Skip to main content

DNA Methylation in Honey Bees and the Unresolved Questions in Insect Methylomics

  • Chapter
  • First Online:
DNA Methyltransferases - Role and Function

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1389))

Abstract

DNA methylation has been found in most invertebrate lineages except for Diptera, Placozoa and the majority of Nematoda. In contrast to the mammalian methylation toolkit that consists of one DNMT1 and several DNMT3s, some of which are catalytically inactive accessory isoforms, invertebrates have different combinations of these proteins with some using just one DNMT1 and the others, like the honey bee, two DNMT1s one DNMT3. Although the insect DNMTs show sequence similarity to mammalian DNMTs, their in vitro and in vivo properties are not well investigated. In contrast to heavily methylated mammalian genomes, invertebrate genomes are only sparsely methylated in a ‘mosaic’ fashion with the majority of methylated CpG dinucleotides found across gene bodies that are frequently associated with active transcription. Additional work also highlights that obligatory methylated epialleles influence transcriptional changes in a context-specific manner. We argue that some of the lineage-specific properties of DNA methylation are the key to understanding the role of this genomic modification in insects. Future mechanistic work is needed to explain the relationship between insect DNMTs, genetic variation, differential DNA methylation, other epigenetic modifications, and the transcriptome in order to fully understand the role of DNA methylation in converting genomic sequences into phenotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ALK:

anaplastic lymphoma kinase

CpG:

cytosine and guanidine dinucleotide separated by one phosphate in DNA

DBP:

DNA-binding protein

DNMT:

DNA methyltransferase

LAM:

lysosomal alpha-mannosidase

MeCP:

methyl-CpG-binding factor

PTM:

post-translational modification

RdDM:

RNA-directed DNA methylation system

TET:

Ten-eleven translocation enzyme

References

  • Ashby R, Foret S, Searle I, Maleszka R (2016) MicroRNAs in honey bee caste determination. Sci Rep 6:18794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ball MP, Li JB, Gao Y, Lee JH, LeProust EM, Park IH et al (2009) Targeted and genome-scale strategies reveal gene-body methylation signatures in human cells (vol 27, pg 361, 2009). Nat Biotechnol 27(5):485

    Article  CAS  Google Scholar 

  • Bao N, Lye KW, Barton MK (2004) MicroRNA binding sites in Arabidopsis class IIIHD-ZIP mRNAs are required for methylation of the template chromosome. Dev Cell 7(5):653–662

    Article  CAS  PubMed  Google Scholar 

  • Bernstein BE, Meissner A, Lander ES (2007) The mammalian epigenome. Cell 128(4):669–681

    Article  CAS  PubMed  Google Scholar 

  • Bernstein BE, Stamatoyannopoulos JA, Costello JF, Ren B, Milosavljevic A, Meissner A et al (2010) The NIH roadmap Epigenomics mapping consortium. Nat Biotechnol 28(10):1045–1048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16(1):6–21

    Article  CAS  PubMed  Google Scholar 

  • Bonasio R, Li QY, Lian JM, Mutti NS, Jin LJ, Zhao HM et al (2012) Genome-wide and caste-specific DNA Methylomes of the ants Camponotus floridanus and Harpegnathos saltator. Curr Biol 22(19):1755–1764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bourc'his D, Bestor TH (2004) Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L. Nature 431(7004):96–99

    Article  CAS  PubMed  Google Scholar 

  • Buttstedt A, MureÅŸan CI, Lilie H, Hause G, Ihling CH, Schulze SH et al (2018) How honeybees defy gravity with Royal Jelly to raise Queens. Curr Biol 28(7):1095–100.e3

    Article  CAS  PubMed  Google Scholar 

  • Capuano F, Mulleder M, Kok R, Blom HJ, Ralser M (2014 Apr 15) Cytosine DNA methylation is found in Drosophila melanogaster but absent in Saccharomyces cerevisiae, Schizosaccharomyces pombe, and other yeast species. Anal Chem 86(8):3697–3702. https://doi.org/10.1021/ac500447w. Epub 2014 Mar 25

  • Cedar H, Bergman Y (2009) Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet 10(5):295–304

    Article  CAS  PubMed  Google Scholar 

  • Chan SWL, Henderson IR, Jacobsen SE (2005) Gardening the genome: DNA methylation in Arabidopsis thaliana. Nat Rev Genet 6(5):351–360

    Article  CAS  PubMed  Google Scholar 

  • Chen Q, Chen Y, Bian C, Fujiki R, Yu X (2013) TET2 promotes histone O-GlcNAcylation during gene transcription. Nature 493(7433):561–564

    Article  CAS  PubMed  Google Scholar 

  • Cheung HH, Davis AJ, Lee TL, Pang AL, Nagrani S, Rennert OM et al (2011) Methylation of an intronic region regulates miR-199a in testicular tumor malignancy. Oncogene 30(31):3404–3415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clamp M, Fry B, Kamal M, Xie XH, Cuff J, Lin MF et al (2007) Distinguishing protein-coding and noncoding genes in the human genome. P Natl Acad Sci USA 104(49):19428–19433

    Article  CAS  Google Scholar 

  • Delatte B, Jeschke J, Defrance M, Bachman M, Creppe C, Calonne E et al (2015) Genome-wide hydroxymethylcytosine pattern changes in response to oxidative stress. Sci Rep 5:12714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dickman MJ, Kucharski R, Maleszka R, Hurd PJ (2013) Extensive histone post-translational modification in honey bees. Insect Biochem Mol Biol 43(2):125–137

    Article  CAS  PubMed  Google Scholar 

  • Duymich CE, Charlet J, Yang X, Jones PA, Liang G (2016) DNMT3B isoforms without catalytic activity stimulate gene body methylation as accessory proteins in somatic cells. Nat Commun 7(1):11453

    Article  PubMed  PubMed Central  Google Scholar 

  • Ehrlich M, Gamasosa MA, Huang LH, Midgett RM, Kuo KC, Mccune RA et al (1982) Amount and distribution of 5-Methylcytosine in human DNA from different types of tissues or cells. Nucleic Acids Res 10(8):2709–2721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elsik CG, Worley KC, Bennett AK, Beye M, Camara F, Childers CP et al (2014) Finding the missing honey bee genes: lessons learned from a genome upgrade. BMC Genomics 15:86

    Article  PubMed  PubMed Central  Google Scholar 

  • Erwin DH, Davidson EH (2009) The evolution of hierarchical gene regulatory networks. Nat Rev Genet 10(2):141–148

    Article  CAS  PubMed  Google Scholar 

  • Feng SH, Cokus SJ, Zhang XY, Chen PY, Bostick M, Goll MG et al (2010) Conservation and divergence of methylation patterning in plants and animals. P Natl Acad Sci USA. 107(19):8689–8694

    Article  CAS  Google Scholar 

  • Foret S, Kucharski R, Pittelkow Y, Lockett GA, Maleszka R (2009) Epigenetic regulation of the honey bee transcriptome: unravelling the nature of methylated genes. BmcGenomics 10:472

    Google Scholar 

  • Foret S, Kucharski R, Pellegrini M, Feng SH, Jacobsen SE, Robinson GE et al (2012) DNA methylation dynamics, metabolic fluxes, gene splicing, and alternative phenotypes in honey bees. Proc Natl Acad Sci U S A 109(13):4968–4973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuks F (2005) DNA methylation and histone modifications: teaming up to silence genes. Curr Opin Genet Dev 15(5):490–495

    Article  CAS  PubMed  Google Scholar 

  • Furey TS, Sethupathy P (2013) Genetics driving epigenetics. Science (New York, NY) 342(6159):705–706

    Article  CAS  Google Scholar 

  • Gao L, Emperle M, Guo Y, Grimm SA, Ren W, Adam S et al (2020) Comprehensive structure-function characterization of DNMT3B and DNMT3A reveals distinctive de novo DNA methylation mechanisms. Nat Commun 11(1):3355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goll MG, Bestor TH (2005) Eukaryotic cytosine methyltransferases. Annu Rev Biochem 74:481–514

    Article  CAS  PubMed  Google Scholar 

  • Guo JU, Su Y, Shin JH, Shin J, Li H, Xie B et al (2014) Distribution, recognition and regulation of non-CpG methylation in the adult mammalian brain. Nat Neurosci 17(2):215–222

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez-Arcelus M, Lappalainen T, Montgomery SB, Buil A, Ongen H, Yurovsky A et al (2013) Passive and active DNA methylation and the interplay with genetic variation in gene regulation. elife 2:e00523

    Article  PubMed  PubMed Central  Google Scholar 

  • Haig D (2004) The (dual) origin of epigenetics. Cold Spring Harb Sym 69:67–70

    Article  CAS  Google Scholar 

  • Haig D (2012) Commentary: the epidemiology of epigenetics. Int J Epidemiol 41(1):13–16

    Article  PubMed  Google Scholar 

  • Halfmann R, Lindquist S (2010) Epigenetics in the extreme: prions and the inheritance of environmentally acquired traits. Science 330(6004):629–632

    Article  CAS  PubMed  Google Scholar 

  • Hattori N, Nomoto H, Fukumitsu H, Mishima S, Furukawa S (2007) Royal jelly and its unique fatty acid, 10-hydroxy-trans-2-decenoic acid, promote neurogenesis by neural stem/progenitor cells in vitro. Biomed Res 28(5):261–266

    Article  CAS  PubMed  Google Scholar 

  • Holliday R, Pugh JE (1975) DNA modification mechanisms for control of gene activity during development. Heredity 35(Aug):149

    Google Scholar 

  • Huh I, Zeng J, Park T, Yi SV (2013) DNA methylation and transcriptional noise. Epigenet Chromatin 6:9

    Article  CAS  Google Scholar 

  • Hurd PJ, Grübel K, Wojciechowski M, Maleszka R, Rössler W (2021) Novel structure in the nuclei of honey bee brain neurons revealed by immunostaining. Sci Rep 11(1):6852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jablonka E, Lamb MJ (2002) The changing concept of epigenetics. From Epigenesis to Epigenetics: The Genome in Context 981:82–96

    Google Scholar 

  • Jablonka E, Lamm E (2012) Commentary: the epigenotype-a dynamic network view of development. Int J Epidemiol 41(1):16–20

    Article  PubMed  Google Scholar 

  • Jeltsch A, Jurkowska RZ (2014) New concepts in DNA methylation. Trends Biochem Sci 39(7):310–318

    Article  CAS  PubMed  Google Scholar 

  • Jones PA (2012) Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 13(7):484–492

    Article  CAS  PubMed  Google Scholar 

  • Jones PA, Liang GN (2009) OPINION rethinking how DNA methylation patterns are maintained. Nat Rev Genet 10(11):805–811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones PA, Takai D (2001) The role of DNA methylation in mammalian epigenetics. Science 293(5532):1068–1070

    Article  CAS  PubMed  Google Scholar 

  • Jullien PE, Kinoshita T, Ohad N, Berger F (2006) Maintenance of DNA methylation during the Arabidopsis life cycle is essential for parental imprinting. Plant Cell 18(6):1360–1372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kasowski M, Kyriazopoulou-Panagiotopoulou S, Grubert F, Zaugg JB, Kundaje A, Liu YL et al (2013) Extensive variation in chromatin states across humans. Science (New York, NY) 342(6159):750–752

    Article  CAS  Google Scholar 

  • Kato M, Miura A, Bender J, Jacobsen SE, Kakutani T (2003) Role of CG and non-CG methylation in immobilization of transposons in arabidopsis. Curr Biol 13(5):421–426

    Article  CAS  PubMed  Google Scholar 

  • Kerkel K, Spadola A, Yuan E, Kosek J, Jiang L, Hod E et al (2008) Genomic surveys by methylation-sensitive SNP analysis identify sequence-dependent allele-specific DNA methylation. Nat Genet 40(7):904–908

    Article  CAS  PubMed  Google Scholar 

  • Kilpinen H, Waszak SM, Gschwind AR, Raghav SK, Witwicki RM, Orioli A et al (2013) Coordinated effects of sequence variation on DNA binding, chromatin structure, and transcription. Science 342(6159):744–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kouzarides T (2007) Chromatin modifications and their function. Cell 128(4):693–705

    Article  CAS  PubMed  Google Scholar 

  • Kucharski R, Maleszka J, Foret S, Maleszka R (2008) Nutritional control of reproductive status in honeybees via DNA methylation. Science (New York, NY) 319(5871):1827–1830

    Article  CAS  Google Scholar 

  • Kucharski R, Maleszka J, Maleszka R (2016) A possible role of DNA methylation in functional divergence of a fast evolving duplicate gene encoding odorant binding protein 11 in the honeybee. Proc Biol Sci 283(1833):20160558

    PubMed  PubMed Central  Google Scholar 

  • Kulis M, Queiros AC, Beekman R, Martin-Subero JI (2013) Intragenic DNA methylation in transcriptional regulation, normal differentiation and cancer. Bba-Gene Regul Mech 1829(11):1161–1174

    CAS  Google Scholar 

  • Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, Heravi-Moussavi A et al (2015) Integrative analysis of 111 reference human epigenomes. Nature 518(7539):317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landan G, Cohen NM, Mukamel Z, Bar A, Molchadsky A, Brosh R et al (2012) Epigenetic polymorphism and the stochastic formation of differentially methylated regions in normal and cancerous tissues. Nat Genet 44(11):1207–1214

    Article  CAS  PubMed  Google Scholar 

  • Li E, Beard C, Jaenisch R (1993) Role for DNA methylation in genomic imprinting. Nature 366(6453):362–365

    Article  CAS  PubMed  Google Scholar 

  • Lister R, Mukamel EA, Nery JR, Urich M, Puddifoot CA, Johnson ND et al (2013) Global epigenomic reconfiguration during mammalian brain development. Science (New York, NY) 341(6146):629–640

    Article  CAS  Google Scholar 

  • Lorincz MC, Dickerson DR, Schmitt M, Groudine M (2004) Intragenic DNA methylation alters chromatin structure and elongation efficiency in mammalian cells. Nat Struct Mol Biol 11(11):1068–1075

    Article  CAS  PubMed  Google Scholar 

  • Lu FL, Liu YT, Jiang L, Yamaguchi S, Zhang Y (2014) Role of Tet proteins in enhancer activity and telomere elongation. Genes Dev 28(19):2103–2119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu S, Wang J, Chitsaz F, Derbyshire MK, Geer RC, Gonzales NR et al (2020) CDD/SPARCLE: the conserved domain database in 2020. Nucleic Acids Res 48(D1):D265–D2d8

    Article  CAS  PubMed  Google Scholar 

  • Lujambio A, Ropero S, Ballestar E, Fraga MF, Cerrato C, Setien F et al (2007) Genetic unmasking of an epigenetically silenced microRNA in human cancer cells. Cancer Res 67(4):1424–1429

    Article  CAS  PubMed  Google Scholar 

  • Lyko F, Maleszka R (2011) Insects as innovative models for functional studies of DNA methylation. Trends Genet 27(4):127–131

    Article  CAS  PubMed  Google Scholar 

  • Lyko F, Foret S, Kucharski R, Wolf S, Falckenhayn C, Maleszka R (2010) The honey bee epigenomes: differential methylation of brain DNA in Queens and workers. PLoS Biol 8(11):e1000506

    Article  PubMed  PubMed Central  Google Scholar 

  • Maleszka R (2014) The social honey bee in biomedical research: realities and expectations. Drug Discov Today Dis Models 12:7–13

    Article  Google Scholar 

  • Maleszka R (2016) Epigenetic code and insect behavioural plasticity. Current Opinion in Insect Science 15:45–52

    Article  PubMed  Google Scholar 

  • Maleszka R (2018) Beyond Royalactin and a master inducer explanation of phenotypic plasticity in honey bees. Commun Biol 1:8

    Article  PubMed  PubMed Central  Google Scholar 

  • Maleszka R, Kucharski R (2022) Without mechanisms theories and models in insect epigenetics remain a black box. Trends Genet. https://doi.org/10.1016/j.tig.2022.05.004. S0168952522001123

  • Maleszka R, Mason PH, Barron AB (2014) Epigenomics and the concept of degeneracy in biological systems. Brief Funct Genomics 13(3):191–202

    Article  PubMed  Google Scholar 

  • Mandacaru SC, do Vale LH, Vahidi S, Xiao Y, Skinner OS, Ricart CA et al (2017) Characterizing the structure and oligomerization of major Royal Jelly Protein 1 (MRJP1) by mass spectrometry and complementary biophysical tools. Biochemistry 56(11):1645–1655

    Article  CAS  PubMed  Google Scholar 

  • Mattick JS, Taft RJ, Faulkner GJ (2010) A global view of genomic information--moving beyond the gene and the master regulator. Trends Genet 26(1):21–28

    Article  CAS  PubMed  Google Scholar 

  • Maunakea AK, Nagarajan RP, Bilenky M, Ballinger TJ, D'Souza C, Fouse SD et al (2010) Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature 466(7303):253–U131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maunakea AK, Chepelev I, Cui KR, Zhao KJ (2013) Intragenic DNA methylation modulates alternative splicing by recruiting MeCP2 to promote exon recognition. Cell Res 23(11):1256–1269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McVicker G, van de Geijn B, Degner JF, Cain CE, Banovich NE, Raj A et al (2013) Identification of genetic variants that affect histone modifications in human cells. Science 342(6159):747–749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miklos GLG, Maleszka R (2011) Epigenomic communication systems in humans and honey bees: from molecules to behavior. Horm Behav 59(3):399–406

    Article  Google Scholar 

  • Ooi SK, Qiu C, Bernstein E, Li K, Jia D, Yang Z et al (2007) DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature 448(7154):714–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pastor WA, Aravind L, Rao A (2013) TETonic shift: biological roles of TET proteins in DNA demethylation and transcription. Nat Rev Mol Cell Biol 14(6):341–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Regev A, Lamb MJ, Jablonka E (1998) The role of DNA methylation in invertebrates: developmental regulation or genome defense? Mol Biol Evol 15(7):880–891

    Article  CAS  Google Scholar 

  • Richards EJ (2006) Opinion - inherited epigenetic variation - revisiting soft inheritance. Nat Rev Genet 7(5):395–3U2

    Article  CAS  PubMed  Google Scholar 

  • Riggs AD (1975) X-inactivation, differentiation, and DNA methylation. Cytogenet Cell Genet 14(1):9–25

    Article  CAS  PubMed  Google Scholar 

  • Rona GB, Eleutherio ECA, Pinheiro AS (2016) PWWP domains and their modes of sensing DNA and histone methylated lysines. Biophys Rev 8(1):63–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schilling E, El Chartouni C, Rehli M (2009) Allele-specific DNA methylation in mouse strains is mainly determined by cis-acting sequences. Genome Res 19(11):2028–2035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schubeler D (2012) Epigenetic Islands in a Genetic Ocean. Science (New York, NY) 338(6108):756–757

    Article  CAS  Google Scholar 

  • Sha K, Fire A (2005) Imprinting capacity of gamete lineages in Caenorhabditis elegans. Genetics 170(4):1633–1652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shoemaker R, Deng J, Wang W, Zhang K (2010) Allele-specific methylation is prevalent and is contributed by CpG-SNPs in the human genome. Genome Res 20(7):883–889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shukla S, Kavak E, Gregory M, Imashimizu M, Shutinoski B, Kashlev M et al (2011) CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing. Nature 479(7371):74–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simola DF, Ye C, Mutti NS, Dolezal K, Bonasio R, Liebig J et al (2013) A chromatin link to caste identity in the carpenter ant Camponotus floridanus. Genome Res 23(3):486–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith ZD, Meissner A (2013) DNA methylation: roles in mammalian development. Nat Rev Genet 14(3):204–220

    Article  CAS  PubMed  Google Scholar 

  • Spannhoff A, Kim YK, Raynal NJM, Gharibyan V, Su MB, Zhou YY et al (2011) Histone deacetylase inhibitor activity in royal jelly might facilitate caste switching in bees. EMBO Rep 12(3):238–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki MM, Bird A (2008) DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet 9(6):465–476

    Article  CAS  PubMed  Google Scholar 

  • Suzuki MM, Kerr ARW, De Sousa D, Bird A (2007) CpG methylation is targeted to transcription units in an invertebrate genome. Genome Res 17(5):625–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takayama S, Dhahbi J, Roberts A, Mao G, Heo SJ, Pachter L et al (2014) Genome methylation in D. melanogaster is found at specific short motifs and is independent of DNMT2 activity. Genome Res 24(5):821–830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tweedie S, Charlton J, Clark V, Bird A (1997) Methylation of genomes and genes at the invertebrate-vertebrate boundary. Mol Cell Biol 17(3):1469–1475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waddington CH (1942) The Epigenotype. Endeavour 1:18–20

    Google Scholar 

  • Waddington CH (1957) The strategy of the genes. A discussion of some aspects of theoretical biology. George Allen & Unwin, London

    Google Scholar 

  • Wagner JR, Busche S, Ge B, Kwan T, Pastinen T, Blanchette M (2014) The relationship between DNA methylation, genetic and expression inter-individual variation in untransformed human fibroblasts. Genome Biol 15(2):R37

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang X, Wheeler D, Avery A, Rago A, Choi JH, Colbourne JK et al (2013) Function and evolution of DNA methylation in Nasonia vitripennis. PLoS Genet 9(10):e1003872

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang H, Farnung L, Dienemann C, Cramer P (2020) Structure of H3K36-methylated nucleosome-PWWP complex reveals multivalent cross-gyre binding. Nat Struct Mol Biol 27(1):8–13

    Article  CAS  PubMed  Google Scholar 

  • Weber M, Schubeler D (2007) Genomic patterns of DNA methylation: targets and function of an epigenetic mark. Curr Opin Cell Biol 19(3):273–280

    Article  CAS  PubMed  Google Scholar 

  • Wedd L, Kucharski R, Maleszka R (2015) Differentially methylated obligatory epialleles modulate context-dependent LAM gene expression in the honey bee Apis mellifera. Epigenetics 11(1):1–10

    Article  PubMed  PubMed Central  Google Scholar 

  • Wedd L, Kucharski R, Maleszka R (2016) Differentially methylated obligatory epialleles modulate context-dependent LAM gene expression in the honeybee Apis mellifera. Epigenetics 11(1):1–10

    Article  PubMed  Google Scholar 

  • Welsh L, Maleszka R, Foret S (2017) Detecting rare asymmetrically methylated cytosines and decoding methylation patterns in the honeybee genome. Royal Society open. Science 4(9):170248

    Google Scholar 

  • Wojciechowski M, Rafalski D, Kucharski R, Misztal K, Maleszka J, Bochtler M et al (2014) Insights into DNA hydroxymethylation in the honeybee from in-depth analyses of TET dioxygenase. Open Biol 4(8):140110

    Article  PubMed  PubMed Central  Google Scholar 

  • Wojciechowski M, Lowe R, Maleszka J, Conn D, Maleszka R, Hurd PJ (2018) Phenotypically distinct female castes in honey bees are defined by alternative chromatin states during larval development. Genome Res 28(10):1532–1542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiang H, Zhu JD, Chen QA, Dai FY, Li X, Li MW et al (2010) Single base-resolution methylome of the silkworm reveals a sparse epigenomic map. Nat Biotechnol 28(7):756

    Article  CAS  Google Scholar 

  • Zemach A, McDaniel IE, Silva P, Zilberman D (2010) Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science (New York, NY) 328(5980):916–919

    Article  CAS  Google Scholar 

  • Zeng Y, Ren R, Kaur G, Hardikar S, Ying Z, Babcock L et al (2020) The inactive Dnmt3b3 isoform preferentially enhances Dnmt3b-mediated DNA methylation. Genes Dev 34(21–22):1546–1558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang GQ, Huang H, Liu D, Cheng Y, Liu XL, Zhang WX et al (2015) N-6-Methyladenine DNA modification in drosophila. Cell 161(4):893–906

    Article  CAS  PubMed  Google Scholar 

  • Zilberman D, Gehring M, Tran RK, Ballinger T, Henikoff S (2007) Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nat Genet 39(1):61–69

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryszard Maleszka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wedd, L., Kucharski, R., Maleszka, R. (2022). DNA Methylation in Honey Bees and the Unresolved Questions in Insect Methylomics. In: Jeltsch, A., Jurkowska, R.Z. (eds) DNA Methyltransferases - Role and Function. Advances in Experimental Medicine and Biology, vol 1389. Springer, Cham. https://doi.org/10.1007/978-3-031-11454-0_7

Download citation

Publish with us

Policies and ethics