
Introduction to Advanced Information
Technology

Bert-Jan Butijn

1 Introduction

Over the years Information Systems (IS) have become increasingly complex and are
difficult to grapple. The complexity of recent novel technologies like blockchain
(BCT), artificial intelligence (AI) and cloud computing constitutes a genuine chal-
lenge to IT-auditors tasked with auditing these IS to provide assurance. Recognizing
this challenge this book aims to aid IT-auditors in their audit of such complex
IS. This book provides novel insights into these complex IS by demonstrating how
control frameworks can be applied to these technologies using several real-life case
studies. The chapters that follow hereafter each discuss a different technology.

Each of the aforementioned IS complex, and therefore particularities of the
technologies discussed in this book may not be well understood. This chapter
discusses the inner-workings, intricacies, and concepts related to these technologies
to provide the background necessary to perform an audit using the frameworks
presented in the chapters hereafter. In Sect. 2 background is provided about
blockchain technology. Section 3 expounds on artificial intelligence, more specifi-
cally how it can be perceived and how it is practically used. Similar to the outline of
this book, the final technology discussed in the chapter in Sect. 4 is cloud computing.
It is strongly recommended to read this chapter before continuing to read the other
chapters.

B.-J. Butijn (*)
Erasmus University Rotterdam, Rotterdam, The Netherlands
e-mail: butijn@ese.eur.nl

© The Author(s) 2023
E. Berghout et al. (eds.), Advanced Digital Auditing, Progress in IS,
https://doi.org/10.1007/978-3-031-11089-4_3

15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-11089-4_3&domain=pdf
mailto:butijn@ese.eur.nl
https://doi.org/10.1007/978-3-031-11089-4_3#DOI

16 B.-J. Butijn

2 Blockchain Technology

The concept of blockchain technology was first published in an anonymous paper by
an author called Satoshi Nakamoto in 2008.1 Blockchain technology incorporates
several technologies previously developed for initiatives like Adam Back’s Hash
Cash (Back, 2002), Digi Cash proposed by David Chaum (1979), and Bit Gold
created by Nick Szabo (2005).2 In 2009, the Bitcoin network was established when
the first (genesis) block was mined by Satoshi Nakamoto. Although Bitcoin is often
mentioned in the same breath as BCT, there is an important distinction: BCT is the
technology that underpins the Bitcoin making it possible to perform transactions
without a trusted third party. Bitcoin on the other hand is a cryptocurrency that
represents value similar to normal currency that is made possible by the technology.

Since the initial conception of BCT it has gained immense worldwide attention
from organizations. BCT has many favorable characteristics and currently many
prominent firms like JP Morgan Chase, Maersk, and KLM have started to explore
how they can leverage the potential of the technology to their advantage. One of the
key features of BCT is that it allows for transactions between parties without
requiring a trusted intermediary (e.g., a bank) to safeguard the safety of their
transaction. This remarkable feature is made possible by a sophisticated combination
of technologies.

BCT is a specific form of distributed ledger technology where the ledger is
deployed on a Peer-to-Peer network (P2P). On the P2P network all data about
transactions is replicated, shared, and synchronously distributed across multiple
peers. Transactions are processed following a strict consensus protocol that is
operated by specific nodes to ensure the validity of the transactions requested by
other peers in the network, and to synchronize all shared copies of the distributed
ledger. During the execution of the consensus protocol, the data of valid trans-
actions, along with other required metadata concerning the network, and the hash of
the previous block are bundled by these specific nodes into a block using hashing
functions. The essential and key property reflecting BCT architectures is that each
block contains the hash of their predecessor, therefore linking all prior transactions
to newly appended transactions; the blocks therefore form a chain with the aim of
establishing a tamper-proof historical record. This property is depicted in Fig. 1.

As can be noted, BCT is a complex technology that itself encompasses a
combination of several other technologies. Let us now further explore how these
interrelated technologies interact with one another and constitute to a blockchain
system. To exemplify how the technology works we will further discuss the initial
BCT underpinning the Bitcoin from the perspective of the trustless transactions it
enables. In Sect. 2.1, we first discuss the basic notions of blockchain technology.
Then, smart contracts an important concept related to blockchain technology is

1Until date nothing is known about the identity or whereabouts of the original author(s).
2For further reading about the origins of blockchain technology, we recommend “On the Origins
and Variations of Blockchain Technologies” by Sherman et al. (2019).

discussed in Sect. 2.2. The last section, Sect. 2.3 presents an overview of a typical
blockchain architecture that explains the relation between some over the overarching
concepts.

Introduction to Advanced Information Technology 17

Hash of Block 0

Header

Hash of Block 1

Transactions

Block 1 Header

Hash of Block 1

Header

Hash of Block 2

Transactions

Block 2 Header

Hash of Block 2

Header

Hash of Block 3

Transactions

Block 3 Header

Fig. 1 Graphical depiction of blocks in a blockchain. Note how the combination of the previous
block hash and the hash of current transactions form the blockheader

2.1 Basic Notions of Blockchain Technology

Owners of a Bitcoin can commit a transaction to the network by digitally signing a
hash of the previous transaction and combining it with the public key of the
requested recipient. Within a blockchain network public keys are used as the
addresses of agents that make use the blockchains’ services. The combination of
the hash of the previous transaction and public key of the recipient are added to the
end of the coin. Therefore, crypto coins can be considered as a chain of digital
signatures. This chain of signatures allows anyone to audit and verify the transaction
history of a coin. Albeit that the chain of signatures allows anyone to verify
ownership claims, this technique does not prevent current owners to double spend
a coin. Double-spending refers to the act of spending the same coin twice in two
different transactions yet at the same time.

One of the unique features of BCT is that it prevents double-spending by
introducing a distributed ledger that is shared among peers. Traditional transaction
processors like a bank maintain a centrally kept ledger that records all transactions
made and especially when they were made. This centralized ledger allows the
transaction processor to verify whether transactions have already taken place.

BCT achieves these objectives in a different manner: (1) Transactions are pub-
licly announced to all peers that are part of the P2P network that thereafter record
them on their own copy of the distributed ledger. These peers are oftentimes referred
to as nodes in blockchain nomenclature. It is important to note that nodes are
physical or virtual machines connected to other nodes via a P2P network. Nodes
can have one or many human owners, and someone can own several nodes.
(2) Because there is no centralized ledger the nodes in the network need to reach a
consensus about the history of the transactions on the ledger, and more specifically
how to correctly chronologically order them. In principle this approach effectively

prevents double-spending when all nodes behave honestly. However, not all nodes
can be trusted as some might be used to act maliciously and propose incorrect
versions of the distributed ledger for their own gain. For instance, by introducing
non-valid transactions to increase their own balance. Literature on distributed
systems refers to this issue as the Byzantine Generals Problem (Lamport et al.,
2019). Figure 2 illustrates this problem.

18 B.-J. Butijn

Coordinated Attack Leading to Victory

Uncoordinated Attack Leading to Defeat
Traitor Traitor

TraitorTraitor

Fig. 2 The Byzantine Generals Problem. When all nodes behave honest and work together the
system works otherwise it will fail

The illustration should be regarded as a metaphor for how distributed
systems work: Imagine that there are several generals that have laid siege to
Byzantium. The generals must collectively decide when to attack the city. Only
when all generals launch their attack simultaneously, they can capture the city.
However, if they do not the attack fails. Unfortunately, the generals cannot safely
communicate with each other because all messages they will send might be
intercepted or deceptively sent by the defenders of Byzantium. This raises the
question how the generals can successfully organize their attack simultaneously?

When applying this analogy to blockchain Byzantium is the distributed ledger,
and the generals are the nodes within the P2P blockchain network. Similar to the
generals in the Byzantines Generals Problem, some nodes will try to manipulate the
ledger and thus dismantle its integrity. Honest nodes need a method that enables
them to identify transactions on the ledger that are fraudulent or incorrect to keep the
distributed ledger free from errors.

To overcome this problem, several safeguards are presented in the original
Bitcoin paper (Nakamoto, 2008). One of these safeguards is that transactions are
processed in batches by several nodes3 and are then stored in data structures called
blocks. Note that each block can only contain a specific amount of data called the
blocksize, meaning that a limited number of transactions can be included in the
block. To create a block, the nodes proceed in the following manner: First, a node
checks the validity of a requested transaction. Then, the node uses a timestamp
server to timestamp a batch of transactions. Thereafter the node uses the Secure

3On some blockchain platforms like Ethereum, the number of nodes that process the transactions
can amount up to 10,000.

Hashing Algorithm 256 (SHA-256) to create a hash of each individual transaction.
When given the same input, the SHA-256 algorithm will always return the same
output as hash better known as a digest. Any small change to the original input
however, will render a completely different digest. Figure 3 shows the differences in
hashes with two different inputs.

Introduction to Advanced Information Technology 19

The Fox Hash Function

a5a6 1814 056e 3c3f b0a5 41eb
997b 60ca

ff73 4b1f 49ed 31c7 e38b 3cc4
eb67 77eb

The Fox jumps over

the fence
Hash Function

318d 5aeb 1267 1835 e156 a6ac
47e1 4257 169c 15a1 5c4a e2d0

387e e036 266f 4dfd

The Fox jumps over

the large red fence
Hash Function

bb35 1520 47a8 8f59 c126 b2b6
dbe5 699e

7d88 3f2f cc41 2f85 4490 f16d
c9eb 7ed1

Fig. 3 Example of three texts translated into three unique hash digests. Note how although the
length of the text differs the length of the hash is always 64 symbols

Using the hash, it can effectively be proven that data existed at a certain point in
time. More important, any tampering with the hash of a transaction would immedi-
ately be recognized as the corrupted hash would not be identical to the one of a
correct transaction. Storing the individual hashes of each transaction would require
vast amounts of storage space to store the data. Therefore, as a second step nodes
bundle the batch of hashes using a Merkle tree. An example of a Merkle tree is
shown in Fig. 4. In effect this means that the hash of each transaction re-hashed with
that of other transactions until only one hash remains.

Another safeguard is proposed in the paper to further guarantee the historical
integrity of the distributed ledger. In the hash of a novel block, the hash of the
previous block is also included. Effectively this means that the blocks are chained
together, and the more blocks are appended to this chain the more difficult it
becomes to tamper with the ledger. This solution safeguards the ledger against
tampering with the chronology of the transactions by malicious nodes. However,
incorrect novel transactions could still be introduced. BCT remedies this problem by
demanding that the nodes in the network verify whether (a) any of the newly
announced transactions are legit and (b) what the correct version of the distributed
ledger is. These activities are integral part of a consensus protocol with the aim of
ensuring that the nodes in the P2P network reach a consensus on these aspects. A
simple way of reaching consensus would be to allow all nodes to vote. Unfortu-
nately, this would enable malicious nodes to launch a Sybil attack by creating an
infinite number of duplicates of itself to gather more votes and control the P2P
network.

The BCT underpinning the Bitcoin decreases the chance of a sybil attack by
employing a Proof-of-Work (PoW) consensus protocol that nodes follow to verify

transactions. This PoW entails that nodes use their computational power to “vote” on
the validity of transactions instead of IP addresses, effectively meaning that the
majority of computational power within the network decides. Although it might be
easy for someone of ill-intend to amass several IP addresses, obtaining large amount
of computational power is likely to be more difficult. Nodes deliver their PoW by
solving a computational difficult mathematical puzzle. The first node to solve the
puzzle is granted some Bitcoin as a reward. Finding the solution to the puzzle
requires finding the right nonce (a random number) that matches the header of the
current block, given information of the prior block. The process of finding the right
solution to build a block is called mining, and nodes that make the effort to solve the
puzzle are referred to asminers. There is only one miner that can be the first to mine a
block. Whenever a node has found the right solution, it propagates the block it
constructed to the other nodes. The other nodes then verify the correctness of the
block, and if correct append it to their copy of the ledger.

20 B.-J. Butijn

Transac�on 1 Transac�on 2 Transac�on 3 Transac�on 4

Ha
Hash a

Hb
Hash b

Hc
Hash c

Hd
Hash d

Hab
Hash (Ha+Hb)

Merkle Root
Habcd =

Hash (Ha+Hb+Hc+Hd)

Hcd
Hash (Hc+Hd)

Fig. 4 Graphical depiction of a Merkle tree

Due to slow propagation of the block among nodes situations might arise where
two different miners propagate a block concurrently as they are not aware of the
existence of another new block. From that moment on it remains unclear for other
miners which of the new blocks is the correct one. In such instances a fork in the
chain of blocks is created. Figure 5 depicts what a fork looks like from a schematic
perspective.

Whenever a fork occurs as a rule, nodes should always trust the longest chain as it
represents the branch on which the most computational power has been spend.
Nodes that did not propagate the novel block will have to wait until one of the
chains becomes longer than the other. Forks are resolved by nodes choosing to adopt
the longest chain over the other chain. It is only when the fork is resolved that the

Smart contract as a term has been coined by Nick Szabo already in 1994 (Szabo,
). However, the concept gained little traction in practice because there was no1997

transactions in the new blocks that are part of the longest chain are confirmed.
Besides resolving accidental forks, the longest chain rule also protects the integrity
of the ledger from malicious users.

Introduction to Advanced Information Technology 21

Block 1

Blocks

Shorter Chain

Blocks

Longest Chain

Block 2

Block

3A

Block

4A

Block

3B

Block

4B

Block

5B

Block

6B

Block

5A

Fig. 5 Graphical example of the longest chain rule. Eventually all nodes will accept the bottom
branch as it is the longest of the two

2.2 Smart Contracts

Initial versions of BCT only allowed their users to make transactions without a
trusted intermediary. The desire and potential to employ the technology for uses
other than cryptocurrency led to the creation of the Ethereum platform in 2015 by
Vitalik Buterin (Buterin et al., 2016). Besides allowing users of the platform to
request transactions using the native cryptocurrency called Ether, the Ethereum
platform also supports the storage and execution of smart contracts. Smart contracts
are computer programs that are stored on the blockchain and contain transaction
logic in the form of code. The interesting prospect that this ability offers is that user
can stipulate the conditions that have to hold before the transaction is executed
(Zheng et al., 2020). Because a smart contract has its own balance and account, they
can even hold funds in escrow until these conditions are met. Users can communi-
cate with the smart contract and prompt it to execute some logic. Because these
transactions that prompt the smart contract are also stored on the blockchain, a record
is created who prompted the smart contract to perform the transaction. If the logic
executed by the smart contract involves performing a transaction, this transaction is
also recorded (Zheng et al., 2020). The execution of the smart contract and the
transactions potentially resulting from this execution are performed by a large
number of nodes in the blockchain network. It is therefore important that the
execution of the smart contract code always yields the same output when executed
by different nodes. If this were not to be the case, the nodes would never be able to
reach a consensus on the validity of the transactions resulting from the execution. On
public blockchains like Ethereum, a fee is paid for the execution of a smart contract
to diminish the chance of abuse and to reward the executing nodes for their efforts
(Xu et al., 2017).

suitable platform to store the smart contracts or to process transactions resulting from
execution of the contract itself. With the rise of blockchain an infrastructure has been
provided capable of storing and executing smart contracts while also enabling the
processing of transactions resulting from the execution of the smart contract.
Because smart contracts are deployed and stored on a blockchain, they inherit
some important characteristics from the technology:

22 B.-J. Butijn

• Automatic execution: Smart contracts are in essence coded programs stored on a
blockchain. By stipulating conditions with code users control under which
circumstances a transaction is executed. It is because of this feat that smart
contracts enable the automatic execution of transactions.

• Immutable: Once a smart contract is stored on the blockchain, it cannot be
changed. Equally important, a deployed smart contract cannot be removed unless
specifically instructed to do so.

• Tamper proof: Because a smart contract is immutable once deployed, no one can
tamper with the code in order to influence the outcomes of a transaction process.
Because transactions resulting from the execution of the smart contract are
verified and performed via the blockchain, these are also tamper proof.

• Self-enforcing: All smart contracts have their own balance. Data concerning this
balance is stored on the blockchain. This enables smart contracts to hold funds in
escrow on their own balance until the predefined conditions are met.

The importance of smart contracts for the further development of BCT cannot be
understated. By allowing users to stipulate their own transaction logic, the technol-
ogy can be used for several applications that go well beyond cryptocurrency trans-
actions. Collectively these applications are referred to as Decentralized Applications
or DApps for short. Whereas traditional applications are connected to a database to
retrieve information, smart contracts and by extension DApps, are connected to a
blockchain from which they can obtain information. As can be noted, a blockchain
therefore provides the infrastructure for a smart contract. The addition of smart
contracts to the blockchain technology stack has significantly influenced the archi-
tecture of blockchain platforms. We will now further dive into the architectures of
several blockchain architectures.

2.3 An Overview of Blockchain Architectures

Since the advent of Bitcoin, other blockchain platforms have been established like
Ethereum that offer services other than cryptocurrency transactions. As a result,
nowadays there are several types of blockchain platforms that can be discerned
based on two main characteristics: how access to the network is arranged and whom
has what permissions. Table 1 depicts the network arrangements.

Public blockchain platforms like Bitcoin and Ethereum allow for anyone to join
the network as a miner or a client. Because anyone is allowed to join the network and
subsequently verify and request any transactions, these platforms are also considered

Introduction to Advanced Information Technology 23

Table 1 Spectrum of blockchain network arrangements

Accessibility

Private Public

Authorization Permissioned Participants in the network
need to request access to an
administrator to join the net-
work. Each participant is
assigned a unique set of rights
linked to their digital identity.

In a public permissioned net-
work, anyone can join the
network. However, the rights
on the network are restricted
per participant. For instance,
anyone can join the network,
but not everyone can read or
verify transactions.

Permissionless Private and permissionless
allow only a group of network
participants that have been
admitted to the network to
perform all actions possible on
the network. Participants do
have an identity but not a
unique set of rights.

Public permissionless net-
works have as a characteristic
that anyone can join the net-
work. When a participant
joins the network, they are
allowed to read, write, and
verify transactions. All data
about the transactions (e.g.,
the blocks) is shared among
all willing participants.

to be permissionless. It is important to note that the public and permissionless nature
of a public blockchain is usually encapsulated in the algorithms that the platform
uses to process data among things. Such features are therefore not easily changed.

Unfortunately, the fact that anyone can join the network and perform all possible
actions might be considered as inconvenient by some organizations as their control
over the platform is diminished. Moreover, public blockchains require complete
transparency of the transactions history which is sometimes at odds with the privacy
concerns of an organization. Combined, these two factors have led to the introduc-
tion of permissioned and private and consortium blockchains. Proponents of such
blockchains advocate that more privacy and access control is needed to guarantee
that the blockchain can be used for business. Rather than having one network for all
participants, and being owned by all participants private/consortium blockchains are
owned by a consortium of organizations or even one organization. Contrary to public
blockchains, most private and consortium blockchains have tailor-made distribu-
tions of the permissions each participant is granted. Therefore, these types of
networks can be considered permissioned. Projects like Hyperledger Fabric
(Androulaki et al., 2018) provide frameworks to build these consortium/private
networks. There are also blockchains that combine features of both architectures.

Blockchain networks provide the technical infrastructure on which several ser-
vices like smart contracts can be run. As said, ultimately the blockchain infrastruc-
ture potentially combined with a smart contract allow for the creation of DApps.
Figure 6 depicts a full stack architecture of a DApp that most platforms use.

Working from top to bottom, the first layer is the front end that like for any normal
application serves as the presentation layer for end users. As blockchain services are
normally offered via the internet, the front end is usually a website. Similar like any

o

24 B.-J. Butijn

Fig. 6 Full stack
architecture of a
Decentralized Application
(DApp)

normal application, a DApp has a back-end layer that processes the programming
logic when for instance a user pushes a button. In this case, the back-end usually also
sets in motion the actions that a smart contract needs to perform or that needs to be
executed on the blockchain. Where a traditional app differs from a DApp is that
instead of being connected to a database, a DApp is connected to a blockchain that
serves as the point for data storage. Although the back-end is supposed to process the
logic within the DApp, it cannot execute any logic used for the blockchain. Execut-
ing logic on the blockchain is the purpose of a smart contract that serves as a
connector between the users’ back-end and the blockchain and forms the smart
contract layer. This feature is made possible because smart contracts are deployed
on the blockchain and users can send transactions to trigger them. Like a normal
program a smart contract can be programmed to follow a certain logic when
performing transactions. A smart contract could, for instance, store conditions and
logic that need to be satisfied before a transaction is executed. Not all blockchain
platforms or frameworks cater for smart contracts. As explained in Sect. 2.1, t
ensure the validity of transactions and secure the historical record of transactions the
nodes in the network need to reach a consensus. The specific set of algorithms
deployed to ensure the consensus between the nodes is called the consensus-layer. A
consensus-layer is the beating heart of the blockchain. Nodes within the blockchain
network form a network-layer on which the data concerning the blockchain is
shared. This data includes the blocks, in other words the data about the transactions
but also the code of smart contracts that have been deployed on the blockchain.
Communication and distribution of data about the blockchain is shared by the nodes
via the infrastructure-layer. Nodes are not natural persons but machines or

Introduction to Advanced Information Technology 25

computers that execute the algorithms required for the blockchain. The standard
TCP/IP protocol used for everyday communication on the internet provides the
channel for nodes to communicate.

3 Artificial Intelligence

AI is nowadays often the subject of conversation within society. The potential to use
AI for a wide variety of processes has led organizations to explore how they could
harness its potential. Some examples of processes for which AI is employed are
fraud detection, marketing, Siri on your phone. Although AI is often referred to as
one technology, the term actually represents a broader concept of intelligence
demonstrated by machines. The term AI was coined in 1956 by John McCarthy
(1995) that describes it as:

It is the science and engineering of making intelligent machines, especially intelligent
computer programs. It is related to the similar task of using computers to understand
human intelligence, but AI does not have to confine itself to methods that are biologically
observable.

It is important to note that the field of AI focuses on intelligent machines with a
strong emphasis on computer programs. Computer programs encompass a combi-
nation of algorithms that have been designed to learn how to perform a specific task,
usually by employing statistics. This notion is important because when evaluating
how the AI program performs the task at hand the combination of algorithms needs
to be examined. What further can be noted from the definition provided by McCar-
thy is that the aim of AI is to mimic human intelligence. With their intelligence
humans are capable of performing several tasks. Researchers and practitioners in the
field of AI developed several algorithms over the years that have enabled sophisti-
cated programs to mimic the performance of these tasks. Each of these tasks has over
time constituted to specialized subfields of AI.

In the remainder of this section, we will first explore how machines learn to
perform tasks in Sect. 3.1. To understand how AI is used in practice, in Sect. 3.4 an
overview of all subfields of AI will be provided. Each of these subfields will
thereafter be explained, and some important concerns for auditing are discussed.

3.1 How Machines Learn

The effort of letting machines learn in order to perform human-like tasks is collec-
tively called machine learning (ML) (Samuel, 1959). Like humans, machines learn
by example. When using ML these examples are provided in the form of a machine-
readable data set. Each data set encompasses several observations, or measuring
points linked to variables. In turn from each observation several features can be

26 B.-J. Butijn

Fig. 7 Separate steps to
train a neural network

1. Training

Machine

Learning

Algorithm

(Postive, Neutral, Negative)

Tag

Feature

Extractor

Text

Feature

Extractor

Text

2. Prediction

Classifier

Model

(Postive, Neutral, Negative)

Tag

discerned which are the characteristics or properties of an observation (Bishop,
2006). Relations that the machine has learned are represented as models, that express
these relations as parameters, variables, or other mathematical concepts like vectors.

ML algorithms can learn in a descriptive, predictive, or prescriptive manner from
a provided data set. These types of learning differ from one another because the aims
of the learning process are different. Descriptive learning focuses on extracting
relations between features in the data set with the aim of understanding laying
bare these relations. For instance, a data set encompassing several customers of a
firm can be used to learn how customers are grouped, and on the basis of what
characteristics.

Predictive learning is not only aimed at learning relations between features in the
data set, but in addition being able to predict what outcome is most likely given a
certain input. An example of a task that such an algorithm could learn is to predict the
likelihood that a customer will make an insurance claim based on several demo-
graphic factors. Similar to descriptive learning, when learning to predict outcomes
ML algorithms first examine and learn the relation between features. However, the
important difference is that these relations are considered independent variables that
serve to predict one or many dependent variables. Getting back to our insurance
example, in this case the goal is to predict whether someone will make an insurance
claim (dependent variable) based on other independent variables like demographics
and so on. The creation of a model to predict outcomes generally takes place in two
steps: (1) Training and (2) Prediction (Ashmore et al., 2021). Both steps are depicted
in Fig. 7.

An algorithm written with the purpose of training inspects a set of machine-
readable observations provided as the input data. These observations serve as
examples for the algorithm to determine how the input with certain features is related
to certain outcomes. For instance, how demographic factors like postal code, age,
and income predict whether or not a customer is likely to make an insurance claim.
In some cases, a tag (label) is provided as a target that the algorithm should be able to

predict as the dependent variable. The relations between the features and outcomes
are then captured in a model. In the next step, called prediction the “fit” of the model
is examined. In other words, given a set of provided examples how well does the
model predict the expected outcome. Some ML algorithms further improve the fit of
the model by using another set of examples to partially retrain the model after an
initial training. Again, statistical methods underpin the predictions made using the
model.

Prescriptive learning is another approach to ML learning that combines aspects of
descriptive and predictive learning with the addition that the algorithm is able to take
an informed action based on the data provided. Self-driving cars for instance are not
only capable of detecting objects like other cars around them but also to take
appropriate action when needed (e.g., hitting the breaks). An important aspect of
prescriptive learning is that the algorithm cannot only understand patterns based on
prior examples, but can also make informed decisions which action to perform given
the information provided.

Besides discerning the algorithms based on its aim, we can also make another
distinction between ML algorithms that is related to the manner in which the
algorithm is trained or learns from data. The approaches to learn machines are
usually divided into three generic categories, based on the nature of stimuli and
feedback that is provided to the learning system (Ayodele, 2010):

Introduction to Advanced Information Technology 27

• Supervised learning: For a supervised learning approach the computer is
presented by a human with a dataset containing multiple examples with inputs
and correct outputs. The main aim of this approach is to learn the algorithm the
relations between the inputs and the outputs.

• Unsupervised learning: No desired outcomes are provided to the learning algo-
rithm. The algorithm itself has to determine what relations exist in the data set.
Note that the discovering these relations or patterns in the data can be the aim
itself, or a means towards an end (e.g., to subsequently predict a relation).

• Reinforced learning: When employing reinforced learning, a computer interacts
in a dynamic environment. In this environment, it must be able to perform a
specific task such as driving a vehicle or vacuum clean your house as a robot.
While carrying out the task the algorithm is provided with feedback from the
environment through which it learns to maximize efficiency. Using this approach,
the algorithm learns by trial and error.

What can be noted when closely examining these different types of learning is
that they can be discerned based on how and when the input for training is
administered. When using unsupervised learning, the builder of the algorithm does
not offer any of his own knowledge to the algorithm. In supervised learning, this
knowledge is offered by providing the algorithm with examples of the data and
classifying (labeling) each example. For instance, providing a set of messages with
coherent classification of the sentiment of the message (e.g., angry, happy, or sad).
This also introduces hazards however, because what if the provider of the examples
made a misjudgment about what sentiment a message, or even several messages
actually have. In other words, what if the provider of the examples has provided the

28 B.-J. Butijn

wrong examples to the algorithm. Obviously, this would greatly reduce the accuracy
of the ML algorithm because it learns from incorrect examples. To diminish the
possibility of errors when providing examples for supervised learning, it is desirable
to maintain a four eyes principle, meaning that at least two or more distinct persons
independently label each example provided to the algorithm as input. The distinct
sets of independently labeled examples are then compared for agreement. The
measurement of the agreement between two raters is called inter-rater reliability
and serves to provide an indication about the reliability of the labeling of the dataset
(LeBreton & Senter, 2008). Several tests like Krippendorf’s Alpha, and Cohen’s
Kappa can be used to measure the inter-rater agreement. However, the process of
labeling examples is often arduous and time consuming. Therefore, instead of
examining all of the examples provided by another person it is common to only
assess a sample.

3.2 Deep Learning and Neural Networks

Oftentimes deep learning is discerned as another subset of machine learning. Like
“normal” machine learning deep learning can be employed for descriptive, predic-
tive, and prescriptive purposes and can also be taught to learn using a supervised,
unsupervised, or reinforced learning approach. What sets deep learning apart from
other machine learning approaches is how the relations between features are stored.
Neural networks often consist of many hidden layers to extract and store features
from data. In essence, neural networks are data structures modeled to resemble the
human brain. Figure 8 depicts a schematic version of a neural network.

Input

Layer

Multiple Hidden

Layers

Output

Layer

Fig. 8 Schematic depiction of a neural network

Introduction to Advanced Information Technology 29

Input Output PredictionsConvolution Pooling

Feature Extraction Classification

Fully Connected

Cat (0.01)

Dog (0.95)

Horse (0.01)

Butterfly (0.01)

Fig. 9 An architecture for a convolutional neural network

Neural networks are vastly complex multi-layered networks. Similar to a human
brain, a neural network encompasses several nodes (similar to a neuron) that are
inter-connected which allows data to be passed between them. The neural network
always encompasses an input layer and an output layer. In between the input and
output layer there are multiple hidden layers. Some neural networks can encompass
millions of hidden layers, whereas others only have 20. The hidden layers in a neural
network pass on data from the input layer and provide a subsequent outcome to the
output layer. Due to the complexity of neural networks it difficult, if not impossible,
to understand what happens when data is passed between the nodes. Therefore,
neural networks in all of their different shapes and sizes are considered a black box,
meaning that we know the input and the output of the algorithm but not what
happens during the processing of the data. How neural networks are structured
strongly depends on the deep learning algorithm used to perform a task. In turn,
research (Pouyanfar et al., 2018) has demonstrated that some types of deep learning
algorithms are more suitable than others for a specific task. Hence, there is often a
strong relation between the task at hand and the type of neural network employed to
store the data. Roughly speaking neural networks can be divided into two groups:
convolutional neural networks and recurrent neural networks.

Convolutional neural networks are predominantly used for image recognition.
Hence, the input to train these neural networks is almost always an image. Figure 9
depicts a typical architecture for convolutional neural networks.

The typical architecture of a recurrent neural network encompasses several layers.
However, they perform the two distinct tasks of feature extraction and the classifi-
cation. In the input layer images are provided to the convolutional neural network
model in the form of a matrix. Next, the images are passed on to the convolutional
layer that performs the mathematical operations. Each image is then convolved with
a separate square matrix that functions as a kernel or filter. The kernel is then slid
over each pixel of the image to attain a feature map that contains the information
about features of the image such as edges and lines. However, raw feature maps
consume vast amounts of memory and are computationally expensive. Therefore,
after convolving the image a dedicated pooling layer diminishes the size of the
feature map. Several types of formulas like max pooling, average pooling, and sum
pooling can be used for this purpose. The last layer or fully connected layer is used to

30 B.-J. Butijn

Table 2 Differences between a CNN and RNN

Convolutional neural network Recurrent neural network

CNNs are neural networks for deep learning that
is predominantly used for image processing.

RNNs are neural networks that are commonly
used temporal and sequential data. An impor-
tant feature of RNNs is that the nodes in the
network are sequentially connected allowing
for the creation of memory.

CNNs are feed-forward network that require
little preprocessing, made possible by multi-
layers of nodes.

An RNN can use its internal memory to handle
different sequences of input.

Compared to an RNN, a CNN is far more
powerful.

RNNs can include and combine far less fea-
tures compared to a CNN.

A CNN always takes fixed size inputs, and
returns fixed size outputs.

An advantage of an RNN is that they can
process different sizes of input versus output.

make predictions over the images as they are activated. Although recurrent neural
networks are helpful in many aspects, they are not particularly useful to process
temporal or sequential data (e.g., a movie).

Recurrent neural networks are better equipped to work with temporal or sequen-
tial data. This is largely due to the fact that recurrent neural networks use the input of
prior nodes in the network to weigh in their information in order to establish the
relation between input and output. Effectively this constitutes an internal memory
that is able to distinguish important details such as those related to the input they
received. Using its memory, the neural network is able to predict what will come
next. This important characteristic of a RNN makes them highly usable for tasks
related to speech, video, and text. The key takeaway about RNNs is that when
sequence is of the essence, a RNN will learn a far more profound understanding of
the sequence as compared to other algorithms.

What sets a RNN apart from a CNN is that the output that has been passed
through a prior step is provided as input to the current step. A RNN has therefore two
inputs: data concerning the current step and data concerning the recent step(s). This
memory build-up is pivotal because the chain of information that is forwarded to
each step is what makes that a RNN performs so well on sequential tasks. Contrary to
CNNs, the hidden layers of a RNN actively memorizes information about the
calculations on the sequential data it has been trained on. Like a CNN the size of a
model can vastly increase depending on the task it is trained for. To reduce the
complexity and thus size of the model the same parameters are used for each task.
The differences between the two types of networks are summarized in Table 2.

Introduction to Advanced Information Technology 31

3.3 Measuring the Accuracy of Machine Learning
Algorithms

When using algorithms to predict or even prescribe certain outcomes, assessing the
accuracy of an algorithm is important for auditors. What we mean here by accuracy
is how well the model is at doing its task in predicting the right outcome. The
accuracy of predictive or prescriptive ML algorithm can be verified by using another
distinct set of examples as input and then scoring how many times the algorithm
performed the task in line with the right outcome. A dedicated metric to measure the
accuracy can then be employed to calculate the accuracy. Because there are several
statistical techniques that enable machines to predict, over the years several metrics
have been developed to test the efficacy of an ML algorithm. The simplest of these
metrics is to measure the precision of an algorithm. Precision in this context means
how many of all of the observations predicted by the algorithm as positive were
actually positive. We can calculate the precision by using the following formula:

precision ¼ true positives and selected elements
Selected elements

To explain this formula, consider that we have an algorithm that is built to predict
whether there is a tree on a picture or a house. In the set of pictures that are provided
to the algorithm there are 12 pictures of a tree and 12 with a house, making a total of
24 pictures. The algorithm predicts that in this set of 24 pictures there are 9 pictures
that contain a tree. However, in reality of these nine selected pictures there are only
four trees on the picture the other five are houses. We call these four correctly
predicted pictures with trees true positives, while we refer to the total of nine pictures
as the selected elements as they are predicted by the algorithm.

Another important metric is recall also referred to as sensitivity that measures the
ratio of correctly identified elements (true positives) among the total of relevant
elements in the entire set. Coming back to our example, the relevant elements here
are all the pictures with a tree depicted on it (total of 12). We can calculate the recall
for this example using the formula:

recall ¼ true positives and relevant elements
relevant elements

Contrary to the precision metric we use the identified true positives and the total
known of relevant elements to calculate. Taking the same example again we would
now use the 4 pictures of the tree and divide it by 12. Although at a first glance
precision and recall seem appropriate metrics to measure the accuracy of an algo-
rithm, they have some disadvantages. For instance, what if both the precision and
recall of an algorithm matter? It is not unreasonable to say that both do and thus to
address this problem the F1 score was introduced. Using a F1 score as a metric is

32 B.-J. Butijn

especially popular because it measures the harmonic mean between precision and
recall. The formula to calculate the F1 score is as follows:

F1 ¼ precision � recall
precision þ recall

Because we already know how to calculate the precision and recall we can simply
plug in these calculations into the formula. Where we multiply precision by recall
and dividing it by the product of precision and recall. Please note that despite the fact
that the F1 score is a commonly used metric there is an ongoing debate on the
appropriateness of the metric. In the example here above, we only used the F1 score
to calculate an algorithms performance on two classes. However, an adjusted version
of the F1 score can also be used for multi-classification testing.

3.4 Using AI in Practice

As mentioned already the main aim of employing AI is to let computers perform
tasks otherwise carried out by humans. Over time, a logical division of these tasks
has led to the creation of several subfields within the AI domain. In Fig. 10, these
subfields are portrayed.

Some of these subfields overlap and this overlap can be attributed to the fact that
because these subfields are organized by task, some or almost all of them are one
way or another related. Let us now further explore how each of these tasks is
performed by AI algorithms.

Fig. 10 Representation of
subfields in AI. Note that
this depiction is not
exhaustive and some fields
may be missing

Natural Language
Processing

Speech
Recogni�on

Image
Recogni�on

Process Mining Robo�cs

Ar�ficial Intelligence

Introduction to Advanced Information Technology 33

3.4.1 Natural Language Processing

Natural Language Processing (NLP) is a subfield of AI that focuses on developing
approaches to enable machines to understand and generate written natural (human)
language. The goal of NLP is to create an IS that can sensibly process text to perform
a variety of tasks like spell checking, determine the sentiment of a text, or extract
relevant information from a text. To understand how these algorithms are able to
perform these tasks, we must first understand that computers are ill equipped to
perform tasks on text because they are meant to calculate, not interpret. A human
reader when presented with a text has learned to discern paragraphs, sentences,
words, and letters. Computers however would consider a text merely as a sequence
of characters (mostly letters) and without human guidance do not have the capacity
to identify sentences or even words. However, paragraphs, words, and other char-
acters often are employed in NLP as features. For a machine to learn relations in
texts, whether that be in a descriptive, predictive, or prescriptive manner, these
features first have to be created.

Most NLP algorithms therefore require that a certain piece of text is first split into
units that serve as an observation. For example, if we want to create an algorithm that
is able to predict what sentiment (e.g., angry, happy, or satisfied) a customer review
has we take the whole review as the observation. Instead of multiple sentences,
single sentences or even single words could also be the unit of observation. This
would make it possible for instance to classify a word as being a verb, noun, or other.
However, merely dividing a text into observation units usually does not provide
enough features for ML to identify meaningful relations. To remedy this problem
most ML algorithms for NLP employ a technique called tokenization (Webster &
Kit, 1992). Tokenization means that an algorithm is employed to divide the set of
characters that the text encompasses into a set of strings (like words) that each
contain sequence of tokens. At the most generic level the algorithm can predict for a
given sentence to what class it belongs. A common application for this is to
determine whether customer can be classified as angry, sad, or happy. However, at
a more granular level NLP algorithms are able to classify words.

NLP is predominantly used for natural language understanding by analyzing
pieces of text for either syntax or semantic meaning. Syntactic analysis involves
creating algorithms that are able to dissect the syntax of a sentence, paragraph, or
entire text. A well-known task for instance is Part-of-Speech tagging (POS) where
an algorithm is tasked with syntactically classifying and predicting whether a word is
a noun, verb, or coordinating conjunction. An example of what the output of a POS
task looks like is depicted in Fig. 11.

Fig. 11 Labels related to
words when using POS
tagging If party A pays the rent, party B will send a receipt thereof to party A.

NN VBZ NNDT NNNNIN NN INVB NNDT RB NNNNMD

Legenda: IN = Preposition. NN = Noun. VBZ = Verb, 3rd person singular present.

DT = Determiner. MD = Modal. VB = Verb, base form. RB = Adverb.

Semantic analysis focuses on understanding meaning within a text. This task goes
well beyond merely dissecting a sentence by predicting whether words are nouns,
verbs, and so on. As the name suggests, the aim of semantic role labeling (SRL) is
investigating which parts of for instance a sentence play what role. To discern the
different roles a part of the sentence has these are connected to verbs. Like POS that
is very much akin to SRL a dedicated annotation schema is needed usually also with
integrated BIO (Begin Inside Outside) tagging that indicates where a role starts and
ends. The most annotation schema used for SRL is that by Palmer et al. (2005). To
explain how SRL works take the following sentence: “If party A pay’s the rent, party
B will send a receipt thereof to party A. The algorithm would first try to predict all of
the verbs in the sentence, and then for each of these verbs predict what the relation is
between the verb and other parts of the sentence. In the case of our example, this
would yield the result depicted in Fig. 12.

The explanation of the labels is omitted here for brevity’s sake but further
information can be publicly consulted.4 Taking this notion a step further, practi-
tioners and scholars have started to design algorithms for information extraction.
One important part of information extraction is Named Entity Recognition (NER)
where NLP algorithms are used to find people, dates, and places in a text. Informa-
tion extraction also relies on SRL as a basis but an additional algorithm is used a top
of a SRL algorithm to give the labels more contextual meaning.

Besides using NLP algorithms to analyze existing text, they are also employed to
generate new text. This task is called natural-language generation (NLG) and it
serves to produce natural language as output (Reiter & Dale, 1997). The general idea
behind NLG is that instead of letting a human author a text, a machine will perform
this task. In practice, NLG is used for a tremendous number of applications like (Gatt
& Krahmer, 2018):

34 B.-J. Butijn

Fig. 12 Labels related to
different verbs and words
when using SRL If party A pays the rent , party B will send a receipt thereof to party A.

VARG0 ARG3

If party A pays the rent, party B will send a receipt thereof to party A.

V

VARG0 ARG1 ARG2ARGM-ADV
ARGM-

MOD

If party A pays the rent , party B will send a receipt thereof to party A.

Relations for the verb “pays”:

Relations for the verb “will”:

Relations for the verb “send”:

Legenda: V = Verb. ARG0 = Preposition. ARG0 = Preposition. ARG0 = Preposition.

ARGM-ADV = Argument adverbial. ARGM-MOD = Argument Modal.

1. Checking spelling and grammar to suggest text corrections.
2. Generating paraphrases or responses.

4Please visit: https://www.cs.rochester.edu/~gildea/palmer-propbank-cl.pdf for a guide of the
labels.

https://www.cs.rochester.edu/~gildea/palmer-propbank-cl.pdf

Introduction to Advanced Information Technology 35

3. Translating texts from one language to another.
4. Simplifying complex texts to make them easier to read for a broader audience.
5. Text summarization to automatically create abstracts from long texts.

Defining the difference between natural language understanding and NLG is
oftentimes hard (Gatt & Krahmer, 2018). In practice, these aspects are combined
to attain a certain result. To create a chatbot for instance, SRL is employed to make
the machine understand what a customer is asking. Then NLG is used to formulate
an answer to the customer’s question.

3.4.2 Speech Recognition

Speech recognition once was considered a subfield of NLP. However, recently it has
developed into a full-fledged interdisciplinary subfield of computational linguistics.
The aim of speech recognition is to develop methodologies and coherent algorithms
that enable computers to recognize and translate spoken language into text, or
machine-readable format. A prime example of speech recognition usage is Apple’s
Siri, or the Alexa home appliance from Amazon. Both use a sophisticated speech
recognition algorithm to capture and process spoken language with the aim to
understand what a user is commanding them. These interpretations then prompt
the program to execute whatever the user is asking. Voice recognition can be
considered another aspect of speech recognition. Algorithms for voice recognition
are not designed to understand a users’ commands but recognizing different users.
Again, like all ML techniques speech recognition algorithms learn from features, in
this case the audio provided to train the algorithm. Compared to NLP speech
recognition uses several different features:

1. Language weighting: When mentions of words are of interest, the algorithm can
be trained to listen to a particular set of words. Training the algorithm to
specifically identify these words increases the chance of filtering out conversa-
tions or audio of interest based on subject.

2. Acoustic training: Inevitably with some audio there is ambient sound or other
noise pollution. Acoustic training serves to aid the algorithm to discern for
instance background noise and speak.

3. Speaker labeling: For voice recognition, speaker labeling is important to under-
stand who is speaking, and by extension who is saying what in a conversation.
Algorithms trained on this aspect are able to discern several speakers at once and
translate their contribution.

4. Profanity filtering: The use of profanity filtering is to detect specific words in a
conversation to filter them out or extract them. This feature differs from language
weighting as it is designed as a filter not to identify conversations of interest
among for instance a set of audio fragments.

Like other ML architectures, speech recognition algorithms are made up out of
several components. First, there is the speech input that consists out of multiple

audio fragments. Based on these audio fragments, a model is created containing
several feature vectors that capture a myriad of relations between features like tone
and length of a tone. When using the model in practice, a decoder is required to
interpret the outcomes that have been attained through the use of the features. The
decoder itself employs pronunciation dictionaries, language models, and one or
more acoustic models to attain the right output.

Although great improvements have been made to speech recognition algorithms,
the current best score was made by Google Cloud Speech in 2017. Their algorithm
yielded a score of 95% with an error rate of 5%. In itself this error rate possesses no
problem to the use of the algorithm. However, speech recognition algorithms are
often used in combination with an NLP algorithm that also has an error rate
compounding the errors in the final output. Consider the example of a speech
assistant of Google Home, Amazon’s Alexa, or Microsoft’s Cortana; These systems
employ speech recognition algorithms to understand when a command is given to
them by whom and translate this to text with a potential error rate of 5%. In a
sequential step, an SRL algorithm (NLP) uses the text created as output by the
speech recognition algorithm (with the errors) as input to determine what the user
has commanded. The SRL algorithm thus receives input with errors that in turn is far
more prone to generate wrong output, not even taking into account the error rate of
the SRL algorithm itself.

3.4.3 Image Recognition

Image recognition is a strand of AI methods that focuses on classifying images. The
applications for these algorithms are around us everywhere. A prominent example is
the face recognition on most smart phones. Image recognition is also used for self-
driving cars that need to recognize obstacles on the road, or find persons of interest
on camera footage. An image recognition algorithm can perform several tasks:

36 B.-J. Butijn

1. Classification: This task involves classifying that what “class” the image belongs.
For instance, the depiction of a dog or a cat.

2. Tagging: Is a task similar to classification, but is more fine-grained. The tagging
task involves identifying (potentially) multiple concepts and/or objects in an
image. For one image several tags or labels can be appropriate.

3. Detection: When the algorithm is assigned to identify and locate an object in an
image (or video), it is a detection task. An example for the use of such an
algorithm is software for self-driving cars.

4. Segmentation: This task is similar to detection however, but is yet again some-
what more fine-grained. The algorithm is able to locate objects on a pixel level
which is sometimes required for very precise identification.

As explained in Sect. 3.2, CNNs are predominantly used for image recognition.
When training ML algorithms for image recognition, the trained weights and biases
are assigned to several parts of the image that serve as the features so that they
become indistinguishable from one another. Based on the knowledge on these

Introduction to Advanced Information Technology 37

Fig. 13 Classification task input per image

distinctions, the recurrent neural network can be activated for several tasks like
image recognition, object and face detection, and image recognition using a set of
activation functions. The training examples (i.e., images) can be both labeled for
supervised learning and unlabeled for unsupervised learning. The algorithm regards
each input image as an array of pixels translated as a matrix. This matrix usually
pertains data in the form of Height � Width � Dimension. To illustrate how this
works, consider an image of 20 pixels� 15 pixels � 1 where the 1 denotes the RGB
color. The range of the numbers that are stored in the matrix is referred to as the color
depth. Hence, the color range strongly dictates the maximum number of colors that
can be used. For RGB colors that are a mixture of red, green, and blue often used in
images, this range is from 0 to 255. After converting the matrices to a plethora
(sometimes millions) of features, labels can be added to the images to train the
model.

In Fig. 13, a training example is shown for an image recognition algorithm that is
trained perform a classification task. Figure 14 depicts how training images are
labeled for image recognition algorithms that carry out detection and segmentation
tasks.

Whereas in Fig. 13 the entire image is labeled, in Fig. 14 the objects in the image
are “boxed” with a red line. Unless programmed to do so, an image recognition
algorithm does not provide a “boxed” picture as output but only a tag (if any).

3.4.4 Process Mining

The purpose of process mining is to discover a process in the context of an
organization and potentially make predictions or prescriptions about how the process
takes place. Although in the past most processes were carried out by hand, nowadays
most activities within an organization are performed using a computer. The fact that
most processes are now carried out using a computer makes process mining easier
and more predictable. When carrying out actions via a computer, a log of activities is

38 B.-J. Butijn

Fig. 14 Image recognition task with different classes of labels

created containing all data related to the sequence of activities a user has carried out.
Specialized process mining algorithms can be used to mine a process from a set of
logs. These algorithms discern several activities from each individual activity log to
identify sequences that are shared across all provided audit logs. There are several
statistical techniques available for this purpose but the most popular is clustering that
is used for description of a process. AI and machine learning can further help in
process description by detecting anomalies and finding processes that are similar
based on an example.

When a process has already been discovered and laid out, diagnosismight also be
useful. Consider for example the case where a process is known to be performed
sub-optimal. A sub-optimal performance of a process might have many causes. ML
can be harnessed to find the causes of a problem by reasoning back and generating a
root-cause analysis of the problem. If any problems have been identified during the
execution of a process, ML can also be employed to classify these problems. In turn,
the classification of the problems makes it easier to remedy them. The evaluation of
the changes that may have occurred to the process over time might also be mapped
using ML to spot trends.

Knowing how processes have been carried out in the past is useful to prevent
errors, delay, and other problems in the future. Machine learning based process
mining is also employed in practice to monitor ongoing processes and make pre-
dictions about the next event that will occur, how the process will influence certain
outcomes, or even the final outcome of a process. Similar to other AI applications,
once a machine has learned how to predict events or outcomes it can act prescriptive.
For instance, when a process will occur during a process it can send an email to the
appropriate person to notify them of the problem. Or, when the AI is advanced
enough, activate robots or programs to solve the problem.

3.4.5 Robotics

Robots are perhaps the most classical picture that we have in our minds when we
imagine AI. However, robots do not necessarily possess AI to perform their tasks.
The word robot was first introduced by Karel Čapek in 1920 with the connotation
that we know it for today. In Czech the word “robota”means “labor” or “compulsory
labor.” A robot is a machine that performs physical labor in the form of one or many
steps, usually in a specific sequence. In the car industry for instance welding robots
are now commonplace to perform welding tasks. Robots have the following
characteristics:

Introduction to Advanced Information Technology 39

1. All robots are composed of a material mechanical construction that allows it to
interact with its physical space and to manipulate it. This construction can include
several sensors to perceive the environment, and mechanical instruments to
perform actions.

2. Robots need a power supply to function and feed their mechanics with power.
Not all robots use electricity for this purpose, e.g., steam is another supply of
power that can be used.

3. At least some sort of algorithm is needed to instruct the robot what to do and how.
The absence of the computer program would mean that the robot is a piece of
simple machinery. Because the program instructs the robot what to do it is able to
operate in the physical space.

At first glance, robots and computer programs seem alike and even interchange-
able. An important difference between robots and computer programs is that a
program does not carry out a task in physical space but rather only virtually
(Luckcuck et al., 2019). The physical activities are made possible because robots
are a combination of software and hardware components. Some of the software used
for robots is simply an algorithm that always performs the exact same steps, or is
programmed by a user to follow a sequence of different steps. More advanced
robotics that employ AI to determine the sequence of steps they need to take are
called autonomous robotic systems (Luckcuck et al., 2019). Like most applications
of AI, autonomous robotic systems touch upon ethical and legal considerations,
however compared to other AI applications safety is an even more import aspect. As
autonomous AI based systems can manipulate their environment, they can physi-
cally harm their environment, including humans.

To prevent unsafe situations, the physical environment of the robot can be
modeled. Two approaches are predominantly used for this purpose: the workplace
of the robot is modeled or the environment itself is continuously monitored. The first
approach has been proven to be extremely difficult in dynamic environment where
all potential future circumstances that may lead to unsafe situations need to be
captured. Continuously monitoring the robot leads to similar problems in that unsafe
situations need to be known in advance in order for them to be prevented. Providing
trust and required certification evidence is challenging for auditors (Luckcuck et al.,
2019). Formal methods are a commonplace to ensure the correctness and safety of

(software) systems, and thus to provide trust and certification evidence. However,
hitherto there is not one uniform widely accepted formal method that has been
adopted for the development of autonomous robotics. Thus, developers are provided
with few guidelines to select the appropriate formal method to build and verify an
autonomous robot (Kossak & Mashkoor, 2016). More important, the technology for
autonomous robotics is still in its infancy. Consequently, regulations on the topic are
still being developed, making it difficult for certification bodies to establish criteria
for an audit (Webster et al., 2014). Besides these safety concerns, another notable
problem is how to coordinate swarms (several) of autonomous robots that have to
operate in concert to attain a goal. Because these swarms magnify the pre-existing
problems with autonomous robotics while adding a coordination problem. The
introduction of machine learning enhances the complexity of autonomous robotic
systems even further by obfuscating how the robot has made its decisions making it
hard to monitor.

4 Cloud Computing

Cloud computing is a term used for computing services delivered via the internet.
These services encompass a broad array of computing resources that are nowadays
offered by hundreds of providers like Amazon, Google, Microsoft, IBM, and
VMware. Although the term is often used, it is often ill defined. The US National
Institute of Standards and Technologies (NIST) provides a broadly accepted and
concise description of the generic properties of cloud computing (Mell & Grance,
2011):

40 B.-J. Butijn

• On-demand Self Services: Any client is able to procure computing resources
without any human interaction.

• Broadly Accessible: Standard mechanisms and protocols enable the access to the
cloud computing resources.

• Pooled Resources: A cloud computing service provider has a pool of computing
resources that are allocated and provided to clients on demand.

• Rapid Elasticity: Computing resources can easily be provided, scaled up and
down based on the clients’ requirements and demands.

• Measured Service: A cloud computing system charges a client based on the
resources used. To enable this feat the system must be able to automatically
monitor, control, and report to the client how much of the resources have
been used.

Hereafter the components of a cloud computing architecture are further explained
in Sect. 4.1. The ecosystem of cloud computing is further described in Sect. 4.2.

4.1 Cloud Computing Architecture

To support cloud computing most cloud computing providers employ a three-
layered architecture. The architecture encompasses a service layer, resource abstrac-
tion and control layer, and a physical resource layer. This architecture is depicted in
Fig. 15.

According to the US NIST definition of cloud computing, the service layer of the
services a cloud provider provides typically encompasses three components (Liu
et al., 2011):

Introduction to Advanced Information Technology 41

1. Infrastructure as a Service (IaaS)
2. Software as a Service (SaaS)
3. Platform as a Service (PaaS)

The IaaS component provides the computing resources to the client. These
resources include virtual machines (VMs), data storage, connected networks, and
other utilities through a service model. The promise and premise of cloud computing
is founded on the hardware the cloud provider provides. SaaS is the next component
in a cloud computing service layer, that refers to the delivery of an application. These
applications are delivered via the network (infrastructure) to users of the applica-
tions. Users of SaaS divided into several groups: organizations that give access to the
software applications, the administrators charged with the configuration of the
software application, and end users. For each cloud computing provider, there are
several manners to calculate the costs of deploying an application. Some cloud
providers charge based on the number of end users that use the application, others
on the time used, volume of the data stored or its duration. The PaaS component
binds the other two layers together and provides a platform for the client of a cloud
provider to use tools and other resources to develop, test, and deploy their applica-
tions. During the life span of the application, the PaaS layer also enables the
management of the hosted application. Among the users of the PaaS are application
developers, testers, owners, and administrators.

Between the service layer and the physical resource layer is the abstraction and
control layer. The abstraction and control layer are employed by cloud providers to

Fig. 15 Reference
architecture cloud
computing

control the accessibility to physical cloud computing resources. To enable the
management and controlling of the physical resources, software abstraction in the
form of hypervisors, virtual machines, and virtual data storage is utilized. The layer
is especially important because it is used to allocate computing resources to clients,
control access, and compute costs. The bottom most layer is the physical resource
layer. All physical computing resources like CPUs, memory, networks, and data
storage facilities are part of this layer. Most physical computing resources also need
a plant with their own resources where they are installed. These plants and coherent
facilities are also part of the physical layer.

42 B.-J. Butijn

4.2 Cloud Computing Ecosystem

A cloud computing ecosystem encompasses several actors. There are cloud clients,
providers of the cloud, cloud carriers, brokers of the cloud and auditors. Within the
ecosystem each of these actors are entities that are involved in the processes that take
place using the cloud. Clients of the cloud provider make use of the services a cloud
provider provides. Cloud providers usually offer a catalogue of the services they
provide from which the cloud client can make selection. After selecting the desired
services, the clients of the cloud provider can immediately make use of it. The
services provided by a cloud provider are not for free and a service agreement for
payments must be made. Not only the payment terms for the services are important.
Clients of a cloud provider might have specific technical requirements for the
services they consume. Service Level Agreements (SLAs) are commonly used to
stipulate the technical requirements and performance the client and provider have
agreed upon. These technical requirements may include specific details on the level
of security, quality of the services, and potential remedies when the service fails to
deliver.

Cloud providers are entities tasked with guaranteeing the availability of cloud
services to interested clients. In effect this task includes providing the required
infrastructure, managing and running the clouds’ software, and providing access to
clients of the cloud via a network. Maintenance is another task of the cloud provider
that involves servicing any software and updating databases used by the clients.
Because the clients develop the software applications themselves, cloud providers
often offer several development and management tools for their platform. Some
examples of these tools are integrated development environments (IDEs) and soft-
ware development kits (SDKs). These tools aid the clients in developing and
deploying their application on the platform of a cloud provider. Although clients
can deploy and control their application via the provider, they have no control over
the operating system and other aspects of the platform.

Recently cloud computing has become very complex and this makes it hard for
cloud clients to manage their consumed services. This need is addressed by cloud
brokers that indirectly offer the services of a cloud provider. Cloud brokers provide
service intermediation by enhancing a service that is originally provided by a cloud

provider to enable some additional capability. Sometimes cloud brokers aggregate
services from several cloud providers into one main service. Service arbitrage is akin
to aggregating services with the difference being that the arrangement of the services
is flexible.

Introduction to Advanced Information Technology 43

5 Conclusions

The complexity of recent novel technologies like blockchain, AI, and cloud com-
puting constitute a genuine challenge to IT-auditors tasked with auditing these IS to
provide assurance. The first step towards a clear understanding of how these
complex technologies can be audited is to understand the technology itself. This
chapter provides the basis of such understanding. Blockchain technology is a
complex technology because many sophisticated technologies are combined to
create one IS that is able to process transactions without a trusted intermediary like
a bank. Smart contracts add more complexity and potential to the technology by
allowing for conditional transaction logic. Combined, this constitutes to a unique
technology stack.

The term artificial technology is often used for a wide variety of algorithms with
different tasks. In this chapter we discussed that the type of algorithm employed and
how it learns to perform its task determines how to investigate a particular AI
algorithm. To provide a broader perspective, we explain some of the fields for
which AI is employed. This overview clearly shows that the term AI should be
nuanced in terms of the algorithms discussed, and the task at hand.

Cloud computing is another complex technology that is explained in this chapter.
A key takeaway from this discussion is that the term cloud computing is not always
concisely used. The definition suggested by the NIST provides clarity by stating the
properties of cloud computing. Cloud computing has a three-layered technology
stack, that generally speaking provides three types of services to its clients. Nowa-
days a comprehensive ecosystem has developed around cloud computing. Within
this ecosystem there are several actors that fulfill their own role.

References

Androulaki, E., Barger, A., Bortnikov, V., Cachin, C., Christidis, K., De Caro, A., Christidis, K., De
Caro, A., Enyeart, D., Ferris, C., Laventman, G., Manevich, Y., Muralidharan, S., Murthy, C.,
Nguyen, B., Sethi, M., Singh, G., Smith, K., Sorniotti, A., ... Yellick, J. (2018, April).
Hyperledger fabric: A distributed operating system for permissioned blockchains. In Proceed-
ings of the Thirteenth EuroSys Conference (pp. 1–15).

Ashmore, R., Calinescu, R., & Paterson, C. (2021). Assuring the machine learning lifecycle:
Desiderata, methods, and challenges. ACM Computing Surveys (CSUR), 54(5), 1–39.

Ayodele, T. O. (2010). Types of machine learning algorithms. New Advances in Machine Learning,
3, 19–48.

44 B.-J. Butijn

Back, A. (2002, augustus 1). Hashcash: A denial of service counter-measure. Hashcash. Retrieved
from http://www.hashcash.org/papers/hashcash.pdf

Bishop, C. M. (2006). Pattern recognition and machine learning, 128(9) Springer
Buterin, V., Wood, G., & Wilcke, J. (2016). Ethereum homestead documentation. Ethereum

Community. Retrieved from https://ethdocs.org/en/latest/
Chaum, D. L. (1979). Computer systems established, maintained and trusted by mutually suspi-

cious groups. Electronics Research Laboratory, University of California.
Gatt, A., & Krahmer, E. (2018). Survey of the state of the art in natural language generation: Core

tasks, applications and evaluation. Journal of Artificial Intelligence Research, 61, 65–170.
Kossak, F., &Mashkoor, A. (2016, May). How to select the suitable formal method for an industrial

application: A survey. In International Conference on Abstract State Machines, Alloy, B, TLA,
VDM, and Z (pp. 213–228). Springer.

Lamport, L., Shostak, R., & Pease, M. (2019). The Byzantine generals problem. In Concurrency:
The works of Leslie Lamport (pp. 203–226). Association for Computing Machinery.

LeBreton, J. M., & Senter, J. L. (2008). Answers to 20 questions about interrater reliability and
interrater agreement. Organizational Research Methods, 11(4), 815–852.

Liu, F., Tong, J., Mao, J., Bohn, R., Messina, J., Badger, L., & Leaf, D. (2011). NIST cloud
computing reference architecture. NIST Special Publication, 500(2011), 1–28.

Luckcuck, M., Farrell, M., Dennis, L. A., Dixon, C., & Fisher, M. (2019). Formal specification and
verification of autonomous robotic systems: A survey. ACM Computing Surveys (CSUR), 52(5),
1–41.

McCarthy, J. (1995). What is artificial intelligence? Annali di Matematica Pura ed Applicata., 169,
321–354.

Mell, P., & Grance, T. (2011). The NIST definition of cloud computing. National Institute of
Standards and Technology.

Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system (Decentralized Business
Review, 21260). Satoshi Nakamoto Institute.

Palmer, M., Gildea, D., & Kingsbury, P. (2005). The proposition bank: An annotated corpus of
semantic roles. Computational Linguistics, 31(1), 71–106.

Pouyanfar, S., Sadiq, S., Yan, Y., Tian, H., Tao, Y., Reyes, M. P., Shyu, M.-L., Chen, S.-C., &
Iyengar, S. S. (2018). A survey on deep learning: Algorithms, techniques, and applications.
ACM Computing Surveys (CSUR), 51(5), 1–36.

Reiter, E., & Dale, R. (1997). Building applied natural language generation systems. Natural
Language Engineering, 3(1), 57–87.

Samuel, A. L. (1959). Some studies in machine learning using the game of checkers. IBM Journal
of Research and Development, 3(3), 210–229.

Sherman, A. T., Javani, F., Zhang, H., & Golaszewski, E. (2019). On the origins and variations of
blockchain technologies. IEEE Security & Privacy, 17(1), 72–77. https://doi.org/10.1109/
MSEC.2019.2893730

Szabo, N. (1997). Formalizing and securing relationships on public networks. First Monday.
Szabo, N. (2005). Bit Gold. Nakamoto Institute. Retrieved from https://nakamotoinstitute.org/bit-

gold/
Webster, J. J., & Kit, C. (1992). Tokenization as the initial phase in NLP. In COLING 1992 Volume

4: The 14th International Conference on Computational Linguistics.
Webster, M., Cameron, N., Fisher, M., & Jump, M. (2014). Generating certification evidence for

autonomous unmanned aircraft using model checking and simulation. Journal of Aerospace
Information Systems, 11(5), 258–279.

Xu, X., Weber, I., Staples, M., Zhu, L., Bosch, J., Bass, L., Pautasso, C., & Rimba, P. (2017, April).
A taxonomy of blockchain-based systems for architecture design. In 2017 IEEE International
Conference on Software Architecture (ICSA) (pp. 243–252). IEEE.

Zheng, Z., Xie, S., Dai, H. N., Chen, W., Chen, X., Weng, J., & Imran, M. (2020). An overview on
smart contracts: Challenges, advances and platforms. Future Generation Computer Systems,
105, 475–491.

http://www.hashcash.org/papers/hashcash.pdf
https://ethdocs.org/en/latest/
https://doi.org/10.1109/MSEC.2019.2893730
https://doi.org/10.1109/MSEC.2019.2893730
https://nakamotoinstitute.org/bit-gold/
https://nakamotoinstitute.org/bit-gold/

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

http://creativecommons.org/licenses/by/4.0/

The images or other third party material in this chapter are included in the chapter's Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter's Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

Introduction to Advanced Information Technology 45

https://doi.org/10.1109/MSEC.2019.2893730

	Introduction to Advanced Information Technology
	1 Introduction
	2 Blockchain Technology
	2.1 Basic Notions of Blockchain Technology
	2.2 Smart Contracts
	2.3 An Overview of Blockchain Architectures

	3 Artificial Intelligence
	3.1 How Machines Learn
	3.2 Deep Learning and Neural Networks
	3.3 Measuring the Accuracy of Machine Learning Algorithms
	3.4 Using AI in Practice
	3.4.1 Natural Language Processing
	3.4.2 Speech Recognition
	3.4.3 Image Recognition
	3.4.4 Process Mining
	3.4.5 Robotics

	4 Cloud Computing
	4.1 Cloud Computing Architecture
	4.2 Cloud Computing Ecosystem

	5 Conclusions
	References

