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1 Introduction

Algorithm assurance is a specific form of IT assurance that supports risk manage-
ment and control on applications of risky algorithms in products and in organiza-
tions. These algorithms will often be characterized in organizations as applications
of Artificial Intelligence (AI), as advanced analytics, or—simply—as predictive
models. The aim of this chapter is to introduce the concept of algorithm assurance,
to give some background on the relevance and importance of algorithm assurance,
and to prepare the auditor for the basic skills needed to organize and execute an
algorithm audit.

An algorithm is essentially a recipe to solve a specific class of problems using a
finite sequence of well-defined instructions. Starting in an initial state with input data
that characterizes the problem, execution of the algorithm proceeds through a finite
number of successor states, terminating in a final state with output data that solves
the problem.

The concept of an algorithm is an important vehicle for communication of
scientific results between computer scientists, and mathematically proving desirable
properties of algorithms is an important part of those scientific results. Those
desirable properties may for instance be related to the worst-case running time of
the algorithm, the characterization of the specific class of problems it solves, or the
qualities of the solutions it comes up with. In practice, this allows programmers to
apply routine algorithms without further research if they can ascertain that (1) the
problems they want to solve belong to the class of problems that can be solved by the
algorithm, and (2) the desirable properties of the algorithm match the task at hand.
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Algorithms are in common parlance specifically associated with the field of AI
(see Sect. 3 in chapter “Introduction to Advanced Information Technology” of this
book), because that field aims to build computer programs that can perform tasks that
would otherwise have to be performed by a skilled human being. The field of
Artificial Intelligence pushes the envelope, looking to expand the class of problems
to which algorithms can be applied. Sometimes with spectacular results, but also
with considerable risk. AI uses of computer programs often introduce considerable
risk, and this risk can be attributed to risky applications of algorithms to real-world
problems that can have a profound impact for those involved. Applications of
algorithms are, in essence, always fundamentally questionable given the nature of
the problems to be solved. If the application of the algorithm to the class of real-
world problems is sufficiently well-understood and becomes routine, it stops being
of interest to Artificial Intelligence. Or the media, for that matter.

An important tool in the toolbox of AI is the machine learning algorithm, which is
capable of adapting to the problems it is exposed to by learning. An ML algorithm
only has a capability to learn to a certain extent, and that extent is often not well-
understood. This type of algorithm is trained by exposure to data reflecting the class
of problems it is supposed to solve. In chapter “Introduction to Advanced Informa-
tion Technology,” Sect. 3.1 of this book a distinction was made between three
different modes of learning: supervised learning, unsupervised learning, and rein-
forcement learning. This distinction is going to be important for understanding this
chapter.

Algorithm assurance is not about the properties of the algorithm itself, but about
its implementation in a computer program and about its application to real-world
problems. The object of assurance is never the algorithm itself. It is a computer
program, or component of a computer program, containing implementations of a
risky algorithm or algorithms, to be reviewed in the context of a task in which it is
applied or a prospective class of tasks in which it may be applied (in case of for
instance admissibility in a market).1

In this chapter we will introduce the algorithm assurance engagement as a specific
type of IT audit. After a general discussion of the background of algorithm assurance
and the type of IT applications we are concerned with in this type of engagement, we
will extensively discuss the scope of an algorithm assurance engagement, how to
approach the risk assessment that should take place initially, how to set up and audit
plan, and the audit techniques and tools that play a role in an audit plan. In Sect. 7 we
discuss some examples of development skills that may be called on by the audit team
during an engagement to help it judge risk and find problems. Throughout the
chapter we use a running example—introduced in Sect. 3—and discuss the various
sections in context of that running example throughout the chapter.

1Because the term algorithm in this context has become equated to implementations and applica-
tions of algorithms, we will indiscriminately use the term algorithm wherever we mean implemen-
tation or application of the algorithm.
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2 Background

We are increasingly surrounded by, and dependent on, applications of AI technol-
ogy. And its potential dangers are increasingly worrying us. Dystopian perspectives
of the future in literature, film, and games demonstrate the potential ramifications of
decision-making computers using data about us. Basically, these dystopian perspec-
tives have been introduced since the idea of general purpose computers started
gaining traction.

Over the last decade these worries have led to terms like AI, algorithm risk, and
algorithmic bias entering common parlance in the context of burning platform2

situations and in broad and general discussions about the risks and ethics of
application of AI. These discussions have led to new legislation focusing on the
uses of data and the uses of algorithms. For instance, the General Data Protection
Regulation, which limits the uses to which data about people can be put in automated
decision-making. Another example is the Artificial Intelligence Act, which addresses
various forms of manipulation and harm caused by AI. The Digital Services Act and
Digital Markets Act address unfair competitive advantages caused by data collection
and manipulation through recommendation algorithms. These discussions have also
brought the topic of accountability for harms caused by algorithms to the attention of
organizations.

The implementation and application of algorithms has therefore also become a
Governance, Risk, and Compliance topic. As a consequence, there is a growing call
for algorithm assurance services. But not every algorithm—in the computer science
sense—is an object of concern. Only algorithms that create unchecked risks, and
only if their implementation, or application to a problem, may cause harm. In
general, these criteria touch upon the characteristics of AI applications. For effective
Governance, Risk, and Compliance over algorithms, these risky algorithms need to
be identified and tracked first.

2.1 Common Risk Factors

The identification of key risks the algorithm poses to the company is a critical step in
effective risk management. This step needs to be comprehensive. If a potential risk is
not identified at this stage, it may be omitted from further analysis. This may result in
material risks being given insufficient attention at a later stage. In algorithm assur-
ance, material risks are often hard to pinpoint, as these often originate from the
blackboxness or lack of transparency of the technology itself, but materialize as risks

2A risk management term referring to the explosion of the Piper Alpha oil platform in 1988, due to a
small risk ignored by the entire industry sector. The burning platform situation creates a sense of
serious urgency absent before.



in all kinds of other contexts. Common risk factors that relate to the deployment of
algorithms may, roughly speaking, be grouped into three dimensions:
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Autonomy: Fielded in a decison-making context based on automated
processing of data without an effec�ve human-in-the-loop equipped with
the skills, the �me, the means, and the informa�on to correct the behaviour
of the applica�on.
Special a�en�on to: Resilience and accountability issues

Influence: Interac�on with the applica�on
takes place in a decision making content that
directly affects the financial posi�on, 
informa�on posi�on, a�en�on, rights, du�es, 
liabili�es, or powers of individuals, groups, or
organiza�on
Special a�en�on to: fairness, explainability, 
and resilience issues

Complexity: Use of advanced algorithms or AI
methodology, complex feedback loops, and
complex interac�ons with other data processing
components that make its impact on a system
hard to predict through simula�on in the mind.
Special a�en�on to: Explainability and integrity 
issues

AutonomyAutonomy and complexity

Complexity and
influence

Autonomy, complexity,
and influence

Fig. 1 Dimensions of risk and points of attention

• Complexity
• Autonomy
• Impact

If the algorithm has a presence on all three dimensions, and on one of these
dimensions can be considered high risk, it is likely to become a target for review or
audit at some point for some reason. In Fig. 1, we show the three dimensions in the
form of a cube. An easy way to convey risk profiles is scoring the application on each
of the three dimensions and drawing a plane through the cube connecting the three
selected points. At the axes we directly relate these risk dimensions to the five
control objectives we use for our work: integrity, resilience, explainability, fairness,
and accountability.

The first of these three dimensions is the complexity of the technology, of the task,
and of the information ecosystem it operates in. In essence it relates to what is in the
media often called blackboxness: the technology or information ecosystem is com-
plex if it is hard to imagine simulating what it does in your mind and—importantly—
if it is hard to recognize errors and hard to understand the cause of the errors it makes
through simulation in the mind. Complexity can in this sense be seen as a dual of
explainability, a concept that has been gaining in popularity in AI literature.

Complexity need not be directly related to the computational complexity class of
the calculations made by the algorithm, or the complexity of the input data structure.
These do definitely contribute to complexity: a deep learning-based algorithm will
typically be considered more complex than a linear regression, and a linear
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regression on many input parameters is more complex than a regression of a few
parameters. But it is more often than not rather the complexity of the task to which
they are set which is at issue. Facial recognition is for instance undoubtedly both
computationally complex and based on a complex input data structure, but is often
not seen as problematically complex. This is because the task—recognizing a face
based on examples of that face—is not one we as humans usually consider complex.
We appear to have an inborn talent for it, and we can often easily judge errors.

The algorithm may however still make errors that we would never make. Face
recognition systems are for instance commonly fooled by holding a photo in front of
your face, and that may be a fundamental flaw for the execution of the task to which
they are set. For instance, if the face recognition unlocks a phone. The algorithm
does what it was built to do: It recognizes the face. It is just not suitable for the
complex task to which it was set. The task in this case turns out to be just a tiny bit
more complex than the algorithm can reliably handle.

The second dimension is its autonomy in decision-making. The algorithm
operates autonomously if it essentially functions without effective human oversight
and its errors are likely to go undetected, unexplained, and unremedied. The face
recognition phone lock scores high on these aspects of autonomy as well. Its user
will be aware of false negative errors, when the phone does not unlock in the user’s
presence. The false positive error, unlocking without the user’s presence, will go
unnoticed. A last important aspect of autonomy is the algorithm’s ability to auton-
omously adapt its behavior during its operational life by learning from its experi-
ences without expert supervision. In general, this is a rare ability, but the face
recognition phone lock has this ability as well. It learns to recognize its user without
oversight by an expert, and without a formal validation process.

The third dimension is impact. Impact is determined by the characteristics of the
task it performs. Impact is what is determined in an impact assessment, and is usually
closely related to the motive for requesting an audit. It is material risk in the narrow
sense: For instance, does the algorithm affect people’s legal positions (it changes or
establishes rights, duties, liabilities, etc.)? Does it handle money or valuable, private,
or confidential information? Does it affect many people? Is it capable of abusing
market power? The face recognition phone lock scores high on this dimension as
well, because it may after all give access to all functions the user is authorized to
access using that phone, including for instance banking and other functions based on
authentication by phone.

Algorithm assurance differs from many other forms of assurance mainly on the
impact dimension. A cybersecurity audit or an IT audit in the context of a financial
statement audit is clearly scoped by a category of impacts on which the audit is
focused. Algorithm assurance on the other hand focuses on the entity to be audited
itself, and may cover a wide variety of impacts. Because algorithms may be set to
any task, identifying its impacts requires some creativity from the auditor.

For governance functions scores on the three dimensions gain quick insight in the
degree of attention an algorithm deserves, and what kind of risk mitigation needs
extra attention. Complexity requires transparency and explainability, autonomy
requires oversight, and impact requires explainability—because important decisions
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must be justifiable—and impact-mitigating measures. As usual, everything starts and
ends with the integrity of the implementation and application. If the algorithm
doesn’t effectively do what it is claimed to do, risk mitigation will not save us.

2.2 Algorithm Task Environments

Algorithms may be set to any task, and equally important, in any task environment.
To get an overview of the field, we list some examples of categories of algorithms
one may encounter in an algorithm audit.

A variety of algorithms are used for financial prediction models. These are
commonly encountered in support of the financial statement audit, as they often
have a direct effect on the financial statement. Technology used may vary from
supervised machine learning to rule-based prediction models based on expert opin-
ions, and hybrids of these. Typical issues are integrity and performance optimism,
and less often gaming-the-system risks. The risk these algorithms pose mainly
derives from complexity and impact on the financial statement. Compliance con-
cerns relate to financial reporting regulations.

Supervised machine learning algorithms are typically used for prognostic and
diagnostic medical devices. Applications range from prognosis of aggression by
mental health patients based on non-invasive monitoring of vital signs to diagnosis
of diseases of the retina using a high-quality camera. Typical issues are privacy and
medical ethics concerns about data collection for training and testing the algorithm,
equal performance on ethnic groups and genders, and presence of effective moni-
toring to check that actual use follows intended use. Compliance concerns relate to
medical device regulation and regulation on medical ethics research involving
human beings. Because decision-making is usually left to medical professionals,
complexity of the algorithm is usually more of a concern than autonomy.

A variety of algorithms are used for risk-based selection on applications or claims
to select suspicious applications for in-depth manual processing. Non-suspicious
cases are then handled automatically. Technology used may vary from supervised
machine learning, unsupervised machine learning (outlier detection or clustering
when accurate training data for supervised learning is scarce), or rule-based predic-
tion models based on expert opinions. Typical issues are differential treatment of
groups based on static descriptors (profiling or discrimination), indirectly leaking
sensitive data about individuals, and gaming-the-system risks because customers
have reasons to game on ending up in the automatically processed or “happy” flow.
Applications are for instance found in insurance, banking, policing, and taxation,
and compliance concerns are often related to privacy and human rights. When
operating on very large data streams, autonomy of the algorithm is a serious concern.

A variety of algorithms are used for automated trading systems, varying from
basic robotic process automations for handling simple purchases or payments to high
frequency, high volume flash trading of derivatives, to bidding agents for ad space.
Technology used may vary from supervised machine learning to rule-based
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prediction models based on expert opinions, and hybrids of these. Typical issues
relate to intended use, oversight, and gaming-the-system risks. It is mainly the
autonomy of the algorithm that is at stake. These systems may come into scope of
the financial statement audit. More rarely compliance concerns related to for instance
market manipulation (MIFID II) play an important role.

Unsupervised algorithms are often used for clustering unstructured text into
topics to improve access to large corpuses of text. These texts are sometimes
anonymized. A typical issue in this type of application is re-identification risk in
anonymized corpuses based on the propensity of algorithms to cluster texts written
by the same author together. Gaming-the-system issues may play a role as well. The
leading compliance concern is generally privacy. The algorithms involved are
usually just complex.

Recommendation algorithms for products, music, films, etc. usually involve a
hybrid of reinforcement and unsupervised learning technology. Typical issues are
differential treatment of groups based on static descriptors (profiling or discrimina-
tion) and gaming-the-system risks because suppliers of the products being
recommended have reasons to game on ending up in recommendations. A less
common compliance concern is self-preferencing by the organization running the
algorithm if it acts as a supplier itself, which can be seen as an anti-competitive
behavior by its business clients. Recommendation algorithms tend to be sensitive to
cold start problems and popularity bias. Extra care needs to be taken when they are
first deployed to mitigate these risks. These algorithms score high on autonomy.

A variety of algorithms are used for profiling and ad targeting. Hybrids of
supervised, unsupervised, and reinforcement learning are used. Common issues in
ad targeting is differential treatment of groups based on static descriptors (profiling)
and indirectly leaking sensitive data about individuals. Compliance concerns are
generally privacy and differential treatment of groups based on static descriptors
(profiling or discrimination). Ad targeting business often also includes automated
trading for advertising space.

The list of example task environments provides context to the rest of the chapter,
but in the rest of the chapter we will limit ourselves to a single example task.

3 Running Example for This Chapter

As a detailed running example for this chapter to illustrate choices made in the audit,
we introduce a public body that processes applications for child benefits. The public
body does not have the manual processing capacity to investigate every application.
Ninety-five percent of applications are processed automatically, following the claims
made on the application form. In the vast majority of cases, this leads to an
acceptance. In some cases, applications are directly rejected on formal grounds.
Five percent are processed manually and claims are investigated in detail. Discre-
tionary manual investigation can take anywhere from 5 min to many hours, often
weeks in real time, leading to a final accept or reject decision. Manual investigation
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can involve contacts with the applicant and third parties to collect additional
information. If intentional noncompliance is suspected, the case may be handed
over to a special investigation unit that will decide whether a report should be filed
with the police.

The public body has a policy of picking applications for manual processing based
in noncompliance risk. To help with this risk assessment it has introduced a
supervised learning algorithm in the category of risk-based selection on applica-
tions, that selects risky applications based on historical information from applica-
tions manually processed in the past. The risky applications are automatically
sidelined for manual processing. The algorithm will be retrained yearly, suing the
new data generation by manual processing.

Processing takes place in the context of the GDPR. Based on specific adminis-
trative law about child benefits, the public body does however have special permis-
sion to process sensitive information about natural persons if this data is required for
making decisions, and to collect additional information from third parties like banks,
townships, or schools. The public body does however feel very vulnerable to
scandals about unfair treatment based on sensitive attributes and has therefore
decided to have the risk-based selection algorithm regularly audited so that it will
be in control if a scandal would develop.

Because benefits will only be awarded if the parent takes care of children the
majority of the time, child benefits usually go to the household where the mother is
present (English, 2021). This leads to an increased likelihood that the historical data
may be biased against single fathers and that this affects the algorithm. In addition,
the rules about what is and what is not allowed have regularly changed over the last
decade. Because it is clear that the historical data has been collected over a period in
which the rules regularly changed, and presumably will keep changing, there is a risk
that the algorithm is not as accurate and reliable as performance measures may
suggest for the groups affected by the changes.

4 Scoping an Algorithm Assurance Engagement

In the previous section, we have introduced a model (see Fig. 1) with the three
dimensions complexity, autonomy, and impact to determine if an algorithm is likely
to become a target for review or audit. Especially if an algorithm is in its context
perceived as impactful, the need to be assured of its reliability grows. In this section,
we will discuss how to scope an algorithm assurance engagement by understanding
the algorithm’s context and the audit objectives, and how the context and audit
objectives set the criteria that form the basis for the risk assessment.
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4.1 The Importance of Understanding an Algorithm’s
Context

In any larger, more complex, social setting, algorithm assurance should not only
focus on the (technical) properties of the algorithm itself, but also on its purpose as a
problem solver in the real world. A standalone algorithm without task environment is
not useful, but as soon as it is put into a complex task environment to perform highly
impactful tasks, the things that can go wrong are countless. For the auditor, to
comprehensively understand an algorithm in its context is crucial in order to start
scoping an algorithm assurance engagement. The definition of an algorithm’s
success is in the end whether it is fit for purpose in the task environment in which
it is embedded as a decision maker or decision support system. This purpose and the
required skill level determine the technical requirements on the solution. In many
cases, a traditional IT system will suffice, because most problems are relatively easy
to solve. Only when the definition of success requires a more advanced type of
solution due to the complexity of a real-world problem, the implementation of an AI
algorithm should be considered. A computer program, or component of a computer
program, that contains implementations of a risky algorithm or algorithms, is to be
reviewed in the context of a task in which it is applied or a prospective class of tasks
in which it may be applied. Figure 2 shows how traditional IT systems and advanced
algorithms are often combined to work towards a single decision. In such situations,
solely auditing an algorithm itself would make no sense.

Understanding the context of an algorithm requires an assessment and detailed
understanding of a range of broader social and political facts about its stated
definition of success. Typically, the context of an algorithm includes the process

Decision

Data

Mathe-metical 

model 

(statistics)

ML model 

(regression)

ML model 

(regression)

Business rules

Predicted class

Data

Score

Fig. 2 Algorithm-based decision-making
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of development of the algorithm, the process of preparing the data for training and
testing the algorithm, the process of delivering an algorithm to its primary user, and
often, most importantly, the setting within which it is used (Brown et al., 2021). To
understand the algorithm’s context and to take a first step in reviewing the algorithm
itself, an important distinction needs to be made between a claimed skill and a
claimed capability. Capability reflects the general problem-solving potential of the
algorithm itself centered on accuracy and reliability claims, for a variety of tasks for
which it could be fielded as a solution. Skill reflects the actual performance on a task
in a specific task environment, including impact and autonomy aspects, and includ-
ing risk-mitigating measures taken to control the task environment. An algorithm
that works well in the Amsterdam office may not work in the Rotterdam office if the
Rotterdam office lacks certain risk-mitigating mechanisms.

When we consider our running example again, the algorithms’ definition of
success is simple: detecting noncompliance. Incorrect applications are considered
as a given, and the goal is to determine whether these applications are incorrect by
accident or deliberate. The difference between accidentally or deliberately incorrect
applications is of crucial importance in the context of this algorithm, because for
mistakes made by accident the algorithm has no reason to create a signal. As a
system for—essentially—fraud detection, compliance criteria and fairness criteria as
typical issues for this type of fraud detection algorithm are differential treatment of
groups based on static descriptors (profiling or discrimination). Consider how
different it would be when a same type of algorithm is used with the purpose to
identify incorrect applications to help citizens to better apply for subsidies? In that
case, the definition of success would be entirely different and so are the relevant
criteria to review.

4.2 Assurance Criteria

Over the past few years, many non-commercial and commercial organizations have
issued principles for trustworthy AI. The EU High Level expert group for example,
put forward a set of seven key principles that AI systems should follow in order to be
deemed trustworthy (European Commission, 2019). Google as well introduced
seven principles, and a complete audit framework for algorithms (Raji et al.,
2020). Although these principles are to a certain extent similar, there are some
notable differences. The EU stresses the importance of privacy and human oversight,
while Google also finds it important to use AI only in alignment with scientific
evidence.

If we consider how assurance engagements on other types of IT systems are
currently carried out, the concept of overarching principles applies as well. The
so-called trust services criteria (Ewals et al., 2019) are used as means to assess the
extent to which an organization has controls in place to let IT systems operate in
correspondence with the criteria.
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Table 1 Overview of SOC2 trust principles, EU working groups, and coherent audit research
questions

SOC2 trust
principle EU working group Audit research question

Security – Technical robustness
and safety

– Can the data used by the algorithm be accessed
by unauthorized individuals?

– Are there risks of gaming the algorithm?

Availability – Technical robustness
and safety

– If the algorithm is business critical: how is its
availability and contingency managed?

Confidentiality – Privacy and data
governance

– May the output of the algorithm lead to the
identification of (protected) subgroups?

Transparency

Processing
integrity

– Human agency and
oversight

– Does the algorithm perform in line with its
definition of success?

– Accountability – Is the algorithm fair and unbiased in its specific
context?

– Diversity,
non-discrimination, and
fairness

– Societal and environ-
mental well-being

Privacy – Privacy and data
governance

– Are there sufficient legal grounds to use the
algorithm?

– Diversity,
non-discrimination, and
fairness

From an algorithm audit perspective, there are reasons to argue that such trust-
worthy AI principles are a good basis to scope an algorithm audit. This is because
these principles provide a specific perspective, a set of control objectives appropriate
for AI assurance, for an auditor to focus on. There is also reason to argue that the
already existing trust services criteria are insufficient, because algorithm assurance
should not only focus on the algorithm itself but also on the context in which it is
being used. If you try to map the SOC2 trust services criteria to the AI principles of
the EU working group, no exceptional creativity is required to successfully make
it fit.

In an algorithm assurance engagement, the auditor should combine the auditees
requirements with the context of the algorithm to select the appropriate criteria. We
also provide some example audit questions that should be answered satisfactorily
depending on the selected criteria (Table 1).

The auditee, or the client authorized to request the audit, may have its set of
control objectives to be audited. The audit report should be relevant to its audience,
after all. Business sectors moreover usually operate within a framework furnishing
relevant assurance criteria as well. Various high-risk sectors, ranging from the
financial, automotive, and health sector to the trade in children’s toys, have, or
will develop, guidance for using AI for high-risk functionality. If you are auditing a
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medical diagnostic or prognostic application, for instance, there will be guidance that
can be followed interpreting Medical Device Regulation regulations (e.g., there is a
guidance for medical diagnosis in the Netherlands (Van Smeden et al., 2021)).
Besides that, there will usually be a number of ISO/IEC standards to take into
account. Sector-specific jargon and perspectives cannot be avoided, and over time
algorithm assurance will require the development of a certain amount of sector
specialization guided by scientific contributions (e.g., Wirtz et al., 2022).

Coming back to our running example of our algorithm to select applications for
child benefits for manual processing, we argue that diversity, non-discrimination,
and fairnesswould be the most relevant audit criteria. In this case, it would mean that
the audit team will for example need to determine that the algorithm is unbiased
against all protected groups. In addition, fairness is also about weighing the legiti-
macy of the task the system executes, how well it does at performing that task, its use
of personal and sensitive data, and the quality and representativeness of that data for
the task it performs. Assurance on diversity, non-discrimination, and fairness is
therefore based on presumptions about technical robustness and safety and account-
ability. These should also be part of the audit team’s investigations. Moreover, the
targeted readers of the audit report are clearly citizens, politicians, journalists, and
potentially a court of law. Having a good explanation of what the algorithm does is
essential to risk mitigation. Investigating transparency is therefore unavoidable as
well, even if the reported findings are about diversity, non-discrimination, and
fairness.

There are two key differences between SOC2 assurance and algorithm assurance.
Firstly, SOC2 criteria are formulated in a very generic manner, while in algorithm
audits specific controls aligned with the algorithm’s context and associated risks are
crucial. Secondly, SOC2 follows the COSO-framework, which is extensive but in
practical terms leads to audits that are fully focused on control testing only. In an
algorithm assurance engagement, we argue that control testing only would fall short
to be able to provide enough comfort about the algorithm working in alignment with
the selected criteria. A typical audit approach for control testing is required to be
augmented with other types of audit approaches such as testing the model itself or a
form of substantive procedures. In the last section of this chapter, we will propose
four of such approaches.

4.3 What Do the Trust Services Criteria Apply to?

In regular IT audits, one or a combination of the following components are assessed
against the Trust Service Criteria during a SOC2 examination: Infrastructure, Soft-
ware, People, Procedures, Data. In algorithm assurance, we argue that the scoping
exercise in terms of (technical) components is subordinate to the importance of how
an algorithm has been implemented in its context. Typically, we believe that the
audit or review of an algorithm would focus for a large part on the steps that were
carried out by the team that builds the model, instead of all the individual
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Fig. 3 Spheres of activity where risk and control play different roles

components of an algorithm and how they exactly operate. As described in Sect. 4.1,
next to the setting in which an algorithm is used, it would also include the process of
development of the algorithm, the process of preparing the data for training and for
the process evaluating the algorithm, and the process of deploying an algorithm in its
task environment. And finally, the central issue of developing a good problem
conceptualization, which should be based on a realistic data understanding and
business understanding. Generally speaking, we distinguish three different spheres
of activity in the life of an algorithm (see Fig. 3). Each phase requires a different
perspective on dealing with risk and control.

To further illustrate how the process of developing an AI algorithm is important,
we return to our running example. When building a supervised learning algorithm
that is aimed at identifying noncompliance, a common issue is the number of false
negatives. As many noncompliant transactions will go unnoticed, the labeled data
that is required to build a supervised learning algorithm is going to be extremely
biased towards learning about true and false positives. It doesn’t come as a surprise
that in banks for example, unsupervised learning systems are favored for fraud
detection over supervised learning algorithms to tackle this problem. Assuming
that the developer in our example is aware of this general issue with fraud detection
algorithms, there must be reasons why supervised learning was still preferred over
other type of models. The relevant question to ask as an auditor is: How did
the developer come to this decision, and what steps were taken in order to discover
the false negatives for which no outcome of manual processing is available. How the
developer has coded its model and what frameworks were used is considerably less
important.
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4.3.1 An AI Model’s Technical Architecture

AI algorithms are often hidden behind user interfaces, web services or in software
components. There is no one typical AI architecture that is common across all AI
capabilities. If we browse online through the setups that are disclosed by companies
or third-party vendors, we mostly come across an overview of relevant platforms,
frameworks, and supporting tools during the development and deployment cycles of
algorithms only. Each year Firstmark3 publishes an overview of all relevant vendors
in the ML and AI business in the so-called Machine Learning, Artificial Intelligence,
and Data (MAD) Landscape. The overview distinguishes high-level categories to
show what is available in the marketplace. The MAD Landscape shows a myriad of
vendors arranged by type of services, ranging from infrastructure and data (re)-
sources, to analytics and machine learning/AI platforms. For an auditor, it would
never be possible to build the required expertise to appropriately assess all the
hundreds of different products available on the marketplace.

The audit team should limit itself to the development process instead of the
specific platforms, frameworks, and tools to perform AI and Machine Learning
tasks. Uber, the taxi and food delivery company that is well-known for its advanced
AI deployments, provides some guidance in this regard. The description of Michel-
angelo, their Machine Learning platform, is based on the steps taken in the machine
learning lifecycle4 instead of the technical architecture: manage data, train models,
evaluate models, deploy models, make predictions, monitor predictions. Another
common model that is used to lay out the AI development lifecycle is the CRoss
Industry Standard Process for Data Mining (CRISP-DM),5 which also forms the
basis for our previously presented Fig. 3 on spheres of activity where risk and control
plays different roles.

4.4 Stakeholders in the Audit and Accountability

As part of the criteria, we identified accountability as one of the key aspects to look
into. The assurance engagement should be scoped towards the risks that matter to the
client, depending on the purpose of the engagement and the algorithm’s context.

An algorithm assurance engagement may be motivated by internal risk manage-
ment needs of the engagement client, reporting obligations to supervisory authori-
ties, the risk management needs of one or more third-party stakeholders in the
decisions the algorithm takes or supports, or a general need for transparency towards
society. The risks that need to be focused on are determined by the motive for the
engagement.

3https://mattturck.com/data2021/
4https://eng.uber.com/michelangelo-machine-learning-platform/
5https://en.wikipedia.org/wiki/Cross-industry_standard_process_for_data_mining

https://mattturck.com/data2021/
https://eng.uber.com/michelangelo-machine-learning-platform/
https://en.wikipedia.org/wiki/Cross-industry_standard_process_for_data_mining
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An important aspect to scoping the problem is whether the assurance client is a
provider of the algorithm, a user of the algorithm, or both—in case an algorithm
developed in-house is used. This is an important question from an accountability
point of view since the provider and user have different responsibilities. The
provider needs to provide something that will work well if the manual is followed.
Assurance is in this case mainly about consistency between claims about the
algorithm and their substantiation by the algorithm if it is used correctly. The user
needs to follow the manual: any deviation from intended usage is a relevant finding,
and potentially a source of additional risk.

4.4.1 Accountability of Cloud Providers

Most companies these days use some sort of cloud computing to reap the benefits of
AI. For many companies Uber’s approach to set up an end-to-end platform from
scratch is unrealistic, because of the required investments and the scarce knowledge
that is required to set up such a platform. Therefore, most companies turn to the
larger cloud vendors such as Microsoft’s Azure, Amazon’s Web Services, and
Google’s Google Cloud to work with off-the-shelf learning algorithms. For the
auditor these larger vendors remain an almost insurmountable obstacle, as they
typically try to avoid to contractually agree on a right to audits. In these situations,
the process approach helps to limit the reliance on the work done by the cloud
providers. It is increasingly common to depend on ISO/IEC 27001 and 27018
certifications from cloud service providers.

5 Risk Assessment

In Sect. 2.1 of this chapter, we introduced a simple three-dimensional risk model and
classification method for determining whether an algorithm is a suitable candidate
for algorithm assurance. In practice, the algorithm rarely scores as high risk on all
three dimensions of the risk model, because the presence of clear risks on two of
these dimensions typically leads to lower risk choices on the third dimension. The
risk classification method does not replace a true risk assessment. It selects candi-
dates for a risk assessment. In this section we introduce a risk assessment method
based on identifying risk likelihood drivers and impact drivers in the task environ-
ment. We also discuss the need for a diverse audit team composition.

5.1 Drivers for Likelihood and Impact

Identifying the key risks an algorithm poses to the company is a critical step in
effective risk management. This step needs to be comprehensive. If a potential risk is



not identified at this stage, it may be overlooked during further analysis. This may
result in material risks being given insufficient attention at a later stage. In algorithm
assurance, material risks are often hard to pinpoint, as these often originate from the
blackboxness or lack of transparency of the technology itself, but materialize as risks
in other places.

In Fig. 4, we relate the ingredients of our approach to AI Assurance to each other.
The risk you take with an algorithm is your exposure to loss or damage caused by
adverse events involving the algorithm. Which events you consider adverse events is
determined by your control objectives (like the aforementioned seven AI Ethics
principles). A likelihood driver is a circumstance (in the task environment, or during
the conceptualization of development phases in Fig. 3) that increases the probability
of adverse events happening to the algorithm. An impact driver is a circumstance
that increases the impact of adverse events, usually by enabling additional adverse
events to happen to people, processes, data, etc. Controls mitigate for the circum-
stance that increases the probability or impact of the adverse event happening to the
algorithm. Generally, the point of risk mitigation processes is:
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Fig. 4 How control objectives, risks, and likelihood and impact drivers relate to each other

• To create awareness of likelihood and impact drivers present in the environment
of the algorithm

• To select and implement controls that reduce the total amount of risk to an
acceptable proportion

• To periodically check the continued presence and operation of the controls

For most auditors, likelihood drivers and impact drivers will sound new. Typi-
cally, a risk assessment is carried out in terms of likelihood and impact only. In
algorithm auditing specifically, likelihood is often replaced by complexity,
suggesting that if a model is more complex automatically its risk profile rises. We
argue that this equivocation is far too broad and simple. An algorithm’s context is
much more decisive for its risk profile than its complexity, and combinations of
factors constitute risk. A three- or five-point scale from low to high is used to build a
risk profile. We believe a solid risk assessment should take it a step deeper
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considering factors contributing to the likelihood or impact of adverse events. Since
risks factors involving algorithmic bias often form mechanisms that can be
expressed in the form of causal loops, we recommend to, where appropriate, assess
the drivers in the form of causal loop diagrams or a similar diagramming technique.

The context of the algorithm, in combination with the control objectives you
committed to, determines what the relevant adverse events are. When doing the risk
assessment, the auditor should hypothesize what outcomes are to be considered as
irregular in relation to the algorithm’s normal performance and behavior. In general
audit terms, these adverse events are often referred to as what-could-go-wrongs.
These must be reduced to acceptable proportions using controls. Acceptable risk
relates to the cost of control: Controls usually have a cost, and that cost has to be
balanced in practice against the risk mitigation benefits of the control mechanism.

In our running example of the public service organization selecting applications
for manual processing, we can also make a distinction between likelihood and
impact drivers. As mentioned earlier in this chapter, supervised learning algorithms
used in fraud detection are typically known to be very susceptible for their lack of
ground truth. Because typically only the fraud that meets human expectations is
discovered, other types of fraud are not identified and therefore the data only shows
parts of the truth. This ground truth issue clearly classifies as a driver on likelihood:
lack of representativeness of the available training and testing data for the data that
the algorithm receives as input (including all the false negatives) directly contributes
to the risk that the algorithm, and its evaluation, will be inaccurate. The organization
could control for that risk through random sampling for manual processing, but
searching manually for the false negatives is going to be very costly in man hours
and this cost of control may be at odds with the business case for the algorithm.

The purpose of the algorithm is an impact driver: because the outcome of the
process directly affects the legal and financial position of citizens, and citizens do not
usually participate in that process for fun only. Even the delay caused by selection
for manual processing may be considered unfair.

The possibility of bias against single father household applicants is a typical
adverse outcome in the fairness category. Because benefits will only be awarded if
the parent takes care of children the majority of the time, child benefits usually go to
the household where the mother is present (English, 2021). There is a clear likeli-
hood factor present: likelihood that the historical data may be biased against single
fathers. This may affect the algorithm. From a risk assessment perspective, the
auditor (and public body) should take into account that the impact of an accusation
of algorithmic unfairness may be considerable. Single fathers may generate a lot of
attention and sympathy in the media, and differential treatment without a good
justification may be considered a human rights violation in court. Impact may be
considerably reduced by having a good explanation ready at hand for the media for
any apparent differential treatment.
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5.2 A Standard Set of Likelihood and Impact Drivers

A comprehensive risk assessment of an algorithm highly depends on the context and
the real-world problem. AI algorithms are associated with risks that capture the
public imagination, and stir the interests of regulators: deanonymization, profiling,
unfairness to protected groups (discrimination), surveillance, restriction of freedom
of speech, gaming the system, hampering competition, disturbing public order,
abuse of markets, and abuse of information position. Financial risks often relate to
the costs of reparations: manually re-doing processed cases, litigation costs, fines,
damage, loss of reputation.

In the overview below, we present some examples of likelihood and impact
drivers including a short description from our own risk identification inventory.
By no means this should be perceived as an extensive list of algorithm risks, but it
helps the auditor in the line of thinking to objectify the likelihood and impact of
algorithms not operating in line with their definition of success (Tables 2 and 3).

5.3 Who to Involve in the Risk Assessment?

There is increasing consensus (Shen et al., 2021) on the relevance of involving a
heterogeneous group of people in terms of cultural background, technical expertise,
and domain expertise in the development teams of AI algorithms. By making people
with a pluriform background part of a development team, the integrated team will be
better at conceptualizing a real-world problem from different perspectives. Conse-
quently, pluriform teams develop better AI algorithms with and diminish the likeli-
hood of undetected risks. In the same vein, we argue that this line of reasoning also
holds for algorithm auditing, and carrying out the risk assessment as part of it (Shen
et al., 2021). Making sure that an audit team that performs a risk assessment
represents the cultural and gender demographics of the stakeholders in the algo-
rithms that they are auditing, major blind spots on stakeholder impact with poten-
tially critical issues surfacing only post-deployment can be already identified during
a risk assessment. Composing a heterogenous team is not always achievable, but
making sure the audit team has a certain level of heterogeneity will actually help to
assess an algorithm in its broad context.

6 The Audit Plan

In this section, we will discuss how to formulate an audit plan, how traditional tools
and techniques from the auditor can be leveraged during an algorithm audit, and how
AI-related skills play a crucial role to perform successful algorithm audits.
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Table 2 Overview of impact drivers and rationale thereof

Likelihood drivers Explanation

The predictions of the AI application cannot be
adequately or timely verified by observation to
measure performance.

For an AI application, you would like to know
whether your prediction also came true. In
some cases, this is not possible. For example,
when the AI application predicted when
something would break, but it is repaired
before that specific date. Or whether a mort-
gage loan will be paid off, which is known
only after 30 years.

All training and evaluation data originates from
one specific task environment.

In case an AI application is designed in a
specific environment, but is executed in a dif-
ferent environment, the outcomes might not be
correct. For example, predicting what EU citi-
zens would like to pay for a hotel based on
Europe, but erroneously assuming this model
will predict correctly for South America. Since
the EU cannot be compared to South America,
the model will likely not be generalizable.

Experts making the same decision with the
same information report complex and diverse
reasoning patterns for different cases that are
hard to capture by the machine learning tech-
nology applied from a learning capacity
perspective.

The complexity of the task environment is
beyond the learning capacity of the algorithm
employed. For instance, if you train an appli-
cation to predict whether someone is ill,
completely ignoring the fact that doctors dis-
tinguish a lot of different diseases with differ-
ent underlying mechanisms. Better to train an
algorithm per disease category, and combine
these in a hybrid system. This type of applica-
tion will moreover create huge explainability
problems.

The risks involved in wrong predictions made
by the AI application for downstream tasks are
not adequately distinguished from the accuracy
of predictions in performance measurement,
leading to a conflation of accuracy and utility of
the AI application.

Any abductive argument is uncertain, in the
sense that you jump to a conclusion knowing
you may be wrong. How tolerant you are of
making mistakes depends on the value of the
conclusion in tasks that functionally depend on
it. This risk tolerance needs to play a role in the
measurement of performance, but should not
be implicitly mixed in with accuracy. Confla-
tion means treating two distinct concepts—in
this case accuracy and utility—as if they were
one, which produces errors or misunderstand-
ings as a fusion of distinct subjects tends to
obscure analysis of relationships which are
emphasized by contrasts. Very common mis-
take, for instance if the F-value statistic is used
for performance measurement without consid-
eration of risk appetite for false positives and
false negatives, which is important for deter-
mining the utility of an algorithm.

The AI application operates in a task environ-
ment that requires complex interactions with

Certain failure modes may be easy to prevent
for an individual agent, but may arise for a

(continued)



other software agents, consists of a complex
combination of AI techniques or models, or is
input to, or dependent on the output of, other AI
applications.
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Table 2 (continued)

Likelihood drivers Explanation

combination of agents. Typical examples are
market abuse (MIFID II rules) or algorithmic
price cartels. Even though each individual
trading agent keeps to MIFID II rules, all
agents in the organization taken together may
violate them. Similarly, one agent may simply
be following market prices, a cluster of agents
may form a cartel setting prices.

6.1 Audit Approaches

The aim of the audit plan is to formulate the required steps to perform the audit based
on the approach that is the most feasible. We present four high-level approaches an
AI auditor could follow to structure the audit plan. These approaches have a different
area of focus and in practice will often be combined into an audit plan tailored to the
case at hand (Table 4).

6.1.1 Approach 1: Evaluation of Algorithm Entity Level Controls

As part of this approach, the auditor shall evaluate at enterprise level whether
sufficient entity level controls are in place to ensure algorithms are built
and managed in a controlled environment. Controls in the area of AI strategy and
policies, data governance, technology and platforms, skills and awareness, and
development methodology should be part of the review. When only assessing a
company’s entity level controls, no direct assurance regarding the outcomes of an
individual algorithm would be possible, but in general it may help to identify and
assess overarching risks.

Algorithm entity level controls generally reduce the risk of failure for the
algorithm and its outcomes, allowing for reduction of depth of testing (model test)
or sample size (substantive procedures). An advantage to this approach is its
feasibility. Testing entity level controls would only require traditional control
evaluation procedures such as inquiry, inspection, and reperformance.

6.1.2 Approach 2: Testing the Model

As part of this approach, the auditor shall perform an in-depth assessment to
determine if the algorithm performs in line with relevant audit criteria and whether
the identified risks are properly mitigated. The approach to test an algorithm itself is
generally speaking not too different from testing an automated control, because the
initial focus would also lie on design and implementation. Still, for machine learning
and AI algorithms (i.e., not rule-based models), the test of design is fundamentally
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Table 3 Overview of impact drivers and rationale thereof

Impact drivers Explanation

The decision made by the AI application sig-
nificantly or irreversibly affects the interests or
legal position of people.

The decision the system takes can affect legal
position, financial position, or emotional
interests. For example, rejecting to pay out a
claim or to give the person a mortgage, award
custody over children, infringe on people’s
privacy, stigmatize them, etc. Basically, any-
thing that may drive people to court, causing
damage to the organization.

The AI application takes decisions fully auton-
omously, without or only with pro forma
supervision by people.

The decision made by the AI application is
final and in practice not reviewed by a human.
Adverse events may go unnoticed for some
time, causing damage. This is most common
for system that takes decision with a high fre-
quency, like trading and recommendation
systems.

Unfairness extends specifically to a subpopula-
tion defined by a legally protected attribute (like
ethnicity, gender, religion, etc.) that is required
to be protected in that task environment.

AI application outcomes could be unfair to a
subpopulation defined by a legally protected
attribute. For example, the outcome could be
unfair to women, giving them a lower chance
of getting invited for a job interview. Presence
of this driver increases the chances of other
damage, and the organization may violate its
own ethical principles.

The adverse outcome causes significant reputa-
tion damage.

The use of the AI application can cause sig-
nificant reputation damage when certain
adverse events happen. This depends on the
presence of other impact factors, but also sig-
nificantly on how visible the functioning of the
system is to the outside world. A system that is
open to outsiders for probing may for instance
easily be tested for manipulations, or unfair-
ness, and this increases the chance of reputa-
tion damage. We recommend carefully
checking each adverse outcome individually!

The AI application handles or informs decisions
about large amounts of money, or involves
significant financial exposure.

The algorithm handles for the company a sig-
nificant amount of money, for example a pric-
ing algorithm for a significant account or
revenue stream, for an online web shop or
trading algorithm. Failure of the algorithm may
lead to losses for the organization or other
stakeholders. Note that this circumstance is
relevant for financial assurance.

different from testing regular IT functionality. The key difference is that the logic
captured in the algorithm is not specified up-front but is discovered from the training
data during model training. Furthermore, the logic may evolve through time as a
result of offline or online retraining and automated feedback loops. The assessment
should therefore focus on the assumptions and design decisions that were made by
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Table 4 A matrix of audit approaches with coherent focus area, the difficulty and feasibility of the
audit

Level of
comfortAudit approach Focus area Feasibility

Evaluation of algorithm entity
level controls

Overall algorithm control
environment

Low High

Testing the model Algorithm design and
maintenance

Medium to
high

Medium to
low

Testing monitoring controls Algorithm output High Low

Substantive testing Algorithm output High Low

the algorithm developers in conceptualizing the initial business problem into a
formalized AI problem. Of course, the quality of the data and data preparation
activities should also be in scope of these audit procedures. To test an algorithm’s
implementation the same types of test procedures as in regular IT audits can be used
as a starting point, although some types of procedures may be less applicable or
feasible, depending on the characteristics of the algorithm. In the subsection on tools
and techniques, we will go in more detail.

Testing the model can provide a high level of comfort, depending on the detail of
testing. If for example advanced techniques such as algorithm replication are used,
the level of assurance on the quality of the algorithm will increase, because it
requires the auditor to independently reperform (part of) the algorithm’s develop-
ment process.

The feasibility of this approach depends heavily on the complexity of the
algorithm and availability of data sets. For rule-based algorithms, feasibility is
much higher as explicit business rules provide clear criteria to test.

6.1.3 Approach 3: Testing Monitoring Controls

As part of this approach, the auditor should test if the enterprise put internal controls
in place to monitor the transactions performed by the algorithm and mitigate the risks
of algorithm failure. Essentially, this is a sort of black box approach focusing on the
output of the model instead of its inner workings. Testing monitoring controls might
be a preferred approach as it circumvents the complexity of testing the algorithm
itself. However, this approach also has some drawbacks. Firstly, the implementation
of algorithms may render traditional monitoring controls obsolete (e.g., controls
involving comparison of employee performance are not possible if all employees are
replaced by a single algorithm). The auditor should carefully assess if the monitoring
controls are sufficient to mitigate the relevant algorithm risks. Secondly, monitoring
if individual algorithm outcomes are correct is often not possible or feasible (unless
for some rule-based applications or very trivial classification tasks like image
recognition). We notice that controls aimed at directly assessing the quality of
algorithm output are still rare today. Controls are more likely to monitor if data
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distributions in transactions stay between predefined boundaries and identify outliers
for manual follow-up.

The level of comfort provided by this approach depends on the type of controls
and their goal. In case monitoring controls directly assess the quality of the individ-
ual algorithm transactions, high levels of comfort can be achieved. In all other cases,
for example when monitoring is only done on aggregated figures, the level of
comfort is much lower.

6.1.4 Approach 4: Substantive Testing

As part of this approach, the auditor should test if (a sample of) transactions were
processed by the algorithm in line with relevant criteria. Similar to testing monitor-
ing controls, substantive testing should be considered as a black box approach
potentially leading to high levels of comfort. But potential issues are also to be
considered. Firstly, it cannot easily be determined if algorithm output was correct or
incorrect (or such information may only become available with a significant time
lag). If such information was readily available, the algorithm would not be required
in the first place. This severely limits the applicability of testing the reliability of
algorithms through transaction analysis (in fact a form of black box testing). For
example, for mortgage loans it takes 30 years before the predicted probability of
default can be validated. Or for recruitment algorithms, the actual job performance of
rejected candidates will never be known (setting aside practical problems related to
object job performance evaluation). Secondly, depending on transaction volume a
key issue with substantive procedures is that testing a significant number of trans-
actions may be very time consuming. After all, algorithms are used to automate
complex decisions not easily captured in simple business rules. And thirdly, due to
opaqueness of the input-output relationships it is hard to determine if a sample of
transactions provides sufficient evidence for the entire population (representative-
ness issue).

This approach provides a high level of comfort, as long as the sample that is tested
is sufficiently large to properly represent the algorithm’s performance. In that case,
substantive testing gives high levels of comfort as the outcomes are directly tested
per transaction.

6.2 Tools and Techniques

When the auditor has selected the most feasible approach, or a combination of them,
there are multiple tools and techniques in the standard auditor’s toolbox that can be
used to perform the algorithm audit. In principle, the same types of test procedures
can be used as in regular IT audits. Some types of procedures may be less applicable
or feasible, depending on the characteristics of the algorithm. We discuss five types
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of test procedures, which can be used in combination, to test the design and
implementation of an algorithm.

Inspection Similar to regular IT audits, all the relevant documentation as output of
the steps followed during development is reviewed. In case of an algorithm audit, the
documentation should at least provide detailed information about the algorithms’
definition of success and how it aligns with the problem conceptualization, the ways
data exploration was done, how feature engineering was performed and how feature
importance was measured, the configuration of hyperparameters, how overall testing
and validation has been done, etc. Of course, this type of test procedure can only be
used if the algorithm development and maintenance processes of the organization are
sufficiently mature.

Reperformance On top of inspection, the auditor can also choose to reperform
certain activities executed by the development team. For example, in case of
supervised learning, the training phase can be reperformed using the same train-
ing/test dataset and the same parameters as the algorithm’s developers to establish if
this results in the same algorithm with the same performance (small differences may
occur due to different random seeds). This type of test procedure requires specific
expertise on part of the auditor and the auditee must be willing to provide the auditor
access to the original data and an environment to train the algorithm.

Code review A code review on itself would never be sufficient to get the required
comfort for algorithm assurance. Code reviews should therefore always to be used in
combination with other testing procedures. The added value of code reviews is
sometimes a topic of discussion, as in most algorithmic solutions the machine
learning algorithm itself is not really implemented in readable code itself, but rather
an off-the-shelf asset. Code reviews are especially relevant for custom code or scripts
or if uncommon libraries are used.

Independent testing This type of procedure involves testing the algorithm using an
independent dataset developed by the auditor. Independently testing an algorithm
would require deep expertise about the specific technological details of the algorithm
under review. The data set should be representative for the dataset that was used to
build the algorithm, which can be a great challenge. But in scenarios where the
impact of the algorithm is great, and the auditee demands a great amount of comfort,
there just might be sufficient justification to use this type of approach.

Replicating functionality Just like for independent testing, replicating an existing
algorithm’s functionalities also requires deep expertise of data science and modeling.
With this approach, a similar or more simple reference algorithm may be developed
in order to compare the performance of the reference algorithm to the actual
algorithm being audited. It highly depends on the type and complexity of the
algorithm that is audited whether this approach is feasible. In addition, it requires
the dataset for training/testing from the client to be available.



7 AI Skills and Expertise in the Audit

When the audit plan and specific procedures have been considered and planned, an
assessment should be made what skills and expertise are required in order to
successfully complete the audit. And although the depth of the audit may vary
greatly and may even be very limited, it is important to have, next to a certain
level of diversity, the right AI-specific skills and expertise in the audit team to spot
and investigate potential problems. The audit team should be able to:
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• Recognize unrealistic problem specifications that are not likely to result in safe
algorithm use.

• Investigate the origins of the data to spot bias and quality problems in the data.
• Interpret and criticize the metrics used to justify the reliability of the algorithm.
• Perform an exploratory data analysis and interpret the output of common explain-

able AI (XAI) algorithms.
• Pick and use the right metrics for measuring fairness, and give the measurements

a reasonable explanation.

7.1 Realistic Problem Specification

A key skill, maybe even the defining skill, of AI as a discipline is translating real-
world problems into problem specifications solvable in information space using an
algorithm for that class of information space problems. Bad quality algorithmic
solutions generally start with a bad problem conceptualization. Starting from a
good business case for an algorithm, a good problem specification operationalizes
business performance in such a way that it can be measured and optimized, and
clearly outlines the intended use of the algorithmic solution by setting out the
conditions that must be met before it can be safely assumed to perform as claimed.
The translation of key performance indicators that are relevant to business into
measurable indicators for performance is an important source of error.

The auditor judges the documented problem specification for risks and for gaps—
important criteria that remain unmeasured and unaddressed. A large part of the
review of the solution itself can be interpreted as a comparison between what was
specified and what actually happened during development and what actually hap-
pens in use. If the problem conceptualization is good, and the algorithmic solution is
an optimal solution to the specified problem, and it is used as advertised, the
algorithm will generally score well on the integrity pillar.

Let us at this point return to our running example and apply the measures of
recall, precision, and F-score that were introduced in chapter “Introduction to
Advanced Information Technology,” Sect. 3.3 of this book. The public body uses
precisely these measures to quantify performance and has trained the algorithm to
optimize F1-score. The public body has decided before development of the algo-
rithm, without argumentation, that an F1-score of 0.9 seems acceptable for



performance based on a quick search of F1-scores of some other projects, and the
algorithm clearly exceeds that benchmark.

There are two fundamental problems here. The first one is the arbitrary bench-
mark. One should always use a benchmark that is relevant for the task environment.
There is no objective answer to what is a good F1-score. It depends on the
alternatives methods available for making a risk-based selection of applications.
The F-score is moreover sensitive to class imbalance, or differences in ratio between
the two outcomes in the historical data. Class imbalances vary over projects.

When you are developing a medical diagnostic algorithm, you can often uncover
an appropriate benchmark for roughly the same task environment through study of
scientific literature. There are after all many hospitals doing roughly the same things.
The public body executes a unique task, and has no such option. It has two directions
to move in to produce an empirically grounded benchmark:
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• Try to create a golden standard dataset of correctly processed application forms
and measure the performance of the manual processing department compared to
this golden standard dataset. To produce this dataset usually involves assigning
multiple employees to the same applications, and spending far more time on
it. This may be prohibitively expensive. On the other hand, this golden standard
dataset is also useful for researching bias in the historical data.

• Play structured games with employees of the manual processing department or
decision makers to determine what distribution of true positives, true negatives,
false positives, and false negatives they tolerate. This approach leverages expert
knowledge effectively, assuming the employees involved do understand their
business well.

The second problem is that F1-score as a balanced score of precision and recall
weighs false positive selection and false negative non-selections equally heavily as
errors. It is a harmonic mean, after all. This is very unlikely to reflect the actual
business objectives of the public body. As noted, when we introduced the running
example manual processing capacity is scarce, and selecting applications for
processing needlessly is a waste of effort. Besides that the organization specifically
fears unfairly selecting people for manual processing, and this risk only relates to
false positives. It should therefore be concerned with precision much more than
recall when measuring performance. Fortunately, it is quite easy to modify the F-
score to take a certain exchange rate between recall and precision, to reflect that
employees would trade for instance five false negatives for one false positive in a
structured gaming situation.
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This generalized F-score can be used for plotting precision against recall for an
algorithm’s performance to gain insight into what task performances are feasible
depending on a chosen exchange rate between precision and recall. For a given task
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environment, with an already determined exchange rate, only one point on the curve
is important.6 But the developers of the algorithm often do their work not knowing
what that point is going to be.

7.2 Data Lineage

Whether a machine learning solution may be expected to do what it is claimed to do
depends considerably on the fidelity with which the training and test data used for its
construction reflects the task environment in which it is fielded. When we are
forming an opinion about the usefulness of training and test data for an algorithm,
we are looking for signs of lack of representativeness of the dataset for the task
environment, and for signs of systematic misrepresentation of what actually hap-
pened in the task environment in the dataset. The first type of problem is an
(inductive) bias problem. The second type is a data quality problem.

The concept of bias is widely applied, to describe (1) lack of representativeness of
datasets for an environment, (2) the causes of that lack of representativeness
(reporting bias, survivorship bias), and (3) the consequences of that lack of repre-
sentativeness for decision-making based on the algorithm’s output (popularity bias,
algorithmic bias, and—as a convenience label—for any unfair decisions caused by
bias). Here we limit ourselves to bias as a property of a dataset in a task environment.

If the algorithm used belongs to the class of supervised algorithms, it is trained
and tested with data labeled with the (putatively) correct answer. The most obvious
technique for researching bias is to compare data used for training and testing with
the remaining unlabeled data, for which no correct answer has been determined, in
an exploratory data analysis or EDA. Judging and performing an EDA is therefore
part of the desk research skills one would expect of an audit team. Systematic
differences found are in need of an explanation.

The auditor will in addition investigate and sometimes test the processes that
created the data to gain insight in bias and quality problems and their causes. Part of
these processes—from the master datasets that were sourced for the development
process to the datasets that are fed into the algorithm—are under direct control of the
developers of the algorithm. This is the data preparation pipeline. The pipeline
should be documented well enough to allow for reperformance by an audit team.
Bias and quality problems are however often already present in the master datasets
that were sourced for development. At some point the audit team will be investigat-
ing where this master data came from.

At this point we run into an important scoping question. There are basically two
ways in which the lineage of these datasets may be proven (Cheney et al., 2009). In
eager lineage settings, the data is well-governed and the characteristics of the

6A very similar curve, containing similar information, is the ROC curve which plots recall against
the true negative rate. This type of curve is more often encountered in documentation.
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processes that created it are already routinely well-documented by the data control-
ler. One may for instance expect this in medical settings. Data gathering is super-
vised by a medical-ethical authority, data management plans will be in place before
gathering starts, and the process will be subject to an audit regime. In this case we
would have an independent party assuring us of the quality and representativeness of
the data. In lazy lineage cases research into business practices generating data had to
take place within the context of the development of the algorithm because no such
assurance already existed. In this case lineage should be fully documented as part of
the development process and is clearly subject to investigation by the auditor in an
algorithm assurance engagement.

7.3 Reliability of Trained Models

The auditor should understand empirical approaches to determining the reliability of
a predictive model through resampling methods, and if necessary, should be able to
apply them to the data. The most basic method for estimating performance is a train-
test split. This gives us performance statistics, but no insight into how robust that
statistic is going to be on new data. Validation of performance should take place on
holdout data that was not available to the developers. Ideally the holdout data would
be produced in an empirical impact study that is an exact simile of the prospective
task environment.

Without access to new data, robustness of the algorithm can still be estimated by
the developers and serves an important purpose in itself. The standard approach to
showing reliability is to essentially make a lot of randomized train-test splits
(cf. resampling methods like cross-validation; Kohavi, 1995). The average and
variance of the performance statistics collected in train-test splits gives insight into
the reliability of the model—assuming that the data reflects the task environment in
which the algorithm will be used.

In addition, it is good policy to test any hypotheses one has about groups or time
frames that can be found in the training and testing data in which the predictive
model may perform less well to validate the problem specification, to ascertain there
are no resilience problems to be expected (cf. so-called underspecification problems;
D’Amour et al., 2020). One doesn’t want to depend on an algorithm that doesn’t
work in winter, or doesn’t work in Amsterdam. Measuring unfairness based on
hypotheses about groups that may be treated differently is essentially a special case
of this type of hypothesis testing.



7.4 Exploratory Data Analysis and the Use of Explainable AI
(XAI) Techniques

While explainability can be considered a core goal of algorithm assurance, and we
therefore favor transparent and self-explanatory algorithms, there are cases where
either an alternative form of analysis is called for to uncover what the algorithm
does, or where a parallel, more explainable algorithm with less performance is built
to gain insight into the relation between inputs and outputs of a black box algorithm.
The audit team is expected to understand exploratory data analysis and the use of
common Explainable AI (XAI) techniques to uncover what the algorithm does. See
for an overview of XAI techniques that can be used Linardatos et al. (2020) and for
an understanding of the limitations of these as a tool for explainability cf. Lipton
(2018). These techniques will occasionally be used by the audit team to gain the
necessary insights and to explain its findings. Specifically, the audit team should be
able to:
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– Compare datasets collected from the same task environment.
– Apply feature selection and extraction methods to gain insight in the relevance of

the data to the problem solved by the algorithm.
– Apply XAI methods for gaining insight into what role features play in how the

algorithm solves the problem.

7.5 Measuring Fairness

Algorithm fairness is a hot topic, and for clients often a gateway into requesting
algorithm assurance. It is moreover a central topic in our running example for this
chapter. Making a judgment about fairness starts with identifying which groups or
individuals may be differentially treated by an algorithm based on static descriptors.
In a well-managed development process, these groups or individuals have been
identified with the help of stakeholders during a prospective risk identification,
and precautions have been taken to prevent differential treatment of the identified
groups or individuals—including a requirement to measure whether the groups or
individuals are indeed treated differently by the algorithm.

Identifying unfairness risks with stakeholders starts involves looking at how the
output of the algorithm is used in decision-making, and how it affects stakeholders
that may be unfairly treated. In a simple binary decision, it is usually simply a matter
of deciding which of the four possible outcomes—true or false positive and true or
false negative—are usually considered good or bad from the perspective of the
stakeholder. If the decision is for instance a medical diagnosis the stakeholder
wants the outcome to be true, regardless of whether it is positive or negative. If it
is an accept-reject decision the stakeholder wants to be accepted, and will often be



happy to be a false positive. In some cases, both ground truths and outcomes are
important.
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Usually, we are looking at group fairness for specific, identified vulnerable
groups. In rare cases, we may be concerned with unfairness towards individuals. If
doors for instance don’t open for someone whose face cannot be recognized by an
algorithm (yes, this happens), this (1) is unfair, and (2) implicitly characterizes a new
vulnerable group of people whose face was not learned by the algorithm. Although
we are dealing with individuals, we can find those individuals in the data as a group
of successive inputs relating to the same individual, and we can apply the same
measurement tools to detect this unfairness to individuals. Fairness risks relating to
individuals are usually characterized as social exclusion risks.

If the algorithm treats a group or groups of people differently, it is apparently
capable of picking the members, or successive inputs relating to members, of the
unfairly treated group based on the input data of the algorithm. This input data may
contain proxies that function as static descriptors of group membership.

Assuming the risk identification is adequate, and static descriptors potentially
identifying groups have been identified, measurements should be made to quantify
the difference in performance or outcome for these groups. These measurements can
be made using hypotheses about what the proxies in the data are for group mem-
bership, or by using an external data source not used by the algorithm that directly
identifies group membership. If the organization has this external data for measure-
ment of unfairness, it is usually personally identifiable data or sensitive data.
Permission for its use will be required.

Although a large number of different measures have been proposed in the
literature (Verma & Rubin, 2018), the problem in essence boils down to a simple
choice between two approaches. We are either comparing the relative outcomes for a
pair of groups to see whether the difference is within the organization’s tolerance
margins for outcome inequality, or we are comparing the relative performance of the
algorithm for a pair of groups. Regardless of which choice we make, we do often
encounter some difference. It is up to the client to decide whether this difference is
tolerable, and what it means.

Let’s reconsider our running example again. Using the AI application, the public
body wants to know whether bias is present in the algorithm against single father
household applicants because the benefits will only be awarded if the parent takes
care of children the majority of the time.

As pointed out earlier, in the public body example case the two possible out-
comes—being manually or automatically processed—are perceived as a
punishment vs. reward scenario. Where earlier we addressed making a smart choice
in which performance statistic to look at, we now address a similar problem with
fairness statistics: which one is meaningful for the problem at hand.

The comparison that matters in this case is mainly the outcome: if it is fairly equal
for both groups, there is little risk that fairness issues will be raised. The measure of
choice will therefore be statistical parity (or group fairness; cf. Verma & Rubin,
2018): the probability of being manually processed is equal for both groups:



True positive False positive
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Table 5 Confusion matrix for the running example

Predicted outcome of manual processing

Actual
outcome

Total
population

Predicted
positive

Predicted negative

Applicants:
100

Single
fathers: 10

Positive True positive Applicants: 80

Applicants:
10

Single fathers: 6

Single
fathers: 3

Negative False
positive

(Distribution between false negatives and true
negatives is unknown)

Applicants:
10

Single
fathers: 1

þ
Total Population

This measure is crude, but also one likely to be used by the media to support an
accusation of unfairness. The algorithm does not use the gender of the applicant, but
the public body does have access to data about the gender of the applicant and
household composition from a third party. We can therefore set up confusion
matrixes for the single father household vs. the rest to gain insight (see Table 5).
Ideally, we would like to be able to fill in all four conditions, including the
distinction between true negatives and false negatives, but for the negative pre-
dictions we don’t have information about what the outcome of manual processing
would have been.

A quick calculation shows that there is indeed a sizable outcome inequality as
expected:

3þ 1
10

¼ 0:4 vs:
10þ 10
100

¼ 0:2

To justify that difference, it remains relevant to assess the relative accuracies for
both groups. Only when the algorithm performs equally well for both groups, the
difference can be accepted as a matter of fact. Although it is in principle possible to
calculate and compare the weighted F-scores, it is more common to compare the
precision scores (explained in chapter “Introduction to Advanced Information Tech-
nology,” Sect. 3.3 of this book). We don’t know the distribution between true and
false negatives after all. In the context of assessing the problem specification we
made the same choice. In the context of fairness, this comparison is labeled



predictive parity (Verma & Rubin, 2018). A quick calculation shows that precision
for the group of single father households appears to be even higher than for the total
population of applicants, assuring that the root cause of the difference is most likely
in the datasets used for training and testing.
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3
3þ 1

¼ 0:75vs:
10

10þ 10
¼ 0:5

Since the number of applicants in the single father household is rather low, we
don’t have reason to be confident about that conclusion. Ideally one would advise to
gather some more data about the group of single father households, but that is
obviously going to be difficult: only time will tell. In any case, the audit team
neutrally reports differences, possible root causes of those differences it uncovered,
and possible ways of removing or reducing those differences, for instance with the
help of debiasing algorithms to reduce outcome inequalities (Agrawal et al., 2020).
Debiasing should only be used in the understanding that optimizing equality for one
type of measure usually worsens the other given the same, unchanged training and
test datasets. The bias that caused the unfairness is still embedded in the data in some
way. Besides that, if used unwisely, debiasing algorithms may introduce unfairness
towards other groups, and may in certain cases be judged unlawful (Xiang & Raji,
2019). The reason for this is simple: giving a specific group a push in the back by
definition disadvantages everybody else.

8 Discussion

In this chapter, we have presented a structured approach to define an audit plan for
algorithm assurance, based on knowledge from scientific and popular literature and
practical experience. Despite our aim to be as comprehensive and detailed as
possible, the fact remains that this chapter is fully based on our knowledge and
experience as assurance providers in a newly developing field. In this section, we
discuss three critical pointers in order for algorithm assurance to mature.

8.1 Transparency and Standardization

Algorithm auditing as a profession is still young. In order for it to become mature
profession, it needs, besides more scientific research, shared practical experiences
from the field. This calls for a shared learning environment to everyone’s benefit.
The time of practitioners re-inventing their own wheel is over, especially because the
increasing impact of algorithms requires systemic oversight, and governments
increasingly realize that it does. Auditors can play a significant role in creating
trust, but only if they agree on how algorithm auditing should work.
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Standardization would be a logical next move up in the algorithm auditing
maturity curve. Firstly, this will help the auditee to understand what is being audited.
Even more importantly: one auditor’s outcome would be the same as the outcome of
another auditor, because the same methodology is followed. Secondly, it also helps
to put expectation management in place. What may an auditee, or the receiver of the
algorithm assurance report, expect from the auditor and what degree of assurance
can the receiver get from the audit report? We truly believe that existing professional
associations such as the International Auditing and Assurance Standards Board
(IAASB)7 of auditors have to play a crucial role. But auditors themselves should
be open to the approach they follow as well.

The main complication is the diversity of task environment algorithms operate
in. One size fits all solutions may impose a cost of control on developers and
operators of algorithms that exceeds the business value of many trivial algorithm
applications. It is likely that auditor specializations will develop over time for
specific high-risk areas governed by different areas of law (medical device safety,
consumer rights and legal liability for harm, financial reporting, privacy law, etc.) if
standardization is to go deeper than the level of principles.

8.2 Skills and Expertise

In Sect. 7 of this chapter, we have described the specific skills that are required to
successfully perform an algorithm audit with the required level of depth. We believe
that existing (IT) auditors today do not have this skill set. Yet using the same criteria
is just one aspect. Spotting the same risks is an entirely different one. It might be
worth a discussion whether specific individual accreditation is required in order to
perform algorithm audits.

8.3 Auditing AI with AI

A topic that we didn’t discuss in the chapter is how AI technology can also help to
perform AI audits. Although this is a fairly new topic, it is worth exploring. The use
of AI technology to mitigate risk or exercise control on AI is a lively field. When
talking about explainability, or fairness, many in the field of AI immediately think of
the research into how to do these things automatically. Obviously. We have looked
at a standard audit approach, including all the relevant methodological aspects that
are part of it. This approach will not go away: behind any important automated
control solution there will be auditor signing off on it. But it is possible to look

7https://www.iaasb.org/

https://www.iaasb.org/
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beyond control automation and think of AI solutions to general purpose adversarial
testing of algorithms in specific domains, for instance vision.
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9 Conclusions

Based mainly on the professional experiences of the authors, we introduced the field
of Algorithm Assurance in the audit practice. In the context of algorithm assurance,
we use a non-standard meaning of the concept of an algorithm: The object of the
audit is a computer program, or component of a computer program, containing
implementations of a risky AI algorithm or algorithms, to be reviewed in the context
of a task in which it is applied or a prospective class of tasks in which it may be
applied. We distinguished a number of task environment types in which such
computer programs may be encountered in an audit context, and the reasons why
they may be subject to an audit.

After that we have successively laid the scope of an assurance engagement, the
control objectives or principles that guide the assurance engagement, the risk
assessment, audit strategy and action plan, and the typical AI-related skills and
expertise required of the auditor to do an in-depth investigation of an algorithm.

The main area in which algorithm assurance is still under development is in
standardization of what is being tested and how. Standardization is essential for the
development of trust in algorithm assurance. The main problem in this area is the
diversity of task environments to take into account, which may lead to the develop-
ment of specializations in the field.
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