Skip to main content

Challenges in fMRI and Its Limitations

  • Chapter
  • First Online:
Functional Neuroradiology

Abstract

This chapter explores some of the challenges of functional magnetic resonance imaging (fMRI); in particular, the constraints encountered in terms of spatial and temporal resolution and the factors that limit the ability of MRI to detect functional activation. In addition to examining the factors limiting the sensitivity and resolution of fMRI, this chapter also explores some of the trade-offs involved in optimizing one or more of these variables. As fMRI experiments are performed in higher fields, the limits of temporal and spatial resolution continue to be pushed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Callaghan PT. Principles of nuclear magnetic resonance microscopy. Oxford: Oxford Science Publications; 1993.

    Google Scholar 

  2. Yang Y, Perfusion MR. Imaging with pulsed arterial spin-labeling: basic principles and applications in functional brain imaging. Concepts Magn Reson. 2002;14:347–57.

    CAS  Google Scholar 

  3. Yacoub E, Hu X. Detection of the early decrease in fMRI signal in the motor area. Magn Reson Med. 2001;45:184–90.

    CAS  PubMed  Google Scholar 

  4. Yacoub E, Shmuel A, Pfeuffer J, Van De Moortele PF, Adriany G, Ugurbil K, et al. Investigation of the initial dip in fMRI at 7 Tesla. NMR Biomed. 2001;14(7–8):408–12.

    CAS  PubMed  Google Scholar 

  5. Yacoub E, Shmuel A, Pfeuffer J, Van De Moortele PF, Adriany G, Andersen P, et al. Imaging brain function in humans at 7 Tesla. Magn Reson Med. 2001;45(4):588–94.

    CAS  PubMed  Google Scholar 

  6. Ojemann JG, Akbudak E, Snyder AZ, McKinstry RC, Raichle ME, Conturo TE. Anatomic localization and quantitative analysis of gradient refocused echo-planar fMRI susceptibility artifacts. Neuroimage. 1997;6:156–67.

    CAS  PubMed  Google Scholar 

  7. Merboldt KD, Finsterbusch J, Frahm J. Reducing inhomogeneity artifacts in functional MRI of human brain activation—thin sections versus gradient compensation. J Magn Reson. 2000;145(2):184–91.

    CAS  PubMed  Google Scholar 

  8. Wadghiri YZ, Johnson G, Turnbull DH. Sensitivity and performance time in MRI dephasing artifact reduction methods. Magn Reson Med. 2001;45:470–6.

    CAS  PubMed  Google Scholar 

  9. Sodickson DK, Manning WJ. Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med. 1997;38:591–603.

    CAS  PubMed  Google Scholar 

  10. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med. 1999;42:952–62.

    CAS  PubMed  Google Scholar 

  11. Constable RT, Spencer DD. Repetition time in echo planar functional MR imaging. Magn Reson Med. 2001;46(4):748–55.

    CAS  PubMed  Google Scholar 

  12. Constable RT. Functional MR imaging using gradient echo EPI in the presence of large static field inhomogeneities. J Magn Reson Imaging. 1995;5(6):746–52.

    CAS  PubMed  Google Scholar 

  13. Constable RT, Spencer DD. Composite image formation in Z-shimmed functional MR imaging. Magn Reson Med. 1999;42(1):110–7.

    CAS  PubMed  Google Scholar 

  14. Yang QX, Dardzinski BJ, Li S, Smith MB. Multi-gradient echo with susceptibility inhomogeneity compensation (MGESIC): demonstration of fMRI in the olfactory cortex at 3.0 T. Magn Reson Med. 1997;37:331–5.

    CAS  PubMed  Google Scholar 

  15. Glover GH. 3D z-shim method for reduction of susceptibility effects in BOLD fMRI. Magn Reson Med. 1999;42(2):290–9.

    CAS  PubMed  Google Scholar 

  16. Frahm J, Merboldt JD, Hanicke W. Direct flash MR imaging of magnetic field inhomogeneities by gradient compensation. Magn Reson Med. 1988;6:474–80.

    CAS  PubMed  Google Scholar 

  17. Cho ZH, Ro YM. Reduction of susceptibility artifact in gradient-echo imaging. Magn Reson Med. 1992;23:193–200.

    CAS  PubMed  Google Scholar 

  18. Stenger VA, Boada FE, Noll DC. Multishot 3D slice-select tailored RF pulses for MRI. Magn Reson Med. 2002;48(1):157–65.

    PubMed  PubMed Central  Google Scholar 

  19. Yip C-Y, Yoon D, Olafsson V, Lee S, Grissom WA, Fessler JA, et al. Spectral-spatial pulse design for through-plane phase precompensatory slice selection in T2*-weighted functional MRI. Magn Reson Med. 2009;61:1137–47.

    PubMed  PubMed Central  Google Scholar 

  20. Katscher U, Bornert P, Leussler C, van den Brink JS. Transmit SENSE. Magn Reson Med. 2003;49(1):144–50.

    PubMed  Google Scholar 

  21. Zhu Y. Parallel excitation with an array of transmit coils. Magn Reson Med. 2004;51(4):775–84.

    PubMed  Google Scholar 

  22. Deng W, Yang C, Alagappan V, Wald LL, Boada FE, Stenger VA. Simultaneous z-shim method for reducing susceptibility artifacts with multiple transmitters. Magn Reson Med. 2009;61:255–9.

    PubMed  PubMed Central  Google Scholar 

  23. Song AW. Single-shot EPI with signal recovery from susceptibility induced losses. Magn Reson Med. 2001;46:407–11.

    CAS  PubMed  Google Scholar 

  24. Yang Y, Gu H, Zhan W, Xu S, Silbersweig DA, Stern E. Simultaneous perfusion and BOLD imaging using reverse spiral scanning at 3 T: characterization of functional contrast and susceptibility artifacts. Magn Reson Med. 2002;48(2):278–89.

    PubMed  Google Scholar 

  25. Constable RT, Kennan RP, Puce A, McCarthy G, Gore JC. Functional MR imaging using fast spin echo at 1.5 T. Magn Reson Med. 1994;31:686–90.

    CAS  PubMed  Google Scholar 

  26. Boxerman JL, Hamberg LM, Rosen BR, Weisskoff RM. MR contrast due to intravascular magnetic-susceptibility perturbations. Magn Reson Med. 1995;34:555–66.

    CAS  PubMed  Google Scholar 

  27. Weisskoff RM, Zuo CS, Boxerman JL, Rosen BR. Microscopic susceptibility variation and transverse relaxation: theory and experiment. Magn Reson Med. 1994;31:601–10.

    CAS  PubMed  Google Scholar 

  28. Kennan RP, Zhong JH, Gore JC. Intravascular susceptibility contrast mechanisms in tissues. Magn Reson Med. 1994;31:9–21.

    CAS  PubMed  Google Scholar 

  29. Raj D, Anderson AW, Gore JC. Respiratory effects in human functional magnetic resonance imaging due to bulk susceptibility changes. Phys Med Biol. 2001;46(12):3331–40.

    CAS  PubMed  Google Scholar 

  30. Cavaglia M, Dombrowski SM, Drazba J, Vasanji A, Bokesch PM, Janigro D. Regional variation in brain capillary density and vascular response to ischemia. Brain Res. 2001;910(1–2):81–93.

    CAS  PubMed  Google Scholar 

  31. Heeger DJ, Huk AC, Geisler WS, Albrecht DG. Spike versus BOLD: what does neuroimaging tell us about neuronal activity? Nat Neurosci. 2000;3(7):631–3.

    CAS  PubMed  Google Scholar 

  32. Rees G, Friston K, Koch C. A direct quantitative relationship between functional properties of human and macaque V5. Nat Neurosci. 2000;3:716–23.

    CAS  PubMed  Google Scholar 

  33. Logothetis NK, Guggenberger H, Peled S, Pauls J. Neurophysiological investigation of the basis of the fMRI signal change. Nat Neurosci. 1999;2:555–62.

    CAS  PubMed  Google Scholar 

  34. Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A. Neurophysiological investigation of the basis of the fMRI signal. Nature. 2001;412:150–7.

    CAS  PubMed  Google Scholar 

  35. Hyder F, Rothman DL, Shulman RG. Total neuroenergetics support localized brain activity: implications for the interpretation of fMRI. Proc Natl Acad Sci U S A. 2002;99(16):10771–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Smith AJ, Blumenfeld H, Behar KL, Rothman DL, Shulman RG, Hyder F. Cerebral energetics and spiking frequency: the neurophysiological basis of fMRI. Proc Natl Acad Sci U S A. 2002;99(16):10765–9770.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Sanchez-Panchuelo RM, Francis S, Bowtell R, Schluppeck D. Mapping human somatosensory cortex in individual subjects with 7 T functional MRI. J Neurophysiol. 2010;103(5):2544–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Shen X, Papademetris X, Constable RT. Graph-theory based parcellation of functional subunits in the brain from resting-state fMRI data. NeuroImage. 2010;50(3):1027–35.

    CAS  PubMed  Google Scholar 

  39. Turner R. How much cortex can a vein drain? Downstream dilution of activation-related cerebral blood oxygenation changes. Neuroimage. 2002;16:1062–7.

    PubMed  Google Scholar 

  40. Menon RS, Goodyear BG. Submillimeter functional localization in human striate cortex using BOLD contrast at 4 Tesla: implications for the vascular point spread function. Magn Reson Med. 1999;41:230–5.

    CAS  PubMed  Google Scholar 

  41. Nencka AS, Rowe DB. Reducing the unwanted draining vein BOLD contribution in fMRI with statistical post-processing methods. NeuroImage. 2007;37:177–88.

    PubMed  Google Scholar 

  42. Gati JS, Menon RS, Ugurbil K, Rutt BK. Experimental determination of the BOLD field strength dependence in vessels and tissue. Magn Reson Med. 1997;38:296–302.

    CAS  PubMed  Google Scholar 

  43. Yacoub E, Duong TQ, Van De Moortele P-F, Lindquist M, Adriany G, Kim S-G, et al. Spin-echo fMRI in humans using high spatial resolutions and high magnetic fields. Magn Reson Med. 2003;49:655–64.

    PubMed  Google Scholar 

  44. Cheng K, Waggoner RA, Tanaka K. Mapping human ocular dominance columns with high field (4 T) functional magnetic resonance imaging. Proc Int Soc Magn Reson Med. 2000;8:978.

    Google Scholar 

  45. Song AW, Wong EC, Tan SG, Hyde JS. Diffusion weighted fMRI at 1.5 T. Magn Reson Med. 1996;35:155–8.

    CAS  PubMed  Google Scholar 

  46. Andersson L, Bolling M, Wirestam R, Holtas S, Stahlberg F. Combined diffusion weighting and CSF suppression in functional MRI. NMR Biomed. 2002;15:235–40.

    PubMed  Google Scholar 

  47. Zhong J, Kennan RP, Gore JC. Effects of susceptibility variations on NMR measurements of diffusion. J Magn Reson. 1991;95:267–80.

    CAS  Google Scholar 

  48. Lee SP, Silva AC, Ugurbil K, Kim SG. Diffusion-weighted spin-echo fMRI at 9.4 T: microvascular/tissue contribution to BOLD signal changes. Magn Reson Med. 1999;42(5):919–28.

    CAS  PubMed  Google Scholar 

  49. Song AW, Woldorff MG, Gangstead S, Mangun GR, McCarthy G. Enhanced spatial localization of neuronal activation using simultaneous apparent-diffusion-coefficient and blood-oxygenation functional magnetic resonance imaging. Neuroimage. 2002;17:742–50.

    PubMed  Google Scholar 

  50. Frostig RD, Lieke EE, Ts’o DY, Grinvald A. Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution imaging of intrinsic signals. Proc Natl Acad Sci U S A. 1990;87:6082–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Malonek D, grinvald A. Interactions between electrical activity and cortical microcirculation revealed by imaging spectroscopy: implications for functional brain mapping. Science. 1996;272:551–4.

    CAS  PubMed  Google Scholar 

  52. Ernst T, Hennig J. Observation of a fast response in functional MR. Magn Reson Med. 1994;32:146–9.

    CAS  PubMed  Google Scholar 

  53. Menon RS, Ogawa S, Strupp JP, Anderson P, Ugurbil K. BOLD based functional MRI at 4 Tesla includes capillary bed contribution: Echo-planar imaging correlates with previous optical imaging using intrinsic signals. Magn Reson Med. 1995;33:453–9.

    CAS  PubMed  Google Scholar 

  54. Hu X, Le TH, Ugurbil K. Evaluation of the early response in fMRI in individual subjects using short stimulus duration. Magn Reson Med. 1997;37:877–84.

    CAS  PubMed  Google Scholar 

  55. Duong TQ, Kim DS, Ugurbil K, Kim SG. Spatiotemporal dynamics of the BOLD fMRI signals: towards mapping submillimeter cortical columns using the early negative response. Magn Reson Med. 2000;44(2):231–42.

    CAS  PubMed  Google Scholar 

  56. Kim DS, Duong DQ, Kim S-G. High resolution mapping of iso-orientation columns by fMRI. Nat Neurosci. 2000;3:164–9.

    CAS  PubMed  Google Scholar 

  57. Buxton RB. The elusive initial dip. Neuroimage. 2001;13:953–8.

    CAS  PubMed  Google Scholar 

  58. Lindauer U, Royl G, Leithner C, Kuhl M, Gold L, Gethmann J, et al. No evidence for early decrease in blood oxygenation in rat whisker cortex in response to functional activation. Neuroimage. 2001;13:986–99.

    Google Scholar 

  59. Jones M, Berwick J, Johnston D, Mayhew J. Concurrent optical imaging spectroscopy and laser-Doppler flowmetry: the relationship between blood flow, oxygenation, and volume in rodent barrel cortex. Neuroimage. 2001;13:1000–13.

    Google Scholar 

  60. Uludag K, Muller-Bierl B, Ugurbil K. An integrative model for neuronal activity-induced signal changes for gradient and spin echo functional imaging. Neuroimage. 2009;48:150–65.

    PubMed  Google Scholar 

  61. Tremblay M, Tam F, Graham SJ. Retrospective coregistration of functional magnetic resonance imaging data using external monitoring. Magn Reson Med. 2005;53(1):141–9.

    PubMed  Google Scholar 

  62. Speck O, Hennig J, Zaitsev M. Prospective real-time slice-by-slice motion correction for fMRI in freely moving subjects. Magn Reson Mater Phys. 2006;19:55–61.

    CAS  Google Scholar 

  63. Miezin FM, Maccotta L, Ollinger JM, Petersen SE, Buckner RL, Niendorf T. On the application of susceptibility-weighted ultrafast low-angle RARE experiments in functional MR imaging. Magn Reson Med. 1999;41:1189–98.

    Google Scholar 

  64. Studholme C, Constable RT, Duncan JS. Accurate alignment of functional EPI data to anatomical MRI physics based distortion model. IEEE Trans Med Imaging. 2001;19(11):1115–27.

    Google Scholar 

  65. Poser BA, Norris DG. Investigating the benefits of multi-echo EPI for fMRI at 7 T. Neuroimage. 2009;45(4):1162–72.

    PubMed  Google Scholar 

  66. Jezzard P, Balaban RS. Correction for geometric distortion in EPI from Bo variations. Magn Reson Med. 1995;34:65–73.

    CAS  PubMed  Google Scholar 

  67. Jezzard P, Clare S. Sources of distortion in functional MRI data. Hum Brain Mapp. 1999;8(2–3):80–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Reber PJ, Wong EC, Buxton RB, Frank LR. Correction of off resonance related distortion in echo planar images from Bo field variations. Magn Reson Med. 1995;34:65–73.

    Google Scholar 

  69. Robson MD, Gore JC, Constable RT. Measurement of the point spread function in MRI using constant time imaging. Magn Reson Med. 1997;38(5):733–40.

    CAS  PubMed  Google Scholar 

  70. Zeng H, Constable RT. Image distortion correction in EPI: comparison of field mapping with point spread function mapping. Magn Reson Med. 2002;48:137–46.

    PubMed  Google Scholar 

  71. Zaitsev M, Hennig J, Speck O. Point spread function mapping with parallel imaging techniques and high acceleration factors: fast, robust, and flexible method for echo-planar imaging distortion correction. Magn Reson Med. 2004;52(5):1156–66.

    CAS  PubMed  Google Scholar 

  72. Glover GH, Law CS. Spiral in/out BOLD fMRI for increased SNR and reduced susceptibility artifacts. Magn Reson Med. 2001;46:515–22.

    CAS  PubMed  Google Scholar 

  73. Yang Y, Wen H, Mattay VS, Balaban RS, Frank JA, Duyn JH. Comparison of 3D BOLD functional MRI with spiral acquisition at 1.5 T and 4.0 T. Neuroimage. 1999;9:446–51.

    CAS  PubMed  Google Scholar 

  74. Houston GC, Papadakis NG, Carpenter A, Hall LD, Mukherjee B, James MF, et al. Mapping of the cerebral response to hypoxia measured using graded asymmetric spin echo. Magn Reson Imaging. 2000;18:1043–54.

    CAS  PubMed  Google Scholar 

  75. Zheng J, Ehrhardt JC, Cizadlo T, Yuh WTC. Comparison of inversion-recovery asymmetric spin-echo EPI and gradient-echo EPI for brain motor activation study. J Magn Reson Imaging. 1997;7:843–7.

    CAS  PubMed  Google Scholar 

  76. Poser BA, Norris DG. Fast spin echo sequences for BOLD functional MRI. MAGMA. 2007;20(1):11–7.

    PubMed  PubMed Central  Google Scholar 

  77. Jovicich J, Norris DG. Functional MRI of the human brain with GRASE-based BOLD contrast. Magn Reson Med. 1999;41:871–6.

    CAS  PubMed  Google Scholar 

  78. Scheffler K, Seifritz E, Bilecen D, Venkatesan R, Hennig J, Deimling M, et al. Detection of BOLD changes by means of a frequency-sensitive true FISP technique: preliminary results. NMR Biomed. 2001;14:490–6.

    CAS  PubMed  Google Scholar 

  79. Lee JH, Dumoulin SO, Saritas EU, Glover GH, Wandell BA, Nishimura DG, et al. Full brain coverage and high-resolution imaging capabilities of passband b-SSFP fMRI at 3 T. Magn Reson Med. 2008;59:1099–110.

    PubMed  PubMed Central  Google Scholar 

  80. Calamante F, Thomas DL, Pell GS, Wiersma J, Turner R. Measuring cerebral blood flow using magnetic resonance imaging techniques. J Cereb Blood Flow Metab. 1999;19:701–35.

    CAS  PubMed  Google Scholar 

  81. Singer JR. Blood flow rates by nuclear magnetic resonance measurements. Science. 1959;130:1652–3.

    CAS  PubMed  Google Scholar 

  82. Edelman RR, Siewert B, Darby DG, Thangaraj V, Nobre AC, Mesulam MM, et al. Qualitative mapping of cerebral blood flow and functional localization with echo-planar MR imaging and signal targeting with alternating radio frequency. Radiology. 1994;192:513–20.

    CAS  PubMed  Google Scholar 

  83. Edelman RR, Chen Q. EPISTAR MRI: multislice mapping of cerebral blood flow. Magn Reson Med. 1998;40:800–5.

    CAS  PubMed  Google Scholar 

  84. Kim SG. Quantification of relative cerebral blood flow change by flow-sensitive alternating inversion recovery (FAIR) technique: application to functional mapping. Magn Reson Med. 1995;34:293–301.

    CAS  PubMed  Google Scholar 

  85. Yang Y, Frank JA, Hou L, Ye FQ, McLaughlin AC, Duyn JH. Multislice imaging of quantitative cerebral perfusion with pulsed arterial spin-labeling. Magn Reson Med. 1998;39:825–32.

    CAS  PubMed  Google Scholar 

  86. Hoge RD, Atkinson J, Gill B, Crelier GR, Marrett S, Pike GB. Investigation of BOLD signal dependence on cerebral blood flow and oxygen consumption: the deoxyhemoglobin dilution model. Magn Reson Med. 1999;42:849–63.

    CAS  PubMed  Google Scholar 

  87. Crelier GR, Hoge RD, Munger P, Pike GB. Perfusion based functional magnetic resonance imaging with single shot RARE and GRASE acquisitions. Magn Reson Med. 1999;41:132–6.

    CAS  PubMed  Google Scholar 

  88. Detre JA, Leigh JS, Williams DS, Koretsky AP. Perfusion imaging. Magn Reson Med. 1992;23:37–45.

    CAS  PubMed  Google Scholar 

  89. Gonzalez-At JB, Alsop DC, Detre JA. Cerebral perfusion and arterial transit time changes during task activation determined with continuous arterial spin labeling. Magn Reson Med. 2000;43:739–46.

    CAS  PubMed  Google Scholar 

  90. Yongbi MN, Yang Y, Frank JA, Duyn JH. Multislice perfusion imaging in human brain using the C-FOCI inversion pulse: comparison with hyperbolic secant. Magn Reson Med. 1999;42:1098–105.

    CAS  PubMed  Google Scholar 

  91. Alsop DC, Detre JA. Reduced transit-time sensitivity in noninvasive magnetic resonance imaging of human cerebral blood flow. J Cereb Blood Flow Metab. 1996;16:1236–49.

    CAS  PubMed  Google Scholar 

  92. Qiu M, Maguire P, Arora J, Planeta-Wilson B, Weinzimmer D, Wang J, et al. Arterial transit time effects in pulsed arterial spin labeling CBF mapping: insight from a PET and MR study in normal human subjects. Magn Reson Med. 2010;63(2):374–84.

    PubMed  PubMed Central  Google Scholar 

  93. Zhang W, Williams DS, Koretsky AP. Measurement of brain perfusion by volume-localized NMR spectroscopy using inversion of arterial water spins: accounting for transit time and cross-relaxation. Magn Reson Med. 1992;25:362–71.

    CAS  PubMed  Google Scholar 

  94. Wong EC, Buxton RB, Frank LR. Implementation of quantitative perfusion imaging techniques for functional brain mapping using pulsed arterial spin labeling. NMR Biomed. 1997;10(4–5):237–49.

    CAS  PubMed  Google Scholar 

  95. Ye FQ, Yang Y, Duyn J, Mattay VS, Frank JA, Weinberger DR, et al. Quantitation of regional cerebral blood flow increases during motor activation: a multislice, steady-state, arterial spin tagging study. Magn Reson Med. 1999;42:404–7.

    CAS  PubMed  Google Scholar 

  96. Darby DG, Nobre AC, Thangaraj V, Edelman R, Mesulam MM, Warach S. Cortical activation in the human brain during lateral saccades using EPISTAR functional magnetic resonance imaging. Neuroimage. 1996;3:53–62.

    CAS  PubMed  Google Scholar 

  97. Perthen JE, Bydder M, Restom K, Liu TT. SNR and functional sensitivity of BOLD and perfusion-based fMRI using arterial spin labeling with spiral SENSE at 3 T. Magn Reson Imaging. 2008;26(4):513–22.

    PubMed  Google Scholar 

  98. Lai S, Wang J, Jahng G-H. FAIR exempting separate T1 measurement (FAIREST): a novel technique for online quantitative perfusion imaging and multi-contrast fMRI. NMR Biomed. 2001;14:507–16.

    CAS  PubMed  Google Scholar 

  99. Luh W-M, Wong EC, Bandettini PA, Ward D, Hyde JS. Comparison of simultaneously measured perfusion and BOLD signal increases during brain activation with T1-based tissue identification. Magn Reson Med. 2000;44:137–43.

    CAS  PubMed  Google Scholar 

  100. Aguirre GK, Detre JA, Zarahn E, Alsop DC. Experimental design and the relative sensitivity of BOLD and perfusion fMRI. Neuroimage. 2002;15:488–500.

    CAS  PubMed  Google Scholar 

  101. Lu H, Golay X, Pekar JJ, van Zijl PCM. Functional magnetic resonance imaging based on changes in vascular space occupancy. Magn Reson Med. 2003;50:263–74.

    PubMed  Google Scholar 

  102. Scouten A, Constable RT. Applications and limitations of whole-brain MAGIC VASO functional imaging. Magn Reson Med. 2007;58(2):306–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Scouten A, Constable RT. VASO-based calculations of CBV change: accounting for the dynamic CSF volume. Magn Reson Med. 2008;59(2):308–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Stefanovic B, Pike GB. Venous refocusing for volume estimation: VERVE functional magnetic resonance imaging. Magn Reson Med. 2005;53(2):339–47.

    PubMed  Google Scholar 

  105. Chen JJ, Pike GB. BOLD-specific cerebral blood volume and blood flow changes during neuronal activation in humans. NMR Biomed. 2009;22(10):1054–62.

    PubMed  Google Scholar 

  106. Belliveau JW, Kennedy DN, McKinstry RC, Buchbinder BR, Weisskoff RM, Cohen MS, et al. Functional mapping of the human visual cortex by magnetic resonance imaging. Science. 1991;254(4):716.

    CAS  PubMed  Google Scholar 

  107. Qin L, van Gelderen P, Derbyshire JA, Jin F, Lee J, de Zwart JA, et al. Prospective head-movement correction for high-resolution MRI using an in-bore optical tracking system. Magn Reson Med. 2009;62:924–34.

    PubMed  PubMed Central  Google Scholar 

  108. Poser BA, Koopmans PJ, Witzel T, Wald LL, Barth M. Three dimensional echo-planar imaging at 7 Tesla. Neuroimage. 2010;51(1):261–6.

    CAS  PubMed  Google Scholar 

  109. White N, Roddey C, Shankaranarayanan A, Han E, Rettman D, Santos J, et al. PROMO: real-time prospective motion correction in MRI using image-based tracking. Magn Reson Med. 2010;63:91–105.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

NIH NS38467, NS40497, EB00473.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Todd Constable .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Constable, R.T. (2023). Challenges in fMRI and Its Limitations. In: Faro, S.H., Mohamed, F.B. (eds) Functional Neuroradiology. Springer, Cham. https://doi.org/10.1007/978-3-031-10909-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-10909-6_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-10908-9

  • Online ISBN: 978-3-031-10909-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics