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Abstract. Data normalization is an important preprocessing step in
data mining and Machine Learning (ML) technique. Finding an accept-
able approach to deal with time series normalization, on the other
hand, is not an easy process. This is because most standard normalizing
approaches rely on assumptions that aren’t true for the vast majority of
time series. The first is that all time series are stationary, which means
that their statistical characteristics, such as mean and standard devia-
tion, do not vary over time. The time series volatility is assumed to be
uniform in the second assumption. These concerns are not addressed by
any of the approaches currently accessible in the literature. This research
provides theoretical and experimental evidence, that normalizing time
series data, can prove to be of utmost value by trimming non neces-
sary data points and achieving minimum information loss, by using the
concept of Minimal Time Series Representation (MTSR).
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1 Introduction

The University of California, Riverside (UCR) Time Series Classification Archive
[1], has grown into a valuable resource for the time series data mining community,
with over a thousand articles citing at least one data set from the repository.
While the classification accuracy demonstrated by predictive models on UCR
data is undeniable, it is critical to look into the impact of data normalization
approaches on classification accuracy. Because data normalization procedures
are known to have a substantial influence on prediction accuracy for many clas-
sifiers, a knowledge of the impact of UCR’s approaches is required to validate
the accuracy of classification models.

Due to the bias incorporated into time series classification approaches, cre-
ated and evaluated on a single benchmark dataset, as discussed by Keogh and
Kasetty [3], there is a clear need for broader testing on real-world data. However,
it is important to validate if it’s not just the data that causes methods to become
over-trained, but also the normalization that goes into producing such datasets.

With the aid of raw unprocessed and non-normalized UCR data provided by
Geoff Web, Anthony Bagnall and Eamonn Keogh, this research study focuses
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on normalization techniques and understanding the influence of normalization
approaches on classifier (and regressor) accuracy.

2 Normalization and Time Series Data

Normalization methods are recognized to have a significant impact on classi-
fication accuracy in multivariate data sets. When data from two distributions
with vastly different means and variances exist, normalization becomes critical in
guaranteeing that each variable does not bias prediction. This may be less essen-
tial in univariate datasets [4,5]. Despite this, the multidimensional issue space
becomes simpler to train in a variety of predictive models, including neural net-
works and support vector classifiers, and a number of mathematical functions
rely on normalized data. The choice of activation functions in neural networks
is greatly influenced by this fact, with sigmoid activations becoming essentially
useless until input is in the 0—1 range. If the hyperplanes used in class separation
can be fitted most precisely, support vector machines will require a standard-
ised problem space. While this is a more complicated topic in and of itself, this
aforementioned research concentrates on time series length standardisation.
While each data set in the UCR Time Series Data Archive has a drastically
varied duration, it is crucial to identify the influence this has on categorization.
The varying rates at which events occur throughout a number of occurrences is
one reason why Dynamic Time Wrapping (DTW) distance measurements are so
useful. When an event occurs in a specific length of time, it is possible that the
same event will occur in a greater time frame in another occurrence, euclidean
distance measurements will not match in these cases [6,7]. Although altering
the time series length will not address this problem, it is critical in evaluating
how much information is necessary in a specific time series to get best outcomes.
The remainder of the raw time series is not necessary, if using a very short
time series length is able too achieve high classification accuracy. This concept is
comparable to early detection, which is a distinct field of time series classification.
One can regulate which portion of the information and how much of it classifiers
may utilize for prediction by altering the length of time series, both where they
begin and where they stop [8,9]. While having more data provides for higher
prediction accuracy, it also introduces noise, and the larger the data, the longer
it takes to classify it. The information gain/loss, as well as the slow-down/speed-
up associated with it, may be understood through changes in time series length.

3 Experiments

The data from the UCR Time Series Classification Archive is not only standard-
ized using z-score normalization, but it is also divided into training and test-
ing subsets. The raw data required to create the UCR datasets includes Crick-
etX, CricketY, CricketZ, GesturesX, GesturesY, GesturesZ, and Wafer. These
datasets will be referred to as Cricket, Gestures, and Wafer. Two techniques are
used to assess the accuracy of categorization on this data.
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The first involves creating a distribution of classification accuracy for a par-
ticular data set using random train/test splits of the same size. The second
technique is used to see whether there are any discrepancies between the raw
data and the data in the UCR repository. To evaluate if there are any major dis-
crepancies between the two datasets, each time series in the raw data is matched
with its closest matching time series in the UCR repository data.

3.1 Normalization

Scalar Normalization. The data is normalized using the z-score method. The
two most prevalent scale normalizing approaches, z-score normalization and min-
max normalization, are used. When the data corresponds to a normal distribu-
tion, Z-score normalization is the most frequent and most representational of
the original raw data. The process of Z-score normalization entails turning each
data point into a positive or negative number that represents how many standard
deviations the data point is from the mean.

Min-max normalization includes removing the minimum and dividing by the
difference between the time series datapoint minimum and maximum values to
transform data into values between 0 and 1. These normalization approaches are
straightforward and widely used to eliminate bias in variables with larger values
when compared to data with lower values.

Time Series Length Normalization. The data is organized so that each time
series in a dataset is the same length. There is no need for stringent normalization
techniques with regard to time series length, as in datasets like Cricket, the
lengths of time series have a relatively little deviation from the mean. Despite
this, when compared to the run durations of the closest neighbor technique,
time series length minimization gives a significant computational speedup. The
impact of both increasing and lowering the length of time series is an important
aspect. Both approaches entail shrinking/expanding a n-length time series to a
m-length time series.

For a time series T of length n, the i-th data point in 7' is represented as
T;. T is converted to a time series of length m, which is denoted as S.
The new time series S where each data point in S is as follows:

S =T, j:Lnx%J

Information loss is observed when m is less than n, the impact of which will
be detailed in the coming sections.

3.2 Classification Techniques

Using a variety of approaches, the UCR Time Series Classification Archive
defines the lowest classification error achievable.

1 1-Nearest Neighbor classifier - 1-NN Euclidean - This is the error produced
by utilizing one nearest neighbor algorithm with a euclidean distance metric.
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2 1-NN DTW Best Warping Window - In the NN-DTW classification technique,
the warping window is a hyper-parameter that has been computed for each
data set, coupled with the error attained with this ideal window.

3 1I-NN DTW DTW DTW DTW DTW DTW No Warping Window - When
the NN-DTW classifier has no warping window, this error occurs.

The correctness of normalized data can be determined by comparing these
three approaches. Because of their strength in time series classification [2], the
universality and simplicity of the algorithms, these three approaches are chosen.
While there are alternative approaches that may yield more accurate classifica-
tions, using NN classifiers allows for a better understanding of the homogeneity
and relatedness of the normalized data within a particular class.

4 Results and Discussion

While the datasets are extremely diverse in origin, there are obvious parallels in
terms of classification accuracy for both Euclidean and DTW distance metrics

(Fig. 1).
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Fig. 1. The distribution of time series length for each of the three datasets.

As the time series length grows, the classification accuracy approaches a
maximum, as seen in Fig. 2 and Fig. 3. However, the maximum classification
accuracy is obtained at a relatively short time series length and remains almost
constant as the duration grows.

The concept of a Minimal Time Series Representation (MTSR), which min-
imizes data information loss (along with maximizing classification accuracy) is
established. It can be observed that there is a minimum information loss in
the instance of Cricket at a time series length close to the beginning values of
the time series, 1200. While this reduces information loss, one can obtain the
same classification accuracy with a time series length of 40 and a slightly greater
classification accuracy distribution with a time series length of 90. The primary
advantage of an MTSR is that it allows for quicker classification owing to the
lower computing burden of conducting Euclidean distance measurements on a
smaller time series.
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Classification Accuracy Classification Accuracy

Classification Accuracy

Fig. 2. The distribution of classification accuracy for the Cricket dataset as a function
of time series length using the Euclidean distance measure in NN prediction.

Similar results are observed for Wafer dataset, as illustrated in Fig. 3, where
the classification accuracy stays steady as the time series length increases. One
can detect a clear maximum classification accuracy for a length of 30 in this
dataset. With a time series length of 10-20, a similar accuracy can be achieved
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as with a length of 300 (Fig. 4).

Fig. 3. The distribution of classification accuracy for the Wafer dataset as a function
of time series length using the Euclidean distance measure in NN prediction.
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GesturesX - Classification Accuracy (Euclidean) vs. Time Series Length
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GesturesZ - Classification Accuracy (Euclidean) vs. Time Series Length
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Fig. 4. The distribution of classification accuracy for the Gestures dataset as a function
of time series length using the Euclidean distance measure in NN prediction.

The results and findings utilizing a DTW distance measure differ considerably
from those obtained using Euclidean distance measurements. There is a definite
maximum classification accuracy in each of the three datasets. With the following
optimum time series lengths and classification accuracies for each dataset:

Dataset Avg. accuracy | Optimal length | Optimal accuracy
CricketX |0.6299 100 0.7756
CricketY |0.7063 100 0.8353
CricketZ |0.6888 100 0.8061
GesturesX | 0.5768 60 0.6459
GesturesY | 0.5708 40 0.6498
GesturesZ | 0.5293 50 0.5975
Wafer 0.9142 325 0.9214

There is a considerable absolute gain in classification accuracy in both the
Cricket and Gesture datasets. While in case of Wafer, it appears to be merely
a minor gain in classification accuracy, it is 0.77 standard deviations above the
mean accuracy across all duration. This rise in accuracy over the mean is true for
both Cricket and Gesture, with optimal time series length accuracy in Cricket
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X, Y, and Z being 1.66, 1.36, and 1.24 standard deviations above the mean,
respectively. Gesture X, Y, and Z have ideal time series length accuracy of 1.12,
1.23, and 1.15 standard deviations above the mean, respectively. These are all
considerable gains over average accuracy for various time series lengths, but
the most interesting finding is that there is an ideal time series length for DTW
accuracy. DTW has an unambiguous maximum with regard to time series length,
unlike Euclidean measures, which have a minimal representation of the time
series that nevertheless maximizes classification accuracy.

Because of the single maximum, there is considerable symmetry, with lengths
on each side of the optimal length resulting in the same accuracy. In Cricket, for
example, time series lengths of 30 and 550 produce extremely equal classification
accuracy, but picking the length of 30 would be optimum for speed of calculation.

There is no simple answer to determining a generic minimal time series
length, as there is with practically all sample size questions. It is determined
by the number of model parameters to be evaluated as well as the quantity of
data randomness. With the number of parameters to be estimated and the level
of noise in the data, the sample size required grows (Figs. 5 and 6).

CricketX - Classification Accuracy (DTW) vs. Time Series Length

Fig. 5. The distribution of classification accuracy for the Cricket dataset as a function
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CricketX - Classification Accuracy (DTW) vs. Time Series Length
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Fig. 6. The distribution of classification accuracy for the Cricket dataset as a function
of time series length using the DTW distance measure in NN prediction.

Wafer Classification Accuracy (DTW) vs. Time Series Length
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Fig. 7. The distribution of classification accuracy for the Wafer dataset as a function
of time series length using the DTW distance measure in NN prediction.
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5 Conclusions and Future Work

While acknowledged to be less accurate than DTW in time series classification,
Euclidean distance measurements have shown to be more stable than DTW. In
comparison, DTW has a time series length that is optimal for highest classifica-
tion accuracy.

The findings are limited to the datasets mentioned. While results about time
series length and normalization approaches apply to various datasets, the nature
of the data matters when it comes to classification accuracy. As a result, addi-
tional research is needed to determine the impact of time series length normal-
ization and scalar normalizing on data from the UCR Time Series Classification
Archive and other sources.

In addition, more research into multivariate time series is necessary. The
information loss associated with the reduction in time series length has an impact
on classification accuracy, as addressed in this paper (both positively and nega-
tively). More study is needed to develop more complex models for determining
the smallest time series representations with the least amount of information
loss (Fig. 7).
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