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Abstract 

Terrestrial net primary production (NPP) is a fundamental Earth system variable 
that also underpins resource supply for all animals and fungi on Earth. We anal-
ysed recent past NPP dynamics and its drivers across southern Africa. Results 
from the Dynamic Global Vegetation Model (DGVM) LPJ-GUESS correspond 
well with estimates from the Moderate Resolution Imaging Spectroradiometer 
(MODIS) satellite sensor as they show similar spatial patterns, temporal trends, 
and inter-annual variability (IAV). This lends confidence to using LPJ-GUESS 
for future climate impact research in the region. Temporal trends for both datasets 
between 2002 and 2015 are weak and much smaller than inter-annual variability 
both for the region as a whole and for individual biomes. An increasing NPP 
trend due to CO2 fertilisation is seen over the twentieth century in the LPJ-
GUESS simulations, confirming atmospheric CO2 as a long-term driver of 
NPP. Precipitation was identified as the key driver of spatial patterns and inter-
annual variability. Understanding and disentangling the effects of these changing 
drivers on ecosystems in the coming decades will present challenges pertinent to 
both climate change mitigation and adaptation. Earth observation and process-
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based models such as DGVMs have an important role to play in meeting these 
challenges. 

26.1 Introduction 

Plant photosynthesis on land takes up about 120 billion tons of carbon (C) per year, 
which is equivalent to 440 billion tons of CO2 (Friedlingstein et al. 2020). This is 
about 10 times more than the global annual CO2 emissions of 43 billion tons of CO2 
(Friedlingstein et al. 2020). About half of this uptake is used by plants as respiration 
to maintain their metabolism and for nutrient uptake (Gonzalez-Meler et al. 2004). 
The rest is available as net primary production (NPP) to grow new biomass, replace 
leaves and fine roots, transfer sugars to mycorrhizal fungi in the soil, and produce 
root exudates and biogenic volatile organic compounds (Chapin et al. 2011). 

NPP is the carbon gained by plants using photosynthesis at the ecosystem level 
after subtracting the respiration costs, and can thus be calculated as the gross 
primary production (GPP) minus plant autotrophic respiration (Ra) (Chapin et al. 
2011). NPP is important for providing fundamental resources for all animals and 
fungi on Earth including ecosystem services for people such as food, fibre, and 
timber production (Melillo et al. 1993; Abdi et al. 2014; Ardö  2015; Pan et al. 2015). 
The importance for human society can also be illustrated through the large fraction 
of NPP used by humans, which has been estimated as human appropriation of net 
primary production (HANPP) (Fetzel et al. 2012). HANPP is currently estimated to 
be about 25% of global NPP (Haberl et al. 2007; Niedertscheider 2011; Abdi et al. 
2014; Andersen and Quinn 2020). 

The main direct drivers of NPP include: temperature, precipitation, solar radia-
tion, the CO2 concentration in the atmosphere, nutrient availability, and vegetation 
structure such as the amount of leaves per ground area (Heisler-White et al. 2008; 
Reeves et al. 2014; Gao et al. 2016; Feng et al. 2019; Ji et al.  2020; Zhang et al. 
2021). Atmospheric CO2 influences NPP both directly as the photosynthesis of 
plants with the common C3 photosynthesis partly CO2-limited, and indirectly, as 
many plants reduce stomatal conductance under enhanced CO2 levels, which can 
lead to more conservative water use (Archibald et al. 2009; Reeves et al.  2014; Xu  
et al. 2016). In savannas, these plant-physiological CO2 effects can lead to complex 
changes in vegetation dynamics and fire as plants with C4 photosynthesis, which are 
most savanna grasses, benefit much less from increasing CO2 than woody plants, 
which can lead to woody encroachment (Midgley and Bond 2015). Terrestrial NPP 
patterns are expected to change in the future in response to these drivers and human 
population dynamics, thus necessitating assessment of NPP sensitivity to climate 
and other environmental change (Mohamed et al. 2004; Reeves et al.  2014). The 
overall vegetation NPP in warm dry regions, such as most of southern Africa is 
commonly mostly limited by precipitation or the amount of available moisture 
(Nemani et al. 2003; Hickler et al. 2005; Ji et al.  2020).
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Given that NPP is one of the most variable components of the terrestrial C 
cycle, ecologists aim to make accurate estimates of this component when conducting 
research on terrestrial ecosystems, C cycles, and climate change (Sala and Austin 
2000; Yu et al.  2018). Answering important questions concerning the global C 
balance, and predictions of the effects of global climate change rely on estimates 
of this fundamental quantity (Sala and Austin 2000). However, directly measuring 
GPP and NPP in the field is close to impossible and hence researchers resort to 
estimating the vegetation production components (Clark et al. 2001; Chapin et al. 
2011; Peng et al. 2017). 

There are various ways to estimate NPP across large extents and this includes: 
(1) field surveys (and subsequently extrapolating field measurements for local NPP 
to larger regions, using a vegetation map), (2) Earth Observation-based products, 
which are also informed by field survey, and (3) process-based ecophysiological 
modelling (Ruimy et al. 1994; Zhao et al. 2005). In this chapter, we focus on the 
latter two. Temporal trends, particularly if shown by both of these two approaches, 
will highlight whether there is increase (greening) or decrease (browning) of NPP 
in the study region (Zhu et al. 2016). 

Southern Africa is one of the regions identified as most vulnerable to climate 
change (Pan et al. 2015; Ranasinghe et al. 2021; Chap. 3). Precipitation is expected 
to decrease over the summer rainfall region of southern Africa, and with the drying 
effect of increased temperature will thus lead to a robust and pronounced decrease 
in soil moisture over the region (IPCC 2021; Chaps. 6 and 7). In the summer 
rainfall areas, this is due to the El Niño/Southern Oscillation phenomenon (ENSO) 
which is negatively correlated with the amount of rainfall during the summer season 
in southern Africa (Malherbe et al. 2015; Chap. 6). Furthermore, there is high 
confidence in projected mean precipitation decreases in west southern Africa and 
medium confidence in east southern Africa by the end of the twenty-first century 
(Ranasinghe et al. 2021; Chap. 7). 

Climate change will challenge agriculture, forestry, water systems, health, and 
the adaptive capacity of the natural ecosystems of the region (Pan et al. 2015). 
Robust projections of NPP will be highly relevant to meeting these coming 
challenges. However, in order to produce such projections, a solid understanding of 
the current NPP dynamics and drivers must be established. To this end, we seek to 
shed light on the following research questions: (1) what are the current NPP spatial 
distribution and temporal trends in southern Africa? (2) how consistent are the 
estimates of NPP from different methods? (3) what are the drivers of the dynamics 
that are producing these spatial patterns and temporal trends? and (4) can process-
based models give robust estimates of future NPP by capturing these dynamics? 
Therefore, in this chapter, we: (1) examine and compare spatial and temporal NPP 
patterns for southern Africa derived from a Dynamic Global Vegetation Model 
(DGVM) and Earth observation-based estimates and (2) investigate some possible 
drivers (climate variables and atmospheric CO2 concentration) of NPP in the region. 
(3) Furthermore, we subset our data using a well-known biome map to determine 
the NPP patterns and drivers for different ecosystems.

http://doi.org/10.1007/978-3-031-10948-5_3
http://doi.org/10.1007/978-3-031-10948-5_6
http://doi.org/10.1007/978-3-031-10948-5_7
http://doi.org/10.1007/978-3-031-10948-5_6
http://doi.org/10.1007/978-3-031-10948-5_7
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26.2 Materials and Methods 

26.2.1 Study Region 

The southern African region (here defined as −35.0 S to −20.0 S and 13.5 E to 
35.0 E) is located on the southernmost part of the African continent consisting 
of several countries, namely: Angola, Botswana, Lesotho, Malawi, Mozambique, 
Namibia, South Africa, Swaziland, Zambia, and Zimbabwe. Southern Africa has 
both low-lying coastal areas, and mountains with varied terrain, ranging from 
forest and grasslands to deserts. Furthermore, the region has diverse ecoregions 
that includes grassland, bushveld, Karoo, savanna, and shrublands (Rutherford et 
al. 2006; Schoeman and Monadjem 2018). The climate across southern Africa 
varies from arid conditions in the west to humid subtropical conditions in the north 
and east, while much of the central part of southern Africa is classified as semi-
arid (Cooper et al. 2004; Daron 2015). Despite the wide range of climate types, 
agriculture is a critical sector for all of the economies of southern African countries, 
so the effects of climate change on NPP and the knock-on effects on agricultural 
productivity, ecosystem service development, and food security are highly relevant 
across the study region (Gornall et al. 2010). 

26.2.2 Data Sources 

26.2.2.1 Earth Observation Data 
MODIS and other Earth observation missions are essential tools for the development 
and evaluation of Earth system models predicting global ecosystem changes, which 
are an important information source for political decision-makers (Simmons et al. 
2016; Chaps. 24 and 29). The use of Earth observation data allows the monitoring 
of different ecosystem variables (e.g. vegetation/biomass changes, surface moisture 
dynamics, etc.) with high spatial resolution and short temporal intervals (Gao et al. 
2013). Earth observation data from various sources has become a valuable tool for 
analysing vegetation productivity in combination with in situ NPP estimates (Zhao 
et al. 2005; Fukano et al. 2021). A variety of light use efficiency (LUE) models have 
been developed (Running et al. 2004; Zhang et al. 2015) to calculate GPP from 
measured absorbed photosynthetically active radiation (APAR) (Xiao et al. 2019). 
Earth observation data have also been integrated with machine learning approaches 
(Xiao et al. 2008; Jung et al. 2009) and process-based models (Hazarika et al. 2005; 
Liu et al. 2019) for quantifying C fluxes (e.g. GPP and NPP). Autotrophic respiration 
can be estimated using modelling approaches that use daily climate variables and 
estimated biomass, and this can then be subtracted from GPP to derive NPP (Clark 
et al. 2001; Ardö  2015). In addition to estimates of these fluxes, the so-called 
vegetation indices (formed by combining two or more spectral bands) have been 
developed to characterise different aspects of vegetation from Earth observation 
data (Masoudi et al. 2018). Studies have shown the normalised difference vegetation

http://doi.org/10.1007/978-3-031-10948-5_24
http://doi.org/10.1007/978-3-031-10948-5_29
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index (NDVI) to be a good proxy for NPP at high spatial resolution (Zhao et al. 
2005; Pachavo and Murwira 2014; Cui et al. 2016). NDVI is expressed as: 

.NDVI = (NIR − RED)

(NIR + RED)
(26.1) 

where NIR and RED are reflectance values in the near-infrared and red wavelengths, 
respectively (Tucker 1979). NDVI values range from +1.0 to −1.0, where negative 
values may be representative of cloudy conditions or areas over water bodies. 
Areas of barren rock, sand, or snow show very low NDVI values of 0.1–0; sparse 
vegetation such as shrubs and grasslands or senescing crops may show moderate 
NDVI values of 0.2–0.5; and high NDVI values of 0.6–0.9 correspond to dense 
vegetation found in temperate and tropical forests or crops at their peak growth 
stage (Higginbottom and Symeonakis 2014). 

26.2.2.1.1 Earth Observation Platforms and Products 
This study primarily utilised time series information from MODIS sensors onboard 
the satellites TERRA and AQUA (Minnett 2001; Yang et al. 2006; Cao  2020). Both 
platforms have sun-synchronous orbits with a revisit time of 1–2 days (Savtchenko 
et al. 2004). Data is acquired in 36 spectral bands with wavelengths ranging from 
0.4 to 14.385 μm (Cao  2020). 

For this study, NPP was taken from the MOD17A3 (UM Collection 5) annual 
totals. The MOD17 products are the first MODIS operational data sets to regularly 
monitor global vegetation productivity (Zhao et al. 2005; Yu et al.  2018). Details of 
the MODIS NPP derivations are provided in the section below. 

NDVI estimates were taken from the MOD13C2 Collection 6, 16-day product 
(at monthly intervals) which is at 1 km spatial resolution and is provided in 
0.05 degree geographic climate modelling tiles (Solano et al. 2010). The 16-day 
product was processed to mean annual values in R. This dataset has been used 
for modelling global biogeochemical and hydrologic processes in both global and 
regional climates (Didan 2015). Furthermore, the data have been utilised in studies 
to characterise land surface biophysical properties and processes, including primary 
production and land cover conversion (Solano et al. 2010; Didan 2015). 

In addition, NDVI time series from the Advanced Very-High-Resolution 
Radiometer (AVHRR) sensor on board of the National Oceanic and Atmospheric 
Administration’s (NOAA) polar-orbiting satellites was used to investigate NDVI 
long-term trends. Mounted on a polar-orbiting satellite it acquires images of the 
visible, near-infrared, and thermal infrared parts of the electromagnetic spectrum 
(Kidwell 1995; Sus et al. 2018). The sensor has a spatial resolution of approximately 
1.1 km at satellite nadir and covers the time period from 1981 to 2015 (Trishchenko 
et al. 2002). NOAA AVHRR is a widely used sensor due to its long-term monitoring 
period and retrieval of various land surface parameters such as land cover/use 
dynamics, NDVI, Land Surface Temperature (LST), and Albedo (Forkel et al. 
2013; Wang et al. 2020; Gulev et al. 2021; Urban et al. 2013).
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26.2.2.1.2 MODIS NPP Derivation 
The MOD17 algorithm is based on the original LUE logic of Monteith (1972). Input 
data for the model include climatic variables such as temperature, solar radiation, 
vapour pressure deficit (VPD) from meteorology dataset from NASA global 
modelling and assimilation office (Running et al. 2004). MOD15 leaf area index 
and fraction of absorbed photosynthetically active radiation (FAPAR) products are 
also utilised (Running et al. 2004; Zhao et al. 2005). Land cover classification 
from MODIS MCD12Q1 data product is used (Running et al. 2004). A Biome 
Parameter Lookup Table (BPLUT) containing values of ε_max (Eq. 26.2) was  
derived and later updated (Running et al. 2004; Zhao et al. 2005). The table contains 
different vegetation types, temperature, and VPD limits and other biome-specific 
physiological parameters for respiration calculations (Running et al. 2004). The 
different vegetation types obtained from the land cover type 2 classification include: 
evergreen needleleaf forest, evergreen broadleaf forest, deciduous needleleaf forest, 
deciduous broadleaf forest, mixed forests, closed shrublands, open shrublands, 
woody savannas, savannas, grasslands, and croplands. Environmental multipliers 
represent limitations by low temperature and high VPD, and autotrophic respiration 
is estimated with a Q10 relationship (Zhao et al. 2005; Ardö  2015). The MOD17 
algorithm calculates daily GPP as: 

.GPP = εmax × 0.45 × SWrad × FPAR × f (VPD) × f (Tmin) (26.2) 

where εmax is the maximal, biome-specific light use efficiency (g C MJ−1), SWrad is 
incoming short-wave radiation [assuming 45% to be photosynthetic active radiation 
(PAR)], FPAR is the fraction of photosynthetically active radiation, f (VPD) and 
f (Tmin) are linear scalars reducing GPP due to water and temperature stress (Ardö 
2015). The model estimation utilises the fact that GPP is closely related to the APAR 
and that APAR can be measured continuously using Earth observation sensors (e.g. 
MODIS) (Cui et al. 2016; Xiao et al. 2019). The FPAR is estimated as a function 
of NDVI, derived from the standard MODIS land product (MOD15) (Eqs. 26.3 and 
26.4) (Running et al. 2004; Zhao et al. 2005; Gonsamo and Chen 2017). 

.
APAR

PAR
= NDVI (26.3) 

.FPAR = APAR

PAR
= NDVI (26.4) 

.GPP = εmax × PAR × NDVI × f (VPD) × f (Tmin) (26.5) 

.PsnNet = GPP − Rml − Rmr (26.6)
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NPP is calculated annually as: 

.NPP =
∑365

i=1
PsnNet − (

Rmo + Rg
)

(26.7) 

where PsnNet is the maintenance respiration by leaves (Rml) and fine roots (Rmr) 
and is calculated daily. Rmo is the annual maintenance respiration by all other living 
parts except leaves and fine roots, Rg is the annual growth respiration (Zhao et al. 
2005). 

The products were projected to a geographic grid while resampling to 0.5 degree 
using “average” resampling type in order to match the resolution of the climate input 
data used to drive our DGVM. Grid cells without valid MOD17 NPP (MOD12Q1 
land cover barren, water, or urban) were masked out from the LPJ-GUESS data 
in order to make the data sets comparable with identical spatial extent, land cover 
classes, and number of grid cells. The datasets were aggregated (annual sums for 
NPP, annual means for NDVI) to a 14-year annual time series from 2002 to 2015. 

26.2.2.2 Dynamic Vegetation Models 
A class of ecosystemmodels known as dynamic global vegetation models (DGVMs) 
have been developed to simulate vegetation dynamics and biogeochemical cycling 
either at regional or global scales (Prentice et al. 2007; Sitch et al. 2008; Smith et al. 
2014). DGVMs represent basic ecophysiological processes, such as photosynthesis, 
plant and soil respiration, C allocation, and plant growth, competition between 
plant types for resources (commonly light and water, increasingly also nutrients) 
and disturbances such as fire (Ardö 2015; Hantson et al. 2016). Simulating the 
impacts of climate change on ecosystems and feedback from ecosystems on climate, 
in particular via the terrestrial carbon cycle, has been a research priority (Prentice 
et al. 2007; Kelley et al. 2013). Subsequently, the representation of land-use has 
also received attention and has been integrated into DGVMs (Bondeau et al. 2007; 
Lindeskog et al. 2013; Pugh et al. 2019; Drüke et al. 2021). 

DGVM’s largest potential lies in process-understanding (Hickler et al. 2005) 
rather than short-term predictions, which can be even more accurate with empirical 
approaches. DGVMs are powerful tools to quantify spatial and temporal variations 
in ecosystem C fluxes and to analyse the underlying mechanisms of NPP at large 
scales (Tao et al. 2003; Yu et al.  2018). DGVMs have the potential to accurately 
explain how ecosystem processes will interact in future climatic conditions, CO2 
concentration, nitrogen deposition, land-use changes, and soil conditions (Melillo 
et al. 1993; Luo et al. 2004; Ardö  2015). DGVMs are driven with climate and 
other environmental data (e.g. soil properties and nutrient deposition) which can 
be either historical (observed) data sets or projections of past/future environmental 
conditions. 

26.2.2.2.1 LPJ-GUESS Model and Setup 
The Lund–Potsdam–Jena (LPJ) model has been developed as a process-based 
DGVM which can efficiently represent the land–atmosphere interaction and poten-
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tially be applied for broader global problems (Gerten et al. 2004; Sitch et al. 2003). 
The Lund–Potsdam–Jena General Ecosystem Simulator (LPJ-GUESS) framework 
was originally developed to add a more detailed representation of vegetation 
dynamics through a “forest-gap model” to the LPJ DGVM (Smith et al. 2001). Thus, 
LPJ-GUESS is an individual (or cohort) based model which combines biogeography 
and biogeochemistry typical of a DGVM with a comparatively more detailed 
individual and patch-based plant functional type (PFT) representation of vegetation 
structure, demography, growth, mortality, reproduction, carbon allocation, and 
resource competition (Smith 2001; Sitch et al. 2003). The model now includes an 
interactive nitrogen cycle (Smith et al. 2014), which can limit photosynthesis and 
is so important to constrain future potential CO2 fertilisation effects (Hickler et al. 
2015), and a representation of agricultural land and management (Lindeskog et al. 
2013). 

In the framework, productivity is simulated as the emergent outcome of growth 
and competition for light, space, and soil resources among woody plant individuals 
and a herbaceous understory in a number of a replicate patches (typically 15–50) 
representing “random samples” of each simulated locality or grid cell (Smith 2001). 
Natural, cropland, and pasture land cover types are distinguished and their fractional 
covers are prescribed from the dataset by Hurtt et al. (2011). Within the cropland 
land cover type, crop fractions from the MIRCA database (Portmann et al. 2010) are  
used and nitrogen fertiliser application rates from Zaehle et al. (2010) are prescribed. 

In this study, we used the standard version of the cohort-based LPJ-GUESS 
model using 20 replicate patches at a spatial resolution of 0.5◦ × 0.5◦. Climate forc-
ing data from the CRU JRA v2.0 dataset (details below) were used. Land-use dataset 
by  Hurtt et al.  (2011) was included. The global plant functional types (PFTs) anal-
ysed in our model were: boreal needleleaf evergreen (BNE), boreal shade-intolerant 
needleleaf evergreen (BINE), boreal needleleaf summergreen (BNS), temperate 
needleleaf evergreen (TeNE), temperate broadleaf summergreen (TeBS), shade-
intolerant broadleaf summergreen (IBS), temperate broadleaf evergreen (TeBE), 
tropical broadleaf evergreen (TrBE), tropical shade-intolerant broadleaf evergreen 
(TrIBE), tropical broadleaf raingreen (TrBR), C3 grasses (C3G), C4 grasses (C4G). 
The model output includes GPP, NPP (kg C m−2 year−1), respiration, carbon pools, 
burnt area fraction, and potential vegetation among other outputs. The model was 
run on a daily time step. All simulations were initialised with a 500 years spinup to 
allow vegetation, soil carbon and nitrogen pools to build up from “bare ground” to 
a “steady state” and then the full transient period (1901–2018) was simulated. Fire 
was enabled through the SIMFIRE-BLAZE fire model (Knorr et al. 2016; Nieradzik 
et al. 2015). 

26.2.2.3 Meteorological Data 
Precipitation, temperature, and solar radiation data from the CRU JRA v2.0 dataset 
were used for both driving the LPJ-GUESS simulations and for investigating the 
correlation between NPP and its potential drivers. As a basis, this dataset starts 
with the Japanese reanalysis (JRA) (Harada et al. 2016; Kobayashi et al. 2015) data 
produced by the Japanese Meteorological Agency (JMA). This is then adjusted,
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where possible, to align with the monthly values of the CRU TS 3.26 dataset (Harris 
and Jones 2019), a gridded land surface dataset based on meteorological station 
data produced by the Climatic Research Unit (CRU). The data availability spans 
from January 1901 to December 2017. The dataset is a 6-hourly, gridded time series 
of ten meteorological variables and is intended to be used to drive models of the 
global land surface and biosphere such as DGVMs. The variables are provided on a 
0.5 × 0.5 degree grid. 

26.2.3 Data Analysis 

NDVI time series from MODIS and AVHRR products along with MODIS NPP 
products were used to assess the vegetation productivity. NPP was simulated to 
assess whether the LPJ-GUESS model agrees with MODIS and AVHRR estimates 
by following the inter-annual variation of remotely estimated NPP and NDVI. This 
was to evaluate the model’s capability to reproduce past data and ultimately adopted 
for future predictions in southern Africa. 

The potential driving factors and trend analysis of NPP and NDVI were 
conducted per biome, according to the South African National Biodiversity Institute 
(SANBI) 2006 biome map (Fig. 26.1) (Rutherford et al. 2006). The biome map is 
made up of nine well-established biomes in South Africa which includes: Savanna, 
Grassland, Nama Karoo, Succulent Karoo, Fynbos, Albany Thicket, Forest, Indian 
Ocean Coastal Belt (IOCB), and Desert (Rutherford et al. 2006). This was to show 
the ecological and climatic variability experienced across the South African region. 
Although the study area covers southern Africa and not just South Africa, the 
SANBI biome was used because it has been studied extensively. Furthermore, the 

Fig. 26.1 South African National Biodiversity Institute (SANBI) 2006 biome map by Rutherford 
et al. (2006)
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study focuses on the dynamics and drivers of NPP per biome where actually the 
South African biomes extend into the upper regions of the study area. 

26.2.3.1 Analysis Software 
The R statistical programming language was used for processing and for statistical 
analysis of the data. MODIS R package (Mattiuzzi et al. 2017) was used to 
download and process MODIS data. We used the DGVMTools R package1 to 
perform comparisons, analysis, and plotting of the spatially explicit simulated and 
remotely sensed NPP distribution across the study region. DGVMTools is a high-
level framework for processing, analysing, and visualising DGVM data output 
which easily interfaces with both the raster package and base R functionality. The 
ggplot2 package (Wickham 2016) was used for additional plotting and linear trend 
analysis. 

26.2.3.2 Time Series Analysis 
The NDVI and NPP time series were analysed along with the key climate variables 
(precipitation, temperature, and solar radiation) over the period 2002–2015. The 
region experienced extreme rainfall events in the year 2000 which were far outside 
its normal variability (Dyson and van Heerden 2001; Smithers et al. 2001). 
Accordingly, the years 2000 and 2001 were excluded from the analysis since 
including them was found to produce spurious trends and thus produced misleading 
analysis and conclusions. The AVHRR NDVI time series were analysed from 1982 
to 2015 in order to gain some perspective of the longer NDVI trend. As these 
variables have different units and magnitudes, we derived aggregated standardised 
anomalies following Seaquist et al. (2008) and this is expressed as: 

.Standardised anomaly =

(
x − x

)

sd
(26.8) 

where x is the annual mean values, . x is the mean of the annual mean values, and sd 

is the standard deviation. 
Linear trends were fitted to NDVI and NPP time series to determine the 

productivity long-term trend (Higginbottom and Symeonakis 2014). Due to the large 
inter-annual variation and relatively short time series of our data, most trends are not 
statistically significant. The Mann-Kendall test (Mann 1945) was used to quantify 
the significance and only p < 0.05 was considered. We also analysed the response 
of LPJ-GUESS simulated NPP to atmospheric CO2 concentration by comparing the 
standard LPJ-GUESS simulation to one with atmospheric CO2 concentration fixed 
from 1901 at its corresponding value of 296.4 ppm.

1 https://github.com/MagicForrest/DGVMTools 

https://github.com/MagicForrest/DGVMTools
https://github.com/MagicForrest/DGVMTools
https://github.com/MagicForrest/DGVMTools
https://github.com/MagicForrest/DGVMTools
https://github.com/MagicForrest/DGVMTools
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26.2.3.3 Statistical Correlation Analyses 
We used Pearson’s product moment correlation coefficient (r) to quantify the level 
of agreement between LPJ-GUESS and MODIS NPP. To examine the relationship 
between different variables (NPP, NDVI, CO2, and different climate factors) Spear-
man’s rank correlation coefficient was used. This is because we are interested in 
monotonic relationships between these variables which do not necessarily need to be 
linear. Spearman’s coefficient is insensitive to any nonlinearity that could undermine 
the detection of a monotonic relationship between the variables. The coefficient 
ranges from −1 to  +1 and was examined using the “PerformanceAnalytics” R 
package (Peterson et al. 2020). Large positive values indicate strong agreement, 
large negative values indicate strong disagreement, and values near 0 indicate 
random agreement (Seaquist et al. 2008; Bon-Gang 2018). 

26.3 Results 

26.3.1 NPP Geographical Patterns 

The broad spatial patterns of NPP are as expected, with higher NPP in regions of 
higher rainfall and lower NPP in areas that experience extreme heat and receive 
less rainfall. In general, NPP simulated by LPJ-GUESS and estimated by MODIS 
showed similar spatial patterns, with Pearson’s r = 0.85 and Root Mean Squared 
Error (RMSE = 0.1446 kg C m−2 year−1). The main difference is lower LPJ-
GUESS simulated NPP values along the coastal regions (Fig. 26.2). Contrastingly, 
LPJ-GUESS showed higher NPP than MODIS as one moves in from the coast. The 
inter-annual dynamics of NPP on a gridcell level correspond reasonably well. This 
is indicated by Pearson’s correlation coefficients of the time series of the individual 

Fig. 26.2 Spatial distribution of modelled NPP and remotely sensed NPP averaged over time 
(2002–2015) to evaluate spatial patterns of NPP over the southern African region. The plot 
presents a strong linear relationship between LPJ-GUESS and MODIS of r = 0.85 and 
RMSE = 0.1446 (kg C m−2 year−1)
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Fig. 26.3 Pearson correlation and significance level of modelled NPP and Earth observation-
based NPP per gridcell, averaged over time (2002–2015). The plot presents a high correlation of 
LPJ-GUESS and MODIS NPP over most parts of the region with great significance level (p < 0.05) 
within the correlated areas 

grid cells with high statistical significance (p < 0.05) over most parts of the study 
region (Fig. 26.3). 

26.3.2 NPP Temporal Development 

When averaged over the whole study region, LPJ-GUESS simulated and MODIS-
estimated NPP showed good agreement in terms of the overall magnitude and inter-
annual variation (Fig. 26.4). The inter-annual variation was found to be large, annual 
values ranged from a maximum of over 0.5 kg C m−2 year−1 in 2006, to less than 
0.35 kg C m−2 year−1 (minima in 2003 and 2015). The time series also revealed a 
small tendency of the LPJ-GUESS model to simulate higher values than estimated 
with MODIS. However, when applying the Mann-Kendall test the trends showed no 
significance. 

Considering NPP times series per biome (Fig. 26.1; Chap. 3) gives a more 
nuanced view of the regional disparities between LPJ-GUESS and MODIS (Fig. 
26.5). The grass-dominated biomes (Grassland and Savanna) showed good agree-
ment in NPP magnitude between LPJ-GUESS and MODIS, the tree-dominated 
biomes (Forest, Albany Thicket, and Indian Ocean Coastal Belt) and Fynbos showed 
consistently higher NPP in MODIS than LPJ-GUESS. This pattern is reversed 
for the most arid biomes (Nama Karoo, Succulent Karoo, and Desert) where 
LPJ-GUESS simulates higher NPP. Both LPJ-GUESS and MODIS NPP showed 
a similar increasing but weak trend for the majority of the biomes (Fig. 26.5). 
However, on a per grid cell basis, the majority of the region shows no significant 
trends for both the LPJ-GUESS and MODIS NPP (Fig. 26.6b). 

Examination of simulated LPJ-GUESS NPP over a longer period (1901–2015) 
showed high inter-annual variation against a backdrop of increasing NPP (Fig. 
26.7b) caused by rising atmospheric CO2 (Fig. 26.7a). According to the model, NPP 
has increased by 18% since 1901. This is in agreement to the increasing trend for

http://doi.org/10.1007/978-3-031-10948-5_3
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Fig. 26.4 Temporal distribution of LPJ-GUESS modelled and MODIS-estimated NPP 
(kg C m−2 year−1) averaged over the whole southern Africa study region 

Fig. 26.5 Absolute values and linear trends of NPP (kg C m−2 year−1) and NDVI (unitless) per 
biome
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Fig. 26.6 (a) Trend in modelled and Earth observation NPP. (b) The significance in trends for 
both modelled and Earth observation NPP. The majority of the region shows no significant trends 
for both products 

2002–2015 (Fig. 26.4). This longer term trend in NPP is significant (Mann-Kendall 
p < 0.00005). 

The longer time series of AVHRR data averaged over the whole study area 
showed a strong increase in NDVI from 1982 to 2015 and a Mann-Kendall test 
of trend significance revealed high statistical significance with a p < 0.0048 (Fig. 
26.7b). Comparison of NPP and NDVI showed increasing trends (Figs. 26.5 and 
26.7b) for all biomes except for decreasing trends in the desert and flat trends in 
the IOCB for MODIS NDVI and NPP. However, the trends showed no significance 
for the Mann-Kendall test except for MODIS NPP in the Fynbos (p = 0.037) and 
forest (p = 0.016) (data not shown). The decadal scale fluctuations were apparent 
in the longer term time series with some periods of increasing and declining NPP, 
thus indicating that the increasing NPP observed for 2002–2015 is not necessarily a 
new phenomenon or a result of global change, but could simply be a consequence 
of decadal scale climate variability.
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Fig. 26.7 (a) Annual average NPP (kg C m−2 year−1) across the whole study region simulated 
by LPJ-GUESS with historically varying atmospheric CO2 concentration and CO2 fixed at values 
from the year 1901 (296.3785 ppm) and (b) Aggregated standardised anomalies of historical LPJ-
GUESS NPP (1901–2015) and AVHRR NDVI (1982–2015). This plot evaluates the trends and 
Inter-annual variability (IAV) of NPP over a longer time span 

26.3.3 NPP and NDVI Correlations 

The LPJ-GUESS and MODIS NPP showed high Pearson correlation coefficient 
(ranges from 0.68 to 0.82) throughout the biomes except for Fynbos (0.37) (Table 
26.1). The correlations between the two products showed significance of p < 0.001 
while Fynbos showed no significance. Succulent Karoo (0.49), Albany Thicket 
(0.50), and IOCB (0.16) showed no significance when comparing LPJ-GUESS NPP 
and MODIS NDVI while high and significant (p < 0.001) correlation was observed 
for the rest of the biomes (ranges from 0.64 to 0.91). The IOCB biome (0.36) showed 
low and not significant correlation when comparing MODIS NPP and NDVI, while 
the rest of the biomes showed significantly high correlations (ranges from 0.61 to 
0.93). 

26.3.4 Potential Driving Factors of NPP 

Precipitation showed similar inter-annual variation to that of LPJ-GUESS and 
MODIS NPP per biome, as demonstrated by significantly high correlations with
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Fig. 26.8 Aggregated standardised anomalies of precipitation, temperature, and solar radiation in 
comparison with both the modelled and Earth observed NPP per biome 

both MODIS (0.56–0.95) and LPJ-GUESS NPP (0.81–0.95) (Fig. 26.8 and Table 
26.1). However, there were two notable exceptions to this: the correlations between 
MODIS NPP and precipitation in the Desert (0.42) and Fynbos (0.42) biomes were 
low and not significant. In contrast, solar radiation and temperature showed negative 
correlations with MODIS and LPJ-GUESS NPP across all biomes, although they 
were not significant in most cases (Table 26.1). Of all the climate drivers, tem-
perature showed a significantly increasing trend with the Mann-Kendall p < 0.049 
for Succulent Karoo and 0.009 for Desert while the rest were not significant. This 
is consistent with global warming in areas of high inter-annual variability and 
relatively short time series (as is the case here). 

The model simulation in which atmospheric CO2 concentration was held con-
stant at 1901 levels (Fig. 26.7a) showed that increasing CO2 concentration is 
responsible for a large increase in NPP. This effect was built to be around +18% 
(+0.064 kg C m−2 year−1) by 2015. LPJ-GUESS NPP showed a slight decline 
without significant trend when the effects of increasing atmospheric CO2 were 
removed.
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26.4 Discussion 

26.4.1 Comparison of NPP from Modelling and Earth Observation 
Products 

The DGVM LPJ-GUESS and MODIS NPP products show similar spatial patterns, 
temporal trends, inter-annual variability, and good correlation (Figs. 26.2, 26.3, and 
26.4). The good correspondence and correlation is encouraging as both methods 
are largely independent and only share some common input variables (e.g. daily 
precipitation and temperature), but from different data sets. The correspondence 
between MODIS17 and LPJ-GUESS here appears to be slightly better than in 
comparison with an earlier LPJ-GUESS version applied to simulate all of Africa by 
Ardö (2015), which did not include land-use and nitrogen limitation to vegetation 
growth and had a different fire module. 

Both the MODIS and LPJ-GUESS estimates are to a greater or lesser extent 
model derived estimates and so subject to uncertainty in the parameters used, the 
input data and, in the case of LPJ-GUESS, uncertainty in the process represen-
tations. The MODIS estimate might be expected to be the more reliable as it 
uses Earth observation FPAR as an input (which means it is more constrained) 
(Myneni et al. 1999, 2002; Running et al. 2004), while FPAR in LPJ-GUESS 
emerges from complex equations that govern the growth of and competition between 
plant functional types (PFTs) and disturbances (Smith 2001; Sitch et al. 2003). 
It should also be noted that the MODIS NPP algorithm has been criticised, e.g., 
for its assumed temperature effects (Medlyn 2011), and the representation of 
environmental controls of NPP is not very sophisticated, see above. However, 
given that MODIS NPP uses Earth observation FPAR and so is in principle better 
constrained, we can interpret the comparison of LPJ-GUESS with MODIS as an 
evaluation of LPJ-GUESS to some extent. As we find good correspondence between 
the two, we can conclude that past and future projections for southern Africa are also 
reliable. 

LPJ-GUESS is commonly used to derive future projections to guide climate 
adaptation and mitigation measures, so this result is promising and indicates that 
LPJ-GUESS can be fruitfully applied to the study area. As a small caveat, it should 
be noted that the per biome comparisons between MODIS and LPJ-GUESS did 
show some disparities in the more arid and the more tree-dominated biomes. This 
is not surprising as we applied the standard global LPJ-GUESS configuration here 
and a global model cannot be expected to reproduce all the features of a diversely 
vegetated region such as southern Africa. Future studies would benefit from using a 
regionally parameterised version of LPJ-GUESS, in particular the inclusion of shrub 
PFTs to better represent the arid regions. 

All analysed time series products (LPJ-GUESS and MODIS NPP, and MODIS 
and AVHRR NDVI) show increasing trends for all the biomes except for the desert 
which showed a decreasing trend and grasslands which showed no trend (Figs. 26.5 
and 26.7b). One should note that the inter-annual variability for our study region 
is large compared to the magnitudes of these trends and so, when tested, these
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trends did not show statistical significance. This is consistent with other results that 
have pointed out that vegetation trends are mostly not statistically significant for our 
study region and the MODIS operational period (Samanta et al. 2011; Cortés et al. 
2021). However, an examination of the trends plotted spatially on a per gridcell basis 
(Fig. 26.6a) shows regional hotspots of statistical significant greening and browning. 
Furthermore it should be noted that even within a particular biome, different regions 
can show opposite trends (consider, for example, LPJ-GUESS in the western and 
eastern parts of the Fynbos biome in Fig. 26.6a) which is not apparent from the 
biome averaged results (Fig. 26.4). The LPJ-GUESS derived NPP over the whole 
southern Africa region shows a statistically significant rise since 1901 but with high 
IAV and decadal scale fluctuations due to internal climate variability or oscillations. 
Therefore, we can conclude the future NPP trajectory will be governed by both 
climate variability and long-term trends resulting from changing drivers due to 
global change. 

26.4.2 Drivers of NPP Patterns and Trends 

The spatial pattern of NPP, shorter-term temporal trends, and inter-annual variability 
appear to be mainly driven by gradients or changes in precipitation (Figs. 26.2, 
26.4, and 26.8). This can be seen, for example, with the high NPP occurring 
along the eastern coastal parts of the region (Fig. 26.2). This region receives the 
highest rainfall while the western and central part of the region experiences high 
temperatures and less rainfall (Botai et al. 2018). As outlined in the introduction, 
we expected this dominant role of precipitation as a driver of NPP variations. This 
is in agreement with the study conducted by Zhu et al. 2016, where they concluded 
that the greening in South Africa over the period from 1982 to 2009 is primarily 
driven by increasing precipitation. Recent climate projections show decreasing 
precipitation trends in southern Africa both for low and high warming scenarios, 
with corresponding increases in aridity and drought (IPCC 2021). Higher levels 
of warming result in stronger precipitation decreases, with the highest percentage 
decreases projected in the west of the region, which is already arid (IPCC 2021, 
Fig. SPM.5c). Our results indicate that, up to 2015, precipitation decreases have not 
yet caused widespread negative impacts on NPP as we can see slightly increasing 
trends in Figs. 26.4 and 26.7a, although there are some regional exceptions (Fig. 
26.6a). The potential effects of future drying on NPP and the consequences for 
ecosystems, ecosystem services, agriculture, and forestry remain an open question. 
To tackle this question, predictive methods such as DGVMs, with more detailed or 
regionally parameterized representations of land-use, or more empirical modelling 
approaches must be applied in combination with future climate projections and, 
ideally, informed by experimental work. 

The observed high negative correlation with solar radiation is likely due to the 
fact that precipitation is associated with cloud cover and therefore decreased solar 
radiation. This indicates that whilst solar radiation is essential for photosynthesis 
and therefore NPP, it is not a limiting factor to the same degree as precipitation and
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so is in fact not a driver of NPP in the study region (Nemani et al. 2003). The same 
was found by Hickler et al. (2005) (Fig. 3) for the Sahel region. 

In our study region, NPP shows a negative correlation with temperature. This is 
consistent with the fact that most of the study region is in the subtropical to warm 
temperate climate zones, so photosynthesis is unlikely to be temperature limited 
(not applicable for winter rain regions in the south west) and no positive correlation 
is expected (Nemani et al. 2003). Instead, this negative correlation may occur due 
to a combination of increased autotrophic respiration rates that accompany higher 
temperatures, a net reduction of photosynthesis due to decreased efficiency and 
heat stress at higher temperatures, and decreased soil water availability due to 
stronger atmospheric moisture demand. Among all the climatic variables analysed, 
only temperature in the Succulent Karoo and Desert biome showed statistically 
significant trends (increasing) from 2002 to 2015. Taking these findings together and 
putting them in the context of global change, it is likely that temperature will have 
an escalating and negative effect on NPP in these biomes in the coming decades, at 
least under moderate warming without unprecedented heat stress for the vegetation, 
which is not represented in the applied model version. 

According to LPJ-GUESS, the plant-physiological effects of increasing atmo-
spheric CO2 have been large and positive between 1901 and 2015 (Fig. 26.7a). 
However, the simulated CO2 effects over the last decades are only minor in similar 
arid environments (Hickler et al. 2005). The strong effects since the beginning of the 
last century are consistent with other global estimates. Ciais et al. (2012) estimated 
a pre-industrial GPP of 80 Pg year−1, which is substantially lower than the present 
estimate of about 120 Pg (Ciais et al., 2013; Friedlingstein et al., 2020). Using 
another independent method, Campbell et al. (2017) estimated a GPP increase of 
about 31% since the early last century. GPP and NPP are strongly related, NPP 
being about half of GPP (Ciais et al., 2013; Yu et al., 2018), which also applies to 
LPJ-GUESS (Ardö 2015). The CO2 effect is also in line with a global greening 
trend attribution study using different leaf area index (LAI) estimates and ten 
DGVMs (Zhu et al. 2016). These authors concluded that CO2 fertilisation explains 
70% of the observed greening trend between 1982 and 2009, particularly in the 
tropics. Their analyses, however, suggested other major drivers for most of southern 
Africa, namely climate change in the north-eastern part of our study region and 
land cover change in central South Africa (Zhu et al. 2016; Fig.  26.3c). In our 
study region, CO2 effects have been found to be minor under extreme drought 
stress when meristem growth is strongly limited by leaf turgor (Xu et al., 2016). 
Moreover, future CO2 fertilisation effects might be smaller as the CO2 limitation of 
photosynthesis increasingly Saturates and because of progressive nutrient limitation 
(Hickler et al. 2015; Wang et al. 2020).
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26.5 Conclusion 

The two rather independent approaches to estimate spatial patterns and recent 
past trends in NPP we used (Earth-observation-based estimations from MODIS 
and the LPJ-GUESS DGVM) provided similar results. This suggests that the 
spatio-temporal results presented here are robust. As the MODIS estimate is more 
constrained by observed data, this result may also be considered as an evaluation of 
the LPJ-GUESS model. Thus, the model should be suitable for future projections in 
southern Africa in order to inform climate adaptation and mitigation measures. 

Precipitation change is the most important driver of NPP dynamics in the study 
region, particularly of the inter-annual variations and spatial distribution. However, 
increasing atmospheric CO2 has had a large effect since the early twentieth century 
and might continue to play a significant role as anthropogenic CO2 emissions 
continue. Solar radiation and temperature were not found to be significant drivers of 
NPP in the study region. 

Given the importance of precipitation in southern Africa and its projected 
decline, it is likely that ecosystems and agriculture will be under increasing pressure 
as their foundational building block, NPP, might decrease in areas where precipita-
tion strongly decreases. The findings presented here alert us of the importance of 
mitigation and adaptation strategies going into the future and the challenges global 
change will bring. Both simulation models and Earth observation data can play an 
important role in meeting these challenges. 
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