attack by most species of cerambycids and buprestids (Evans 
et al. 2004). In addition to “bottom-up” factors like host availability and host defenses, 
woodborer populations are also regulated by “top-down” factors, i.e. natural enemies 
like parasitoids and predators, and these are discussed in Sect. 12.3.2.4. 

12.3.2.3 Competition 

Woodborers must compete for limited food and space with conspecifics as well as 
other species of woodborers and other insects and microorganisms that exploit the 
same host species and tissues. For example, 27 different species of longhorn beetles, 
plus a few species of buprestids, curculionids and other beetles were recorded co-
inhabiting branches and small saplings of Leucaena pulverulenta (Schlect.) Benth. 
that had been girdled by the twig-girdler, Oncideres pustulata LeConte (Hovore and 
Penrose 1982). 

Woodborers may be subject to indirect or exploitative competition, in which larvae 
that establish later have less food or space for development than earlier colonists 
(Ikeda 1979), or direct competition, i.e. cannibalism or intra-guild predation (Rose 
1957; Anbutsu and Togashi 1997b; Dodds et al. 2001; Ware and Stephen 2006), or 
both (Powell 1982; Shibata 1987). Lower survival of brown spruce longhorned beetle 
in cut logs than girdled trees was partially attributed to interspecific competition with 
other species of phloem-feeding insects which were more numerous in cut logs than 
girdled trees (Flaherty et al. 2011). The impact of cannibalism on woodborer survival 
increases with larval densities (Richardson et al. 2010) and later colonists (i.e. smaller 
larvae) are usually the victims (Anbutsu and Togashi 1997b). Intraspecific competi-
tion resulting from overcrowding can be a major mortality factor of P. semipunctata 
(Powell 1982; Way et al. 1992; Hanks et al. 2005) and Monochamus spp. (Shibata 
1987; Dodds et al. 2001; Akbulut et al. 2008). Larvae of the red oak borer will some-
times cannibalize one another (Ware and Stephen 2006) but subsequent life table 
studies indicated that intraspecific competition was not an important mortality factor 
(Haavik et al. 2012a). 

Another form of intraspecific competition is when polygamous male cerambycid 
species compete with other conspecific males for access to females for mating, e.g. 
larger males of Glenea cantor (F.) have greater mating success than smaller males 
(Lu et al. 2013). Mate guarding, in which the male remains in copula or stays close to 
the female after copulation to prevent copulation with other males, occurs in several 
species of cerambycids (Fig. 12.5).
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Fig. 12.5 Pair of Moechtypa 
diphysis adults on the stem 
of Quercus mandshurica. 
Note the pair are not in 
copula but the male remained 
mounted on the female for a 
prolonged period, possibly 
as a form of mate guarding 
to prevent her from mating 
with other males. Photo 
credit: Jon Sweeney 

12.3.2.4 Natural Enemies 

Parasitoids 

Woodborers are parasitized by many species, mainly wasps (Hymenoptera), particu-
larly the families Ichneumonidae and Braconidae, but also flies (Diptera: Tachinidae) 
and beetles (Coleoptera: Bothrideridae). Most woodborer parasitoids attack host 
larvae but some species exploit eggs and pupae (Yu et al. 2016). Some species are 
ectoparasitoids that feed externally on hosts while others are endoparasitoids that 
feed internally. Parasitoids can also be classified as idiobionts that kill or paralyze 
their host immediately following oviposition or koinobionts that allow their host to 
continue developing and consume it at a later stage (Askew and Shaw 1986). Koino-
bionts tend to have a narrower host range than idiobionts (Spradbery 1968) possibly 
because they have had to evolve defenses against host immune systems (Gauld 1988). 

Table 12.1 lists some parasitoid genera recorded from cerambycids, buprestids 
and siricids, along with some features of their biology. Due to the cryptic nature 
of most woodborers, obtaining accurate host records of parasitoid species is not 
straightforward, but the associations of parasitoid genera with woodborer families 
in Table 12.1 may be considered accurate. In simple collections of parasitoids and 
woodborers that emerge from the same log or tree, it is generally not possible to 
know from which woodborer species the parasitoids emerged when more than one 
potential host woodborer species emerges. Molecular techniques have been used to a 
limited degree to associate emerging parasitoids from trees with more than one brood 
species (Foelker et al. 2016). Unequivocal woodborer species-parasitoid associations 
have generally been determined either by manipulative experiments that expose a 
single woodborer species to parasitoids or by isolating individual woodborer larvae 
from infested trees and then recording parasitoids that emerge.

Apart from a few pest species like P. semipunctata, emerald ash borer, S. noctilio, 
Asian longhorned beetle, and M. galloprovincialis, natural enemies of woodborers 
have not been the subject of much research, and few studies have documented their
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impact on woodborer population dynamics (Paine 2017). A multi-year life table study 
of the red oak borer concluded that competition and natural enemies contributed very 
little to mortality during the crash of the outbreak, and that tree defenses were more 
likely responsible (Haavik et al. 2012a). Similar results have been reported with 
the woodwasp S. noctilio (Haavik et al. 2015), although factorial exclusion trials 
suggest that biotic factors (e.g. competitors and their associated fungi, and natural 
enemies) may also be important in parts of the range (Haavik et al. 2020). However, 
relatively high parasitism rates have been recorded in some species, e.g. 20–75% 
mortality of Tetropium gabrieli Weise and T. fuscum in Europe (Schimitschek 1929; 
Juutinen 1955) and 22–28% mortality of S. noctilio (Long et al. 2009; Zylstra and 
Mastro 2012), suggesting parasitoids may be important in regulating populations of 
some woodborer species. Further evidence for this comes from successful biological 
control programs that are discussed in Sect. 12.7.2.3. 

An interesting question is how parasitoids locate cryptic woodborer hosts beneath 
the bark and wood of a tree. Increased parasitism of bark beetles in stressed trees vs. 
healthy trees suggests that parasitoids may use volatiles emitted from stressed trees as 
olfactory cues associated with their hosts (Sullivan et al. 1997). Percent parasitism of 
Tetropium spp. (Flaherty et al. 2013a) and Semanotus japonicus (Shibata 2000) was  
greater in stressed trees than in healthy trees. After landing on a tree, some parasitoids 
use auditory cues to locate their hosts. Ichneumonid wasps in the Cryptini tribe have 
hammer-like structures on their antennae that they use to echo-locate wood boring 
larvae and pupae of both cerambycids and buprestids (Laurenne et al. 2009), and the 
braconid, Syngaster lepidus Brullé, uses chordotonal organs to detect the vibrational 
cues of P. semipunctata larvae feeding under the bark (Joyce et al. 2011). Aspects 
of a woodborer’s host tree can affect the foraging success of its parasitoids. For 
example, the ovipositor of Tetrastichus planipennisi Yang cannot penetrate >3.2 mm 
of bark so its effectiveness against emerald ash borer is restricted to smaller diameter 
trees (Abell et al. 2012). On the other hand, parasitism of S. noctilio by Ibalia 
leucospoides ensiger Norton peaked at bole diameters of 15 cm but was not affected 
by bark thickness (Eager et al. 2011). 

Predators 

Woodborers are attacked by a variety of predators (vertebrate and inverte-
brate), including beetles in the families Cleridae (e.g. Thanasimus dubius (Fabri-
cius)), Trogossitidae (e.g. Trogossita japonica Reitter), and Elateridae (e.g. Athous 
subfuscus Müller), flies in the families Asilidae (e.g. Laphria gibbosa (L.)), 
Lonchaeidae (e.g. Lonchae chorea (F.)), Odiniidae (e.g. Odinia xanthocera Collin), 
Pallopteridae (e.g. Palloptera usta (Meighen)), crabronid wasps (e.g. Cerceris 
fumipennis (Say)), lacewings (e.g. Raphidia xanthostigmus Schummel), and earwigs 
(e.g. Forficula auricularia L.) (Kenis and Hilszczanski 2004). Ants prey on eggs of 
P. semipunctata (Way et al. 1992) and the red oak borer (Muilenburg et al. 2008). 
Woodpeckers (Piciformes: Picidae) are common and important predators of wood-
borers. Cerambycid larvae are the preferred food of woodpeckers (Pechacek and
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Fig. 12.6 a Three-toed woodpecker, Picoides tridactylus is a common predator of woodboring 
larvae in Europe. b Woodpeckers often excavate deeply into trees to find woodboring larvae. Photo 
credits: a Dariusz Graszka-Petrykowski; b Kevin Dodds 

Kristin 2004) and their availability is critical to the reproductive success of the three-
toed woodpecker, Picoides tridactylus L. in Europe (Fayt 2003) (Fig. 12.6). Wood-
peckers mainly consume mature larvae and pupae and predation rates often increase 
as larval density increases (McCann and Harman 2003; Lindell et al. 2008; Flaherty 
et al. 2011) but not always [e.g. woodpecker-caused mortality of P. semipunctata 
decreased with increasing larval density in trap logs (Mendel et al. 1984)]. Wood-
borer mortality from woodpeckers can be considerable, e.g. woodpeckers have been 
reported to consume 65% of oak branch borer, Goes debilis LeConte larvae (Solomon 
1977) and 32–42% of emerald ash borer larvae (Duan et al. 2012). 

Pathogens 

Woodborers may be infected and killed by various pathogens like nematodes [e.g. 
Steinernema carpocapsae (Weiser)] and fungi [e.g. Beauveria bassiana (Bals.-Criv.), 
Vuill.] (Morales-Rodríguez et al. 2015; Liu et al. 2016). Beauveria bassiana caused 
significant natural mortality of the pine sawyer, M. galloprovincialis (Naves et al. 
2008). Beauveria pseudobassiana Rehner & Humber, isolated from natural popu-
lations of the pine sawyer in Spain was highly virulent in lab tests, killing 100% 
of adults and significantly reducing adult lifespan and number of eggs laid, both 
via direct contact and by mating with infected beetles, i.e. horizontal transmission 
(Álvarez-Baz et al. 2015). 

Entomopathogenic fungi such as Beauveria spp. and Metarhizium anisopliae 
(Metsch.) Sorok. have shown potential for applied control of woodborers. For 
example, direct application of aqueous suspensions of B. bassiana conidia (or
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mitospores) to ash trees infested with emerald ash borer significantly reduced 
larval densities and the number of emerging adults in the next generation (Liu and 
Bauer 2008). Wrapping non-woven fabric strips impregnated with fungal conidia 
around host tree trunks was effective at infecting and killing M. alternatus Hope 
(Shimazu and Sato 1995; Shimazu 2004) and reducing longevity and fecundity of A. 
glabripennis (Dubois et al. 2004). Another method that has been tested for woodborer 
control is auto-dissemination, in which the target species is attracted to a trap baited 
with pheromone and/or host volatiles where it receives a dose of fungal conidia and is 
allowed to escape and horizontally transmit the pathogen within the local population 
(Klein and Lacey 1999; Lyons et al. 2012; Francardi et al. 2013; Sweeney et al. 2013; 
Álvarez-Baz et al. 2015; Srei et al.  2020). 

One of the most interesting and successful examples of microbial control of wood-
borers is the use of the nematode, Deladenus siridicola Bedding for control of S. 
noctilio. The nematode does not kill the woodwasp but infected insects become 
sterile and the female spreads the nematode from tree to tree when depositing nema-
todes instead of eggs (Bedding and Akhurst 1974). For a more complete story on the 
woodwasp and its control by the nematode, see Chapter 17. 

12.4 Ecological Roles 

The vast majority of woodborers serve important ecological functions while inhab-
iting dead or stressed materials and provide critical services that benefit forested 
ecosystems. Important contributions from woodborers include facilitating nutrient 
cycling (Edmonds and Eglitis 1989; Cobb et al. 2010), influencing forest structure 
(Feller and McKee 1999), creating habitat (Buse et al. 2008), and providing food for 
predaceous invertebrates and vertebrates. 

12.4.1 Nutrient Cycling 

Saproxylic woodborers are an important group of insects that help drive nutrient 
cycling in forested environments through the breakdown of dead wood (Fig. 12.7). 
Woodborers are some of the earliest arriving insects at stressed trees and dead 
wood (Savely 1939; Saint-Germain et al. 2007) and a successive community of 
these species colonize wood throughout the decay process (Graham 1925; Howden 
and Vogt 1951; Stokland and Siitonen 2012). Through their feeding and tunneling 
behavior, woodborers begin the process of fragmentation and nutrient cycling as well 
as exposing wood to other organisms, such as decay fungi, which are also impor-
tant decomposers (Harmon et al. 1986; Edmonds and Eglitis 1989; Hadfield and 
Magelssen 2006; Parker et al.  2006). Woody debris is an important forest structure 
and can contain large sources of nutrients (Harmon et al. 1986). The return of nutri-
ents to the soil through decomposition of dead wood is a critical ecosystem service 
and one that is aided by woodborers and other organisms (Edmonds and Eglitis 1989; 
Ulyshen 2016).

https://doi.org/10.1007/978-3-031-11553-0_17
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Fig. 12.7 Coarse woody debris at various stages of decay, including a wood with evidence of 
Buprestidae emergence and decay fungi, b Siricidae emergence, and c Monochamus sp. sapwood 
entrance holes. Photo credit: Kevin Dodds 

While the relationship between woodborers and wood decay and nutrient cycling 
is well known, few studies have attempted to quantify this relationship. Monochamus 
scutellatus (Say) was an important contributor to Douglas fir [Pseudotsuga menziesii 
(Mirbel) Franco] log decay, most likely through providing pathways for decay fungi 
into larger diameter logs (Edmonds and Eglitis 1989). At small scales, M. scutellatus 
larval activity can influence total carbon and nitrogen in soil around infested logs 
(Cobb et al. 2010). Cerambycids were also a factor in decay of both deciduous and 
coniferous standing snags (Angers et al. 2011). 

12.4.2 Forest Structure 

Forest structural diversity, including standing snags and downed wood of various 
decay classes, is an important component of natural forests and an important reser-
voir of organic matter and forest nutrients (Harmon et al. 1986). Insects, such as 
woodborers and bark beetles, play a critical role in the creation of these structural
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components either through directly killing trees, or colonizing this material and facil-
itating decay, thus creating additional habitat for saproxylic (Buse et al. 2008) and 
other organisms. Woodborers can drive changes in the structure (crown character-
istics, bark attachment) and physical properties (wood density, moisture) of coarse 
woody debris. These changes to coarse woody debris are critical to maintaining 
biological diversity and help support healthy forest ecosystems (Harmon et al. 1986; 
Jia-bing et al. 2005). 

In addition to the obvious contributions that woodborers make to forest struc-
ture through the breakdown and decay of standing and downed wood, they also 
influence stand structure through impacts on living trees. For example, the ceram-
bycid, Elaphidion mimeticum Shaeffer is important for creating small-scale gaps in 
mangrove forests and subsequently promoting understory regeneration (Feller and 
McKee 1999). Black locust (Robinia pseudoacacia L.), an early successional tree 
species in North America, can be killed from successive years of M. robiniae attacks. 
Through this mortality, canopy gaps are created that allow more shade-intolerant tree 
species to become established (Boring and Swank 1984). Red oak borer in combi-
nation with other factors, can kill overstory trees that results in changes to residual 
forest structure (Heitzman et al. 2007; Haavik et al. 2012b). Stand structure in pine 
stands is also influenced by attack patterns of woodborers. For example, S. noctilio 
preferentially attacks and colonizes smaller suppressed trees (McKimm and Walls 
1980; Dodds et al. 2010a). Species such as Plectodera scalator F. that colonize lower 
bole and root positions on trees can structurally weaken stems to a point where they 
break. Through these actions, P. scalator may influence the spatial structure of stands 
and regeneration. 

The behavior of branch girdlers can also have an impact on forest structure. The 
cerambycid Oncideres rhodosticta Bates influences crown architecture of honey 
mesquite (Prosopis glandulosa Torr.) through its stem girdling behavior (Martínez 
et al. 2009) and the resultant branch-heavy crowns may be a critical factor in increased 
desertification in parts of the Chihuahuan Desert (Duval and Whitford 2008). Simi-
larly, twig girdlers influenced understory crown architecture of Dicorynia guianensis 
Amshoff. (Caraglio et al. 2001). Oncideres humeralis Thomson influenced forest 
composition and structure in a Brazilian forest through species-specific tree attacks 
that likely allowed other tree species to respond to increased resources (Romero 
et al. 2005). Through their actions, these species can also influence the invertebrate 
community in these stands (Calderón-Cortés et al. 2011) and provide habitat for 
many other species (Lemes et al. 2015). 

12.4.3 Ecosystem Services 

Woodborer larvae represent a relatively large source of nutrition for animals foraging 
in wood. Woodpeckers are commonly seen foraging on dead standing or downed 
trees, and woodborers are a common prey item taken (Hanula et al. 1995; Murphy 
and Lehnhausen 1998; McCann and Harman 2003; Nappi et al. 2015). Crows have
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also been reported to use twigs to extract larvae from wood (Hunt 2000). Adult ceram-
bycids are reported as prey for bats (Medellín 1988), owls (Haw et al. 2001), pitcher 
plants (Cresswell 1991), lizards (Vitt and Cooper 1986) and passerines (Tryjanowski 
et al. 2003). Predaceous insects attack all stages of woodborers and are important 
factors in population regulation as previously discussed in section “Predators”. 

Pollination is an important ecosystem service carried out by a diverse group 
of insects that includes woodborers. Cerambycids, especially from the subfamily 
Lepturinae, feed on pollen as adults (Linsley and Chemsak 1972) and are frequently 
found with pollen on their integument (Willemstein 1987). Buprestids have also 
been commonly associated with plants as pollinators (Williams and Williams 1983). 
Siricids, however, with their lack of adult feeding, are not known to serve a role in 
pollination. 

Because of their impacts on plants, several woodborers have been introduced 
into new environments as biological control agents against unwanted invasive 
plants. Several species have been introduced targeting the invasive plant, Lantana 
camara (L.), including the cerambycids Plagiohammis spinipennis (Thomsom) in 
Hawaii (Broughton 2000) and Aerenicopsis championi Bates in Australia (Palmer 
et al. 2000). Australia has successfully introduced other woodborer species for 
invasive plant management including the cerambycids Alcidion cereicola Fisher 
targeting Harrisia Britton cactus (McFadyen and Fidalgo 1976) and Megacyllene 
mellyi (Chevrolat) for Baccharis halimifolia L. management (McFadyen 1983), 
and the buprestid Hylaeogena jureceki Obenberger targeting cats claw creeper 
(Dhileepan et al. 2013). South Africa has also released A. cereicola for Harrisia 
cactus management (Klein 1999) and H. jureceki for cats claw creeper (King 
et al. 2011). North American woodborer releases have included Oberea erythro-
cephala (Schrank) (Cerambycidae) targeting leafy spurge (Rees et al. 1986), and 
the buprestids Sphenoptea jugoslavica Obenb. and Agrilus hyperici (Creutzer) for 
knapweed (Powell and Myers 1988; Harris and Shorthouse 1996) and St. Johns wort 
(Campbell and McCaffrey 1991), respectively. 

12.4.4 Woodborer Conservation 

Some species of woodborers are rarely observed and may be in danger of extirpation 
due to loss of suitable habitat and hosts. Many species feed in dead and decaying 
heartwood of ancient “veteran” trees and these trees have become increasingly rare 
in Europe (Nieto and Alexander 2010). Forestry practices that leave less dead wood 
in the forest have resulted in declining populations of some wood boring beetles, 
e.g. Cerambycx cerdo L. is listed as “near threatened” in Europe (Evans et al. 2004). 
Similarly, populations of species that depend on old growth forests or which feed in 
large diameter wood may decline as the area of old growth forest declines; more than 
80% of land in Europe is under some form of direct management (Anonymous 2007). 
Risk of longhorn beetle extinction increases with larval host plant specialization and 
length of generation time (Jeppsson and Forslund 2014). The hoptree borer, Prays
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atomocella (Dyar) (Lepidoptera: Praydidae) is listed as an endangered species in 
Canada because its sole larval host is the “common” hoptree which is limited to a 
very narrow range in southwestern Ontario (Harris 2018; Anonymous 2020). 

The International Union for Conservation of Nature (IUCN) assessed 431 species 
of saproxylic insects in Europe (of which 153 species were cerambycids and 1 species 
was a buprestid) and designated 2, 27 and 17 as critically endangered, endangered 
or vulnerable, respectively (Nieto and Alexander 2010). More than half of these 
species are endemic to Europe and found nowhere else in the world. The drivers 
of this decline are habitat loss due to forest harvesting and a general decrease in 
old growth “veteran trees” on the landscape (Nieto and Alexander 2010). Other 
threats include agricultural and urban expansion, forest fires and climate change. 
It is more than a little ironic that invasive woodborers may threaten populations of 
native woodborers and other arthropods. The community of arthropods on ash trees in 
the state of Maryland, USA, included 13 orders, 60 families and 41 genera (Jennings 
et al. 2017) and the decimation of North American Fraxinus species by the invasive 
emerald ash borer may threaten woodborers and other herbivores tightly associated 
with ash (Herms and McCullough 2014). 

The IUCN identifies species at risk of extinction (so called Red Lists) and promotes 
their conservation by increasing public awareness and conserving wildlife habitat 
(Rodrigues et al. 2006). When it comes to woodborers and other insects, Red Lists 
often reflect a lack of knowledge of species range and population trends rather than 
actual extinction risk (Cardoso et al. 2012). According to the European Red List, 
14% of saproxylic beetles have declining populations but the trend is unknown for 
more than half of the species (57%) on the list (Nieto and Alexander 2010). 

In an effort to conserve species that rely on old growth forests, some countries 
have forest management regulations in place that mandate conservation of coarse 
woody debris, snags, and dead wood in the forest. Many countries are signatories 
to the 1979 Bern Convention on the Conservation of European Wildlife and Natural 
habitats and the 1992 Convention on Biological Diversity, which provide official 
impetus for conserving wildlife biodiversity, including woodboring insects. Each 
member state is required to identify threatened species and their respective habitats, 
and then develop management plans to protect these natural areas. In Europe, this 
makes up the Natura 2000 network, a coordinated network of protected areas home 
to rare and threatened species that makes up 18% of the European Union’s land base 
and 10% of marine territory (European Commission, Directorate-General for Envi-
ronment and Sundseth 2021). While the goal of conserving biodiversity is valid, the 
effectiveness of the Natura 2000 network for conserving saproxylic beetles has been 
questioned (D’Amen et al. 2013). In Canada, the Committee on the Status of Endan-
gered Wildlife in Canada (COSEWIC) meets twice a year to review and assess the 
status of wildlife species, including arthropods, and submits an annual report to the 
federal Minister of Environment and Climate Change. Species listed as extirpated, 
endangered, threatened or of special concern are considered for legal protection and 
management under the Species at Risk Act (SARA). Only two wood boring insects 
are currently listed as endangered in Canada: the hoptree borer, Prays atomocella 
(Dyar) (Lepidoptera: Praydidae) and the Aweme borer, Papaipema aweme (Lyman)
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(Lepidoptera: Noctuidae) (Anonymous 2020). Ultimately, woodborer species rich-
ness depends on the quantity and diversity of living and dead wood in the forest, 
forest size and fragmentation, and management practices. 

12.5 Chemical Ecology 

As discussed above, adult woodborers usually live a few days to a few weeks and 
are host specific both in terms of the species and physiological condition of the host. 
This specificity can result in a heterogeneous spatial and temporal distribution of 
suitable hosts across the landscape and variance in larval performance in hosts. For 
example larval survival, developmental time, and adult size are all affected by host 
quality in P. semipunctata (Hanks et al. 1993, 1995). In addition to this variance in 
host quality, due to their short life-span, a delay in mate or host location of only a few 
days can have significant fitness consequences. Cumulatively, these factors generate 
selection for rapid host and mate location. Not surprisingly, most adult woodborers 
typically have highly developed sensory systems while immature life stages do not. 

The dominant modality that woodborers use to obtain information about their 
biotic and abiotic environment is olfaction. The advantages of olfaction include: (i) 
the availability of a large number of “channels” due to the diversity of chemicals 
woodborers and their host plants can synthesize and that woodborers can perceive. 
As a result, chemical signals and cues can have high information content and be 
highly specific; (ii) volatile chemicals can be transmitted over large distances and 
around obstacles; and (iii) woodborers can perceive and discriminate among chemical 
cues and signals with high levels of sensitivity and precision. The disadvantages of 
olfaction include the fact that: (i) they cannot be transmitted quickly over large 
distances; (ii) the primary direction of transmission is determined by wind direction; 
and (iii) they require complex behaviors [e.g. optomotor anemotaxis, see Cardé 
(2016)] to locate the odor source. 

Interest in and our knowledge of the chemical ecology of woodboring insects 
has increased dramatically in the past 20 years. For example, while fewer than 10 
attractant pheromones were known for the family Cerambycidae in 2004 (Allison 
et al. 2004), approximately a decade later pheromones and likely pheromones (i.e. 
attraction observed in the field but production and release not yet demonstrated) 
were known for more than 100 species of Cerambycidae (Hanks and Millar 2016). 
This increase has been driven by the realization that woodborers can have significant 
economic impacts (particularly in plantation and urban trees), recognition that they 
are among the most common and damaging exotic insects (Brockerhoff et al. 2006; 
Haack 2006) and increased awareness of the importance of the ecosystem services 
that they deliver. 

In general, woodboring insects use volatile sex pheromones to mediate mate loca-
tion over large distances and low volatility cuticular hydrocarbons for mate recog-
nition at close range (Allison et al. 2004; Hanks and Millar 2016; Millar and Hanks
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2017; Silk et al. 2019). A large number of studies have reported the identifica-
tion of pheromones and the demonstration of attraction to known pheromones and 
their analogues in the Cerambycidae and we refer readers to the review by Millar 
and Hanks (2017) for an excellent synthesis of this literature. In brief, two general 
patterns of volatile pheromone use in the Cerambycidae have emerged: (i) male-
produced pheromones are released in large quantities, attract both sexes and occur 
in the subfamilies Cerambycinae, Lamiinae and Spondylidinae; and (ii) female-
produced pheromones are released in small quantities, only attract males and occur 
in the subfamilies Prioninae and Lepturinae. Volatile pheromones are only known 
for a single species in the Buprestidae and Siricidae, the emerald ash borer (Silk 
et al. 2011) and S. noctilio (Cooperband et al. 2012), respectively. In the emerald ash 
borer, it is a female-produced pheromone and male response to it is synergized by 
host volatiles [synergy of the response to pheromone by host volatiles has also been 
reported in the Cerambycidae (Allison et al. 2012; Millar and Hanks 2017)]. The 
putative pheromone in S. noctilio is male-produced and behavioral activity has been 
demonstrated in laboratory trials (Cooperband et al. 2012; Guignard et al. 2020) but  
field trials did not observe activity (Hurley et al. 2015). 

Although the active space of these attractant pheromones has not been quantified 
empirically for any woodborer, mark-release-recapture trials with several species of 
Cerambycidae suggest they may range from ca. 50 to 500 m (Maki et al. 2011; Torres-
Vila et al. 2013, 2015). These estimates are consistent with research in moths which 
suggests that attraction likely occurs over a distance of a few meters to a maximum 
of a few hundred meters (Cardé 2016). Often the release of volatile pheromones is 
sex-specific, occurs from specific habitats (e.g. host material) (Hanks 1999) and is 
facilitated by “calling” behaviors (Lacey et al. 2007). 

For some of these species, females have been observed to deposit nonvolatile 
compounds while walking that males use to locate females [i.e. trail pheromones 
(Hoover et al. 2014)]. Alternatively, in some species males form leks and females may 
be attracted to these by visual (Allison et al. 2021) and olfactory stimuli (Cooperband 
et al. 2012; but see Hurley et al. 2015). These mechanisms (sex and trail pheromones, 
leks) bring the sexes into close proximity but in many woodborers mate recognition 
appears to be mediated by contact pheromones (Allison et al. 2004; Millar and Hanks 
2017; Silk et al. 2019). In these species, males do not appear to recognize females 
until their antennae contact the female cuticle and they detect cuticular hydrocarbons. 
After contact males often begin a sequence of characteristic behaviors that culminate 
in copulation (Hanks et al. 1996a). 

Due to the heterogeneous distribution of suitable hosts in space and time, wood-
boring insects are expected to experience strong selection to rapidly locate avail-
able host material. For woodborers, oviposition can generally be considered as 
two separate and sequential events: host location and host acceptance. Host loca-
tion is generally thought to occur first and be initiated from a distance (i.e. before 
landing on the host plant), whereas host acceptance does not occur until the host 
has been contacted. Both host location and acceptance are mediated, at least in part, 
by chemicals. Meurer-Grimes and Tavakilian (1997) evaluated the phytochemistry 
and diversity of Cerambycidae associated with 51 species of Leguminosae. The host
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plants of cerambycid guilds (species sharing host plants) were taxonomically related 
and had similar phytochemistry. In contrast guild members were not usually related 
suggesting that host location and/or acceptance are mediated by phytochemicals. 

In support of the hypothesis that host location and acceptance are chemically medi-
ated, numerous studies have identified primary attractants for woodborers including 
floral, smoke, trunk and leaf volatiles (Allison et al. 2004; Hanks and Millar 2016; 
Millar and Hanks 2017; Silk et al. 2019). Some woodborers from the family Ceram-
bycidae overlap temporally in host trees with bark beetles and are attracted by bark 
beetle pheromones (Allison et al. 2001, 2013). In addition to competing with bark 
beetle larvae for limited host tissues, larvae of these woodborers are also facultative 
intraguild predators of bark beetle larvae (Dodds et al. 2001; Schoeller et al. 2012). 
The current paradigm for host selection by phytophagous insects argues that to opti-
mize foraging efficiency all available cues and signals should be used. Although most 
studies have focused on the role of attractive semiochemicals in host location and 
acceptance, a few studies have demonstrated that woodborers (Coleoptera: Ceram-
bycidae) respond to repellent non-host volatiles to avoid non-host trees (Aojin and 
Qing’an 1998; Suckling et al. 2001; Morewood et al. 2003). 

Semiochemicals produced by the host plant and conspecifics influence female 
oviposition behavior. The woodborer H. bajulus preferentially oviposits in wood 
infested with larval conspecifics and several monoterpenoids identified in larval frass 
appear to stimulate oviposition in females (Evans and Higgs 1975; Higgs and Evans 
1978; Fettköther et al. 2000). In other woodborers, the presence of conspecifics 
reduces oviposition (Wang et al. 1990; Anbutsu and Togashi 1996, 1997a, 2000; 
Peddle et al. 2002). Treatment of host material with larval frass or extracts of larval 
frass reduced oviposition by M. alternatus (Anbutsu and Togashi 2002), suggesting 
that semiochemicals in larval frass mediate the effect. Some woodborers deposit a 
jelly-like substance over their eggs (Anbutsu and Togashi 1996, 1997a, 2000; Peddle 
et al. 2002) and females palpate the bark surface before oviposition. It has been 
hypothesized that semiochemicals in the material deposited over the eggs mediates 
the recognition and avoidance of host material already infested with conspecifics. 
To date, the role of phytochemicals in the induction of oviposition have only been 
studied in M. alternatus. In this species chemicals in the inner bark of the host Pinus 
densiflora Siebold & Zucc. have been demonstrated to induce oviposition in females 
(Yamasaki et al. 1989; Islam et al. 1997; Sato et al. 1999a, 1999b). 

12.6 Economically Important Species 

Most woodborers develop in dead or stressed trees, or downed wood, and provide 
important ecosystem services that contribute to healthy forest ecosystems. The adults 
of some species oviposit in stressed trees (e.g. fire, drought, and storm damaged; defo-
liated) and fewer in apparently healthy trees (Craighead 1950; Keen 1952; Solomon 
1995). The associated larval feeding and development can result in mortality in both 
classes of trees. Although some woodborers are significant pests of woody plants
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in their native range, exotic species are often among the most damaging species, 
especially in terms of causing direct tree mortality. For example, in the United States 
annual costs of tree removal, replacement and treatment due to invasive phloem and 
woodborers are estimated to be approximately $1.7 billion USD, of which 50% is a 
result of the emerald ash borer (Aukema et al. 2011). 

The significant economic and ecological impacts of woodborers is of concern 
given the increase in the number of introductions outside of their native ranges in 
recent years (Haack 2006; Aukema et al. 2011). As mentioned above, woodborer 
larvae feed cryptically within phloem and xylem tissues and development takes 
months to years. These traits make woodborers ideally suited for movement outside 
of their native ranges in wood products, wood packaging material, dunnage and 
nursery stock. Additionally, many species attack low quality, stressed hosts and this 
type of wood is often used for wood packaging and dunnage in container shipping. 
It is therefore not surprising that the increase in introduction of woodborers outside 
of their native ranges is coincident with increased movement of goods in container 
shipping (Haack 2006; Aukema et al. 2011). 

In addition to the direct impacts on tree health, larval development and feeding 
and the associated invasion by fungi can result in degrade losses to wood products. 
Few studies have quantified these losses but degrade affecting as much as two-
thirds of the inventory in log yards have been reported (Becker 1966), as well as 
monetary losses of 35% to logs infested by woodborers (Becker and Abbott 1960). 
Woodborers can also negatively affect trees by contributing to disease transmission 
that leads to increased stress or mortality. In North America, several species of 
Cerambycidae are known vectors of the tree-killing nematode, Bursaphelenchus 
xylophilus (Steiner & Buhrer) Nickle (Linit 1988; Vallentgoed 1991), and this disease 
has been particularly problematic in Japan where it is transmitted by M. alternatus 
(Mamiya 1988). Woodborers have also been implicated in the transmission of several 
fungal pathogens including Dutch elm disease, chestnut blight, dieback of balsam-
fir, oak wilt and hypoxylon canker on aspen (Donley 1959; Linsley  1961; Nord and 
Knight 1972; Ostry and Anderson 1995). 

By far, the most important economic genus of Buprestidae is Agrilus. This genus 
contains over 3000 species, most of which inhabit angiosperms (Chamorro et al. 
2015). Some native species are problematic on stressed trees in North America and 
Europe or are able to colonize non-native host trees common in more urban settings. 
Species such as the bronze birch borer (A. anxius), twolined chestnut borer (A. bilin-
eatus), oak buprestid beetle [Agrilus biguttatus (F.)] and bronze poplar borer (Agrilus 
liragus Barter & Brown) can transition into primary tree killers given favorable envi-
ronmental conditions (Barter 1957; Haack and Benjamin 1982; Dunn et al. 1986; 
Moraal and Hilszczanski 2000; Vansteenkiste et al. 2004) (Fig. 12.8). Exotic Agrilus 
spp. have been much more aggressive than their native counterparts in urban and 
forested settings in newly invaded areas. For example, the emerald ash borer has 
successfully invaded and spread into a large portion of North America (Herms and 
McCullough 2014), while also establishing and spreading in parts of Russia (Orlova-
Bienkowskaja 2014). Native to eastern Asia, this species is a pest of ash throughout 
its introduced range. Indigenous exotic species (sensu Dodds et al. 2010b) have also
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been problematic in introduced areas, including the goldspotted oak borer (Agrilus 
auroguttatus Schaeffer) and soapberry borer (Agrilus prionurus Chevrolat) in forests 
in California and Texas, respectively (Coleman and Seybold 2008; Billings et al. 
2014). These are native species that were previously isolated from areas where they 
have inadvertently been introduced. 

Several genera of Cerambycidae can have significant economic or ecological 
importance. Monochamus species are secondary species colonizing weakened or 
recently dead material (Baker 1972), but through their maturation feeding can transfer 
the pinewood nematode to pine trees (Linit 1988). Pinewood nematode has caused 
serious tree losses in East Asia and Portugal, and threatens European pines (Mamiya 
1988; Mota et al.  1999; Shin 2008; Zhao 2008; Robertson et al. 2011). Brown spruce 
longhorned beetle, a European species that was introduced into maritime Canada, 
has caused mortality in spruce stands (Smith and Hurley 2000). Asian longhorned 
beetle and citrus longhorned beetle [Anoplophora chinensis (Forster)], both native 
to Asia, have been repeatedly introduced in North America and Europe where they 
have successfully established multiple times (Haack et al. 2010; Meng et al. 2015).

Fig. 12.8 Damage caused by twolined chestnut borer, A. bilineatus, in the eastern US. Trees a 
stressed by drought and Lymantria dispar defoliation were killed by the buprestid, while logs b 
with damage from high densities of larvae c were salvage logged. Photo credit: Kevin Dodds 
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Worldwide, the most well-known siricid is S. noctilio. This species has been a pest 
of pine plantations since the early 1900s when it was detected in New Zealand (Bain 
et al. 2012) and later spread to other parts of the Southern Hemisphere (Slippers 
et al. 2002). Because the majority of siricids are associated with dead wood, very 
few species have caused economic losses. Sirex noctilio uses a phytotoxic venom 
(Bordeaux et al. 2014) to help it overcome host tree defenses and colonize trees most 
siricids cannot occupy. 

12.7 Management of Woodborers 

Management to reduce populations of most woodborers is unnecessary. However, 
management is required for some invasive species that damage and kill live trees, or 
if degradation to standing salvageable trees or stored wood products by native species 
is a concern. Where management is necessary in forested environments, approaches 
taken include silvicultural treatments, aggressive tree removal, and biological control 
efforts with bacteria, fungi, nematodes, and other insects. 

12.7.1 Native Species 

For native woodborers, there are few circumstances where population management 
is necessary. In situations where woodborer populations are building in a forest, 
it is generally in association with some form of abiotic or biotic disturbance that 
is predisposing trees to attack by secondary insects, including woodborers. Once 
the disturbance has subsided, or susceptible trees have been eliminated, woodborer 
attacks on trees rapidly diminish because of improved vigor of residual trees. Main-
taining healthy forests with suitable stocking for a given site will reduce the number 
of susceptible trees that could be colonized by woodborers or act as sources for initial 
population outbreaks. 

Because some woodborers respond to recently dead trees after a large-scale distur-
bance (Amman and Ryan 1991) and mine through wood, they can result in degrade 
losses, especially related to timber salvage after a disturbance. Monochamus species, 
in particular, cause rapid decline in wood quality of various conifer species after 
a disturbance (Richmond and Lejeune 1945; Gardiner 1957, 1975; Prebble and 
Gardiner 1958) because they are attracted to injured or recently dead trees where 
females oviposit and larvae mine into sapwood. Timely salvage and storage prac-
tices that minimize exposure to peak woodborer populations (Post and Werner 1988) 
can reduce the chance of excessive woodborer damage in logs destined for markets.
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12.7.2 Invasive Species 

Limiting the introduction of invasive species is an important first step to keeping 
damaging woodborers out of new environments. Strong legislation that focuses on 
preventative measures for limiting the introduction of these species or curtailing 
their spread once established can help reduce the impacts of these organisms. Once 
established and causing damage, various techniques have been implemented to 
attempt eradication and/or management of invasive woodborers. In some cases, 
well-developed integrated pest management plans have been developed through 
decades of research (Haugen et al. 1990), and in other cases, the development of 
management plans continues, even long after establishment (Herms and McCul-
lough 2014). Common components involved with invasive woodborer management 
in forests include silvicultural treatments (Dodds et al. 2014a), tree removal (Hérard 
et al. 2006; Herms and McCullough 2014), biological control (Bedding 2009; Collett 
and Elms 2009), and restrictions on wood movement (USDA-APHIS 2010). Chem-
ical insecticides are rarely implemented in invasive woodborer management within 
forested environments, although they can be important components of managing 
these species in urban forests. 

12.7.2.1 Silvicultural Treatments 

For invasive woodborer species that behave similarly to secondary species, or species 
that target specific trees (e.g. trees of certain species, sizes, vigor, or crown class), 
forest management may provide a solution for eliminating or reducing the effects of 
these insects. An example of silvicultural treatments reducing the impact of an inva-
sive species is S. noctilio. Early observations of S. noctilio behavior suggested this 
woodborer was targeting weakened trees growing under overstocked stand condi-
tions (Morgan and Stewart 1966). Consequently, silvicultural options that promoted 
optimal growing conditions in younger stands and targeted suppressed trees during 
thinning in older stands (Neumann et al. 1987) have successfully reduced the impact 
of S. noctilio in pine stands (Dodds et al. 2014a). 

Unfortunately, most invasive woodborer species do not concentrate attacks on 
specific age, size, or canopy classes in forests. Therefore, it is not possible to target 
specific trees for removal based on any of these characteristics. Most invasive wood-
borers have either a wide host breadth, attack trees of all size classes, or do both, 
making silvicultural options ineffective (Dodds and Orwig 2011). 

12.7.2.2 Tree Removal 

Attempts to eradicate woodborers from urban forests often involve large-scale tree 
removal efforts. These removals can target infested trees only, and in some cases 
infested and adjacent non-infested host trees (Turgeon et al. 2007; Straw et al. 2015).
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The use of large-scale tree removals in forested settings have been limited because of 
logistical challenges as well as questions as to effectiveness (Herms and McCullough 
2014). For example, a six mile wide ash-free zone was created in southern Ontario 
in an attempt to stop the spread of emerald ash borer, but after completion, the 
beetle was found already established behind the zone (i.e. in the area the zone was 
designed to prevent emerald ash borer from invading) (Poland and McCullough 
2006). Preemptive salvage logging of host species, such as ash in North America, 
has been conducted in some situations. Removal of Asian longhorned beetle infested 
trees and non-infested host trees has been conducted in smaller forested stands in 
North America (Dodds and Orwig 2011; Dodds et al. 2014b), Europe (Krehan 2008) 
and Great Britain (Straw et al. 2015) (Fig. 12.9). Woodborer dispersal behavior and 
initial distribution upon detection are generally the deciding factor for determining 
if eradication through tree removal is a feasible option for a given species. Asian 
longhorned beetle eradication has been successful because the adult beetles often 
reattack natal host trees and generally do not disperse long distances (Smith et al. 
2004), allowing for more containment of infestations. Invasive species that are more 
widely dispersed upon detection, like S. noctilio in North America, are most often 
beyond the point where eradication would be feasible or cost effective. 

Fig. 12.9 Asian longhorned beetle infested trees cut as part of an eradication program in 
Massachusetts, USA. Photo credit: Kevin Dodds
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12.7.2.3 Biological Control 

Both classical (introducing biological agents from other regions into new environ-
ments to control damaging invasive species) and augmentative biological (increasing 
native biological agents to control damaging invasive species) control of woodborers 
has been attempted for several species. Classical biological control using parasitic 
nematodes and wasps (Ichneumonidae, Ibaliidae) to manage S. noctilio populations 
has been implemented throughout the Southern Hemisphere (Hurley et al. 2007). 
These species have been important components of integrated pest management plans 
that also include silvicultural treatments for S. noctilio and have been responsible 
for keeping populations below damaging levels in many places. Classical biolog-
ical control using an egg parasitoid, Avetianella longoi (Hymenoptera: Encyrtidae), 
with parasitism rates sometimes >90%, has also been helpful for reducing Euca-
lyptus mortality and damage from P. semipunctata in California, USA (Hanks et al. 
1996b). However, biological control against P. recurva using A. longoi has not been 
effective (Luhring et al. 2000). 

Because some invasive woodborers are congeners of native species and colonize 
the same habitat, there is often overlap in population regulation factors, providing 
opportunities for augmentative biological control if populations become econom-
ically or ecologically problematic. Native parasitoids that attack North American 
siricids have been documented attacking S. noctilio in these same forests (Ryan et al. 
2012; Standley et al. 2012; Zylstra and Mastro 2012) (Fig. 12.10). Similarly, native 
parasitoids have also been found attacking the invasive brown spruce longhorned 
beetle (Flaherty et al. 2013a) and emerald ash borer (Gaudon and Smith 2020) in  
North America. Asian longhorned beetle and A. chinensis have been colonized by 
parasitoids native to the invaded region as well (Brabbs et al. 2015; Duan et al. 2016). 

Purely augmentative biological control using native natural enemies on the native 
cerambycid Massicus raddei (Blessig) that causes damage to oak and chestnut species 
has been attempted in China. The parasitic wasp Sclerodermus pupariae Yang et

Fig. 12.10 Two rhyssine 
(Ichneumonidae) parasitoids 
search for hosts on a Sirex 
noctilio infested Scots pine 
in New York, USA. Photo 
credit: Kevin Dodds 
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Yao (Hymenoptera: Bethylidae) and the beetle Dastarcus helophoroides (Fairmaire) 
(Coleoptera: Bothrideridae) have been used as biological control agents (Yang et al. 
2014). Both are potential management tools for reducing the impact of M. raddei on 
native trees. 

The combination of augmentative and classical biological control could be bene-
ficial for reducing woodborer populations. This approach is currently being devel-
oped for emerald ash borer in North America. Four hymenopteran species have been 
approved as biological control agents for release in the U.S., including Oobius agrili 
Zhang and Huang (Encyrtidae), Spathius agrili Yang (Braconidae), Tetrastichus 
planipennisi Yang (Eulophidae), and Spathius galinae Belokobylskij & Strazanac 
(Braconidae) (Gould et al. 2015; Duan et al. 2019). These species are native to China, 
Russia, and Korea and attack eggs (O. agrili) or larvae (S. agrili, T. planipennisi, S. 
galinae). Native species, including Phasgonophora sulcata Westwood and Atany-
colus Foerster spp. can be used as augmentative biocontrol agents (Gaudon and Smith 
2020). The fungus B. bassiana, a native species, has also been tested to manage EAB 
(Lyons et al. 2012) and ALB populations (Dubois et al. 2004). 

12.7.2.4 Chemical Control 

Similar to tree removal, chemical control options have been used successfully on 
woodborers in urban forests, but their utility in natural or managed forests is limited. 
Several compounds are available, primarily for invasive species control, including 
systemic and contact insecticides. Compounds such as imidacloprid, cypermethrin, 
and emamectin benzoate have been used on invasive woodborers in urban settings 
(Hu et al. 2009). However, because of the cost associated with treatments, logistical 
challenges, and environmental concerns, these compounds are not seen as valid 
options for managing woodborers in forested environments. 

12.7.2.5 Cultural Control 

An important factor to limiting the spread of invasive woodborers is restricting move-
ment of host material that may be infested by these insects. Wood products or wood 
packing material are often moved large distances, both intra- and inter-continentally. 
This material, combined with the cryptic nature of woodborers, provides an efficient 
pathway of introduction for woodborers and associated organisms (Mamiya 1988) 
into new environments. Wood packing is often colonized by woodborers that are then 
transported in the egg, larval, or pupal stage and emerge in the new environment to 
seek hosts unless wood is properly handled at the destination. The most damaging 
woodborers worldwide, including emerald ash borer, Asian longhorned beetle, and 
S. noctilio, are all believed to be introduced via whole logs or wood packing material. 

Firewood is a documented pathway for movement of invasive species in North 
America and likely elsewhere when this material is used for heating or recreation 
(USDA-APHIS 2010). It has been linked to the spread of emerald ash borer across
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Fig. 12.11 Disturbances such as windstorms can leave large volumes of downed trees a that are 
quickly colonized by woodborers and other insects. This material is often cut into firewood b that 
can provide a pathway for insects into new environments. Photo credit: Kevin Dodds. 

portions of eastern North America (Cappaert et al. 2005) and may have been the 
pathway for Agrilus prionurus into Texas from Mexico (Haack 2006) and A. aurogut-
tatus into California (Coleman and Seybold 2011). Trees harvested for firewood are 
often recently dead and already infested with woodborers or at a stage of decay that 
makes them suitable for colonization (Fig. 12.11). Seasoning of trees or cut firewood 
also provides opportunity for insects to colonize this material. Firewood can host 
large communities of wood-inhabiting insects, including buprestids, cerambycids 
and siricids (Dodds et al. 2017) that can then be moved large distances often for 
recreational camping (Jacobi et al. 2011; Koch et al. 2014). If this wood is infested 
with invasive species, introductions into new environments can occur. 

12.8 Summary 

Woodborers are an ecologically important guild in forested ecosystems. They 
contribute to various ecological processes including nutrient cycling, forest succes-
sion, and are important components of food webs. Woodborers colonize all parts of 
dead or living trees, while generally causing little impact on overall tree health. Most 
Buprestidae, Cerambycidae, and Siricidae encountered in native and managed forests 
are secondary species that rarely kill trees, however, important invasive species like 
Asian longhorned beetle, emerald ash borer, and S. noctilio can have broad ranging 
impacts on urban, managed, and natural forests. At times, management of wood-
borers is necessary and includes preventative silvicultural treatment, tree removal, 
biological control, chemical control, and cultural methods to reduce movement of 
infested materials. 

Various factors effect woodborer populations, including both abiotic (i.e. climate, 
fire, and other natural disturbances) and biotic factors (i.e. host suitability, natural
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enemies, and competition). Biotic factors such as parasitic nematodes, fungi, and 
parasitoids have been important in management of some woodborers, including the 
invasive emerald ash borer and S. noctilio. In some forest types and regions, some 
woodborer species are considered threatened or endangered, primarily from habitat 
loss due to forest fragmentation, conversion, and loss of old trees. 
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