Skip to main content

Combined Therapy for the Treatment of Cancer

  • Chapter
  • First Online:
Chemotherapy Protocols and Infusion Sequence

Abstract

In this second chapter, I approach cancer treatment, highlighting cytotoxic chemotherapy and biological therapy, classifying the therapies, and indicating the main drugs included in each anticancer therapy. In addition, I talk about combined therapy, which is based on the association of drugs with different mechanisms of action, promoting greater efficacy in cancer therapy, and I also highlight the main challenges of combined therapy, which should be taken into account when choosing the best combination for the treatment of a particular cancer. Finally, I discuss the toxicity profiles of the treatment of various cancers, such as toxicity related to the treatment of breast, lung, colorectal, prostate, cervix, and head and neck cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arruebo M, Vilaboa N, Sáez-Gutierrez B, Lambea J, Tres A, Valladares M, González-Fernández A. Assessment of the evolution of cancer treatment therapies. Cancer. 2011;3(3):3279–330. https://doi.org/10.3390/cancers3033279.

    Article  CAS  Google Scholar 

  2. Abbas Z, Rehman S. An overview of cancer treatment modalities. London: Intechopen; 2018.

    Book  Google Scholar 

  3. Mokhtari RB, Homayouni TS, Baluch N, Morgatskaya E, Kumar S, Das B, Yeger H. Combination therapy in combating cancer. Oncotarget. 2017;8(23):38022–43. https://doi.org/10.18632/oncotarget.16723.

    Article  PubMed Central  Google Scholar 

  4. Lutz ST, Jones J, Chow E. Role of radiation therapy in palliative care of the patient with cancer. J Clin Oncol. 2014;32(26):2913–9. https://doi.org/10.1200/JCO.2014.55.1143.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Roeland EJ, LeBlanc TW. Palliative chemotherapy: oxymoron or misunderstanding? BMC Palliat Care. 2016;15:33. https://doi.org/10.1186/s12904-016-0109-4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Neugut AI, Prigerson HG. Curative, life-extending, and palliative chemotherapy: new outcomes need new names. Oncologist. 2017;22(8):883–5. https://doi.org/10.1634/theoncologist.2017-0041.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Harrington SE, Smith TJ. The role of chemotherapy at the end of life. When is enough, enough? JAMA. 2008;299(22):2667–78. https://doi.org/10.1001/jama.299.22.2667.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Falzone L, Salomone S, Libra M. Evolution of cancer pharmacological treatment at the turn of the third millennium. Front Pharmacol. 2018;9:1300. https://doi.org/10.3389/fphar.2018.01300.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Schirrmacher V. From chemotherapy to biological therapy: a review of novel concepts to reduce the side effects of systemic cancer treatment (review). Int J Oncol. 2019;54(2):407–19. https://doi.org/10.3892/ijo.2018.4661.

    Article  PubMed  CAS  Google Scholar 

  10. Gonzalez H, Hagerling C, Werb Z. Roles of the immune system in cancer: from tumor initiation to metastatic progression. Genes Dev. 2018;32(19-20):1267–84. https://doi.org/10.1101/gad.314617.118.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Sambi M, Bagheri L, Szewczuk MR. Current challenges in cancer immunotherapy: multimodal approaches to improve efficacy and patient response rates. J Oncol. 2019;2019:4508794. https://doi.org/10.1155/2019/4508794.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. D’Alterio C, Scala S, Sozzi G, Roz L, Bertolini G. Paradoxical effects of chemotherapy on tumor relapse and metastasis promotion. Semin Cancer Biol. 2020;60:351–61. https://doi.org/10.1016/j.semcancer.2019.08.019.

    Article  PubMed  CAS  Google Scholar 

  13. Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med. 2013;19(11):1423–37. https://doi.org/10.1038/nm.3394.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Welch DR, Hurst DR. Defining the hallmarks of metastasis. Cancer Res. 2019;79(12):3011–27. https://doi.org/10.1158/0008-5472.CAN-19-0458.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Harbeck N, Penault-Llorca F, Cortes J, Gnant M, Houssami N, Poortmans P, Ruddy K, Tsang J, Cardoso F. Breast cancer. Nat Rev Dis Primers. 2019;5:66. https://doi.org/10.1038/s41572-019-0111-2.

    Article  PubMed  Google Scholar 

  16. Hirata BKB, Oda JMM, Guembarovski RL, Ariza CB, Oliveira CEC, Watanabe MAE. Molecular markers for breast cancer: prediction on tumor behavior. Dis Markers. 2014;2014:513158. https://doi.org/10.1155/2014/513158.

    Article  CAS  Google Scholar 

  17. Nagpal M, Singh S, Singh P, Chauhan P, Zaidi MA. Tumor markers: a diagnostic tool. Natl J Maxillofac Surg. 2016;7(1):17–20. https://doi.org/10.4103/0975-5950.196135.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Gutierrez C, Schiff R. HER 2: biology, detection, and clinical implications. Arch Pathol Lab Med. 2011;135(1):55–62. https://doi.org/10.1043/2010-0454-RAR.1.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Masoud V, Pagès G. Targeted therapies in breast cancer: new challenges to fight against resistance. World J Clin Oncol. 2017;8(2):120–34. https://doi.org/10.5306/wjco.v8.i2.120.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Al-Busairi W, Khajah M. The principles behind targeted therapy for cancer treatment. London: IntechOpen; 2019.

    Google Scholar 

  21. Rosenkranz AA, Slastnikova TA. Epidermal growth factor receptor: key to selective intracellular delivery. Biochemistry. 2020;85:967–93. https://doi.org/10.1134/S0006297920090011.

    Article  PubMed  CAS  Google Scholar 

  22. Worm DJ, Els-Heindl S, Beck-Sickinger AG. Targeting of peptide-binding receptors on cancer cells with peptide-drug conjugates. Pept Sci. 2020;112(3):e24171. https://doi.org/10.1002/pep2.24171.

    Article  CAS  Google Scholar 

  23. Bailly C, Thuru X, Quesnel B. Combined cytotoxic chemotherapy and immunotherapy of cancer: modern times. NAR Cancer. 2020;2(1):1–20. https://doi.org/10.1093/narcan/zcaa002.

    Article  Google Scholar 

  24. Senapati S, Mahanta AK, Kumar S, Maiti P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct Target Ther. 2018;3:7. https://doi.org/10.1038/s41392-017-0004-3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Zitvogel L, Apetoh L, Ghiringhelli F, Kroemer G. Immunological aspects of cancer chemotherapy. Nat Rev Immunol. 2008;8:59–73. https://doi.org/10.1038/nri2216.

    Article  PubMed  CAS  Google Scholar 

  26. Housman G, Byler S, Heerboth S, Lapinska K, Longacre M, Snyder N, Sarkar S. Drug resistance in cancer: an overview. Cancer. 2014;6(3):1769–92. https://doi.org/10.3390/cancers6031769.

    Article  Google Scholar 

  27. Ramos P, Bentires-Alj M. Mechanism-based cancer therapy: resistance to therapy, therapy for resistance. Oncogene. 2015;34:3617–26. https://doi.org/10.1038/onc.2014.314.

    Article  PubMed  CAS  Google Scholar 

  28. Vaidya FU, Chhipa AS, Mishra V, Gupta VK, Rawat SG, Kumar A, Pathak C. Molecular and cellular paradigms of multidrug resistance in cancer. Cancer Rep. 2020;2020:e1291. https://doi.org/10.1002/cnr2.1291.

    Article  Google Scholar 

  29. Bukowski K, Kciuk M, Kontek R. Mechanisms of multidrug resistance in cancer chemotherapy. Int J Mol Sci. 2020;21(9):3233. https://doi.org/10.3390/ijms21093233.

    Article  PubMed Central  CAS  Google Scholar 

  30. Ahmed S, Zhou Z, Zhou J, Chen SQ. Pharmacogenomics of drug metabolizing enzymes and transporters: relevance to precision medicine. Genomics Proteomics Bioinformatics. 2016;14(5):298–313. https://doi.org/10.1016/j.gpb.2016.03.008.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kaur G, Gupta SK, Singh P, Ali V, Kumar V, Verma M. Drug-metabolizing enzymes: role in drug resistance in cancer. Clin Transl Oncol. 2020;22:1667–80. https://doi.org/10.1007/s12094-020-02325-7.

    Article  PubMed  CAS  Google Scholar 

  32. Tao G, Huang J, Moorthy B, Wang C, Hu M, Gao S, Ghose R. Role of drug metabolizing enzymes in chemotherapy-induced gastrointestinal toxicity and hepatotoxicity. Expert Opin Drug Metab Toxicol. 2020;16(11):1109–24. https://doi.org/10.1080/17425255.2020.1815705.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Pathania S, Bhatia R, Baldi A, Singh R, Rawal RK. Drug metabolizing enzymes and their inhibitors’ role in cancer resistance. Biomed Pharmacother. 2018;105:53–65. https://doi.org/10.1016/j.biopha.2018.05.117.

    Article  PubMed  CAS  Google Scholar 

  34. Allocati N, Masulli M, Ilio CD, Federici L. Glutathione transferases: substrates, inhibitors and pro-drugs in cancer and neurodegenerative diseases. Oncogene. 2018;7(1):8. https://doi.org/10.1038/s41389-017-0025-3.

    Article  CAS  Google Scholar 

  35. Singh RR, Reindl KM. Glutathione S-transferases in cancer. Antioxidants. 2021;10:701. https://doi.org/10.3390/antiox10050701.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Clara JA, Monge C, Yang Y, Takebe N. Targeting signalling pathways and the immune microenvironment of cancer stem cells – a clinical update. Nat Rev Clin Oncol. 2019;17:204–32. https://doi.org/10.1038/s41571-019-0293-2.

    Article  PubMed  Google Scholar 

  37. Pitt JM, Marabelle A, Eggermont A, Soria JC, Kroemer G, Zitvogel L. Targeting the tumor microenvironment: removing obstruction to anticancer immune responses and immunotherapy. Ann Oncol. 2016;27:1482–92. https://doi.org/10.1093/annonc/mdw168.

    Article  PubMed  CAS  Google Scholar 

  38. Harrison PT, Huang PH. Exploiting vulnerabilities in cancer signaling networks to combat targeted therapy resistance. Essays Biochem. 2018;62(4):583–93. https://doi.org/10.1042/EBC20180016.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Marshall HT, Djamgoz MB. Immuno-oncology: emerging targets and combination therapies. Front Oncol. 2018;8:315. https://doi.org/10.3389/fonc.2018.00315.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kondo N, Takahashi A, Ono K, Ohnishi T. DNA damage induced by alkylating agents and repair pathways. J Nucl Acids. 2010;2010:543531. https://doi.org/10.4061/2010/543531.

    Article  CAS  Google Scholar 

  41. Van Linden AA, Baturin D, Ford JB, Fosmire SP, Gardner L, Korch C, Reigan P, Porter CC. Inhibition of Wee1 sensitizes cancer cells to antimetabolite chemotherapeutics in vitro and in vivo, independent of p53 functionality. Mol Cancer Ther. 2013;12(12):2675–84. https://doi.org/10.1158/1535-7163.MCT-13-0424.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Weber GF. DNA damaging drugs. In: Molecular therapies of cancer. Cham: Springer; 2015. https://doi.org/10.1007/978-3-319-13278-5_2.

    Chapter  Google Scholar 

  43. Mills CC, Kolb EA, Sampson VB. Development of chemotherapy with cell cycle inhibitors for adult and pediatric cancer therapy. Cancer Res. 2018;78(2):320–5. https://doi.org/10.1158/0008-5472.CAN-17-2782.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Khazir J, Riley DL, Pilcher LA, De-Maayer P, Mir BA. Anticancer agents from diverse natural sources. Nat Prod Commun. 2014;9(11):1655–69.

    PubMed  Google Scholar 

  45. Minev BR. Cancer management in man: chemotherapy, biological therapy, hyperthermia and supporting measures. Cham: Springer; 2011.

    Book  Google Scholar 

  46. Colvin M. Alkylating agents. In: Kufe DW, Pollock RE, Weichselbaum RR, et al., editors. Holland-Frei cancer medicine. 6th ed. Hamilton: BC Decker; 2003.

    Google Scholar 

  47. Weber GF. DNA damaging drugs. Mol Therap Cancer. 2014;2014:9–12. https://doi.org/10.1007/978-3-319-13278-5_2.

    Article  Google Scholar 

  48. Wang LC, Okitsu Y, Zandi E. Tumor necrosis factor α-dependent drug resistance to purine and pyrimidine analogues in human colon tumor cells mediated through IKK. J Biol Chem. 2005;280(9):7634–44.

    Article  CAS  Google Scholar 

  49. Parker WB. Enzymology of purine and pyrimidine antimetabolites used in the treatment of cancer. Chem Rev. 2009;109(7):2880–93. https://doi.org/10.1021/cr900028p.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Cheung-Ong K, Giaever G, Nislow C. DNA-damaging agents in cancer chemotherapy: serendipity and chemical biology. Chem Biol. 2013;20(5):648–59. https://doi.org/10.1016/j.chembiol.2013.04.007.

    Article  PubMed  CAS  Google Scholar 

  51. Bhattacharya B, Mukherjee S. Cancer therapy using antibiotics. J Cancer Ther. 2015;6:849–58. https://doi.org/10.4236/jct.2015.610093.

    Article  CAS  Google Scholar 

  52. Quezada H, Martínez-Vázquez M, López-Jácome E, González-Pedrajo B, Andrade A, Fernández-Presas AM, Tovar-García A, García-Contreras R. Repurposed anti-cancer drugs: the future for anti-infective therapy? Expert Rev Anti-Infect Ther. 2020;18(7):609–12. https://doi.org/10.1080/14787210.2020.1752665.

    Article  PubMed  CAS  Google Scholar 

  53. Schrijvers D, Vermorken JB. Role of toxoids in head and neck cancer. Oncologist. 2000;5(3):199–208. https://doi.org/10.1634/theoncologist.5-3-199.

    Article  PubMed  CAS  Google Scholar 

  54. Abal M, Andreu JM, Barasoain I. Taxanes: microtubule and centrosome targets, and cell cycle dependent mechanisms of action. Curr Cancer Drug Targets. 2003;3:193–203. https://doi.org/10.2174/1568009033481967.

    Article  PubMed  CAS  Google Scholar 

  55. Orr GA, Verdier-Pinard P, McDaid H, Horwitz SB. Mechanisms of taxol resistance to microtubules. Oncogene. 2003;22(47):7280–95. https://doi.org/10.1038/sj.onc.1206934.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Bates D, Eastman A. Microtubule destabilizing agents: far more than just antimitotic anticancer drugs. Br J Clin Pharmacol. 2017;83(2):255–68. https://doi.org/10.1111/bcp.13126.

    Article  PubMed  CAS  Google Scholar 

  57. Chagas CM, Alisaraie L. Metabolites of vinca alkaloid vinblastine: tubulin binding and activation of nausea-associated receptors. ACS Omega. 2019;4(6):9784–99. https://doi.org/10.1021/acsomega.9b00652.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Krause W. Resistance to anti-tubulin agents: from vinca alkaloids to epothilones. Cancer Drug Resist. 2019;2:82–106.

    PubMed  PubMed Central  Google Scholar 

  59. Kruger K, Thomale J, Stojanovic N, Osmak M, Henninger C, Bormann S, Fritz G. Platinum-induced kidney damage: unraveling the DNA damage response (DDR) of renal tubular epithelial and glomerular endothelial cells following platinum injury. Biochim Biophys Acta. 2015;1853(3):685–98. https://doi.org/10.1016/j.bbamcr.2014.12.033.

    Article  PubMed  CAS  Google Scholar 

  60. Rocha CRR, Silva MM, Quinet A, Cabral-Neto JB, Menck CFM. DNA repair pathways and cisplatin resistance: an intimate relationship. Clinics. 2018;73(1):e478. https://doi.org/10.6061/clinics/2018/e478s.

    Article  Google Scholar 

  61. Wenmaekers S, Viergever BJ, Kumar G, Kranenburg O, Black PC, Daugaard M, Meijer RP. A potential role for HUWE1 in modulating cisplatin sensitivity. Cell. 2021;10(5):1262. https://doi.org/10.3390/cells10051262.

    Article  CAS  Google Scholar 

  62. Silva AA, Carlotto J, Rotta I. Standardization of the infusion sequence of antineoplastic drugs used in the treatment of breast and colorectal cancers. Einstein. 2018;16(2):1–9. https://doi.org/10.1590/S1679-45082018RW4074.

    Article  Google Scholar 

  63. Cavalcanti IDL, Soares JCS. Conventional cancer treatment. In: Advances in cancer treatment. Cham: Springer; 2021. https://doi.org/10.1007/978-3-030-68334-4_4.

    Chapter  Google Scholar 

  64. Konstantinov SM, Berger MR. Alkylating agents. In: Offermann S, Rosenthal W, editors. Encyclopedia of molecular pharmacology. Berlin: Springer; 2008. https://doi.org/10.1007/978-3-540-38918-7_178.

    Chapter  Google Scholar 

  65. Wang Z, Sun Y. Targeting p53 for novel anticancer therapy. Transl Oncol. 2010;3(1):1–12. https://doi.org/10.1593/tlo.09250.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Farkona S, Diamandis EP, Blasutig IM. Cancer immunotherapy: the beginning of the end of cancer? BMC Med. 2016;14:73. https://doi.org/10.1186/s12916-016-0623-5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Mantovani F, Collavin L, Del Sal G. Mutant p53 as a guardian of the cancer cell. Cell Death Differ. 2019;26:199–212. https://doi.org/10.1038/s41418-018-0246-9.

    Article  PubMed  Google Scholar 

  68. Bisht M, Bist SS, Dhasmana DC. Biological response modifiers: current use and future prospects in cancer therapy. Indian J Cancer. 2010;47(4):443–51. https://doi.org/10.4103/0019-509X.73559.

    Article  PubMed  CAS  Google Scholar 

  69. Corraliza-Gorjón I, Somovilla-Crespo B, Santamaria S, Garcia-Sanz JÁ, Kremer L. New strategies using antibody combinations to increase cancer treatment effectiveness. Front Immunol. 2017;8:1804. https://doi.org/10.3389/fimmu.2017.01804.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Bociek RG, Armitage JO. Hematopoietic growth factors. CA Cancer J Clin. 1996;46(3):165–84. https://doi.org/10.3322/canjclin.46.3.165.

    Article  PubMed  CAS  Google Scholar 

  71. Mehta HM, Malandra M, Corey SJ. G-CSF and GM-CSF in neutropenia. J Immunol. 2015;195(4):1341–9. https://doi.org/10.4049/jimmunol.1500861.

    Article  PubMed  CAS  Google Scholar 

  72. Wigley P, Kaiser P. Avian cytokines in health and disease. Braz J Poultry Sci. 2003;5(1):1–14. https://doi.org/10.1590/S1516-635X2003000100001.

    Article  Google Scholar 

  73. Briukhovetska D, Dorr J, Endres S, Libby P, Dinarello CA, Kobold S (2021) Interleukins in cancer: from biology to therapy. Nat Rev Cancer. https://doi.org/10.1038/s41568-021-00363-z.

  74. Janson EMT, Ahlstrom H, Andersson T, Oberg KE. Octreotide and interferon alfa: a new combination for the treatment of malignant carcinoid tumours. Eur J Cancer. 1992;28(10):1647–50. https://doi.org/10.1016/0959-8049(92)90060-F.

    Article  Google Scholar 

  75. Dinney CPN, Fisher MB, Navai N, O’Donnell MA, Cutler D, Abraham A, Young S, Hutchins B, Caceres M, Kishnani N, Sode G, Cullen C, Zhang G, Grossman HB, Kamat AM, Gonzales M, Kincaid M, Ainslie N, Maneval DC, Wszolek MF, Benedict WF. Phase I trial of intravesical recombinant adenovirus mediated interferon-α2b formulated in Syn3 for Bacillus Calmette-Guérin failures in nonmuscle invasive bladder cancer. J Urol. 2013;190(3):850–6. https://doi.org/10.1016/j.juro.2013.03.030.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Medrano RFV, Hunger A, Mendonça AS, Barbuto JAM, Strauss BE. Immunomodulatory and antitumor effects of type I interferons and their application in cancer therapy. Oncotarget. 2017;8(41):71249–84. https://doi.org/10.18632/oncotarget.19531.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Castro F, Cardoso AP, Gonçalves RM, Serre K, Oliveira MJ. Interferon-gamma at the crossroads of tumor immune surveillance or evasion. Front Immunol. 2018;9:847. https://doi.org/10.3389/fimmu.2018.00847.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Weiner LM, Dhodapkar MV, Ferrone S. Monoclonal antibodies for cancer immunotherapy. Lancet. 2009;373(9668):1033–40. https://doi.org/10.1016/S0140-6736(09)60251-8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Waldman AD, Fritz JM, Lenardo MJ. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat Rev Immunol. 2020;20:651–68. https://doi.org/10.1038/s41577-020-0306-5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Zahavi D, Weiner L. Monoclonal antibodies in cancer therapy. Antibodies. 2020;9(3):34. https://doi.org/10.3390/antib9030034.

    Article  PubMed Central  CAS  Google Scholar 

  81. Paul MK, Mukhopadhyay AK. Tyrosine kinase – role and significance in cancer. Int J Med Sci. 2004;1(2):101–15. https://doi.org/10.7150/ijms.1.101.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Metibemu DS, Akinloye OA, Akamo AJ, Ojo DA, Okeowo OT, Omotuyi IO. Exploring receptor tyrosine kinases-inhibitors in cancer treatment. Egyp J Med Hum Genet. 2019;20:35. https://doi.org/10.1186/s43042-019-0035-0.

    Article  Google Scholar 

  83. Indraccolo S. Interferon-alpha as angiogenesis inhibitor: learning from tumor models. Autoimmunity. 2010;43(3):244–7. https://doi.org/10.3109/08916930903510963.

    Article  PubMed  CAS  Google Scholar 

  84. Niu G, Chen X. Vascular endothelial growth factor as an anti-angiogenic target for cancer therapy. Curr Drug Targets. 2010;11(8):1000–17.

    Article  CAS  Google Scholar 

  85. Yoo SY, Kwon SM. Angiogenesis and its therapeutic opportunities. Mediat Inflamm. 2013;2013:127170. https://doi.org/10.1155/2013/127170.

    Article  CAS  Google Scholar 

  86. Haibe Y, Kreidieh M, Hajj HE, Khalifeh I, Mukherji D, Temraz S, Shamseddine A. Resistance mechanisms to anti-angiogenic therapies in cancer. Front Oncol. 2020;10:221. https://doi.org/10.3389/fonc.2020.00221.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Sharpe M, Mount N. Genetically modified T cells in cancer therapy: opportunities and challenges. Dis Model Mech. 2015;8(4):337–50. https://doi.org/10.1242/dmm.018036.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Li H, Zhao Y. Increasing the safety and efficacy of chimeric antigen receptor T cell therapy. Protein Cell. 2017;8:573–89. https://doi.org/10.1007/s13238-017-0411-9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Zhao L, Cao YJ. Engineered T cell therapy for cancer in the clinic. Front Immunol. 2019;10:2250. https://doi.org/10.3389/fimmu.2019.02250.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Rafiq S, Hackett CS, Brentjens RJ. Engineering strategies to overcome the current roadblocks in CAR T cell therapy. Nat Rev Clin Oncol. 2020;17:147–67. https://doi.org/10.1038/s41571-019-0297-y.

    Article  PubMed  Google Scholar 

  91. Tian Y, Li Y, Shao Y, Zhang Y. Gene modification strategies for next-generation CAR T cells against solid cancers. J Hematol Oncol. 2020;13:54. https://doi.org/10.1186/s13045-020-00890-6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Fung MKL, Chan GCF. Drug-induced amino acid deprivation as strategy for cancer therapy. J Hematol Oncol. 2017;10:144. https://doi.org/10.1186/s13045-017-0509-9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Palmer AC, Sorger PK. Combination cancer therapy can confer benefit via patient-to-patient variability without drug additivity or synergy. Cell. 2017;171(7):1678–91. https://doi.org/10.1016/j.cell.2017.11.009.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Cajal SR, Sesé M, Capdevila C, Aasen T, Mattos-Arruda LD, Diaz-Cano SJ, Hernández-Losa J, Castellví J. Clinical implications of intratumor heterogeneity: challenges and opportunities. J Mol Med. 2020;98:161–77. https://doi.org/10.1007/s00109-020-01874-2.

    Article  Google Scholar 

  95. Huang A, Yang XR, Chung WY, Dennison AR, Zhou J. Targeted therapy for hepatocellular carcinoma. Signal Transduct Target Ther. 2020;5:146. https://doi.org/10.1038/s41392-020-00264-x.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Baba AI, Câtoi C. Principles of anticancer therapy. In: Comparative oncology. Bucharest: The Publishing House of the Romanian Academy; 2007.

    Google Scholar 

  97. Anderson RL, Balasas T, Callaghan J, Coombes RC, Evans J, Hall JA, Kinrade S, Jones D, Jones PS, Jones R, Marshall JF, Panico MB, Shaw JA, Steeg PS, Sullivan M, Tong W, Westwell AD, Ritchie JWA. A framework for the development of effective anti-metastatic agents. Nat Rev Clin Oncol. 2019;16:185–204. https://doi.org/10.1038/s41571-018-0134-8.

    Article  PubMed  Google Scholar 

  98. Delou JMA, Souza ASO, Souza LCM, Borges HL. Highlights in resistance mechanism pathways for combination therapy. Cell. 2019;8(9):1013. https://doi.org/10.3390/cells8091013.

    Article  CAS  Google Scholar 

  99. Henke E, Nandigama R, Ergun S. Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Front Mol Biosci. 2020;6:160. https://doi.org/10.3389/fmolb.2019.00160.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Hu Q, Sun W, Wang C, Gu Z. Recent advances of cocktail chemotherapy by combination drug delivery systems. Adv Drug Deliv Rev. 2016;98:19–34. https://doi.org/10.1016/j.addr.2015.10.022.

    Article  PubMed  CAS  Google Scholar 

  101. Malyutina A, Majumder MM, Wang W, Pessia A, Hecjman CA, Tang J. Drug combination sensitivity scoring facilitates the discovery of synergistic and efficacious drug combinations in cancer. PLoS Comput Biol. 2019;15(5):e1006752. https://doi.org/10.1371/journal.pcbi.1006752.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Levitzki A, Klein S. My journey from tyrosine phosphorylation inhibitors to targeted immune therapy as strategies to combat cancer. Proc Natl Acad Sci. 2019;116(24):11579–86. https://doi.org/10.1073/pnas.1816012116.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Conte FM, Sgnaolin V, Sgnaolin V. Neutropenia associated with the treatment of breast cancer: integrative literature review. Rev Bras Cancerol. 2019;65(3):11307. https://doi.org/10.32635/2176-9745.RBC.2019v65n3.307.

    Article  Google Scholar 

  104. Fisusi FA, Akala EO. Drug combinations in breast cancer therapy. Pharm Nanotechnol. 2019;7(3):3–23. https://doi.org/10.2174/2211738507666190122111224.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Bonadonna G, Brusamolino E, Valagussa P, Rossi A, Brugnatelli L, Brambilla C, De Lena M, Tancini G, Bajetta E, Musumeci R, Veronesi U. Combination chemotherapy as an adjuvant treatment in operable breast cancer. N Engl J Med. 1976;294(8):405–10. https://doi.org/10.1056/NEJM197602192940801.

    Article  PubMed  CAS  Google Scholar 

  106. Chan S, Romieu G, Huober J, Delozier T, Tubiana-Hulin M, Schneeweiss A, Lluch A, Llmbart A, Bois A, Kreienberg R, Mayordomo JI, Antón A, Harrison M, Jones A, Carrasco E, Vaury AT, Frimodt-Moller B, Fumoleau P. Phase III study of gemcitabine plus docetaxel compared with capecitabine plus docetaxel for anthracycline-pretreated patients with metastatic breast cancer. J Clin Oncol. 2009;27(11):1753–60. https://doi.org/10.1200/JCO.2007.15.8485.

    Article  PubMed  CAS  Google Scholar 

  107. Marty M, Cognetti F, Maraninchi D, Snyder R, Mauriac L, Tubiana-Hulin M, Chan S, Grimes D, Antón A, Lluch A, Kennedy J, O’Byrne K, Conte P, Green M, Ward C, Mayne K, Extra JM. Randomized phase II trial of the efficacy and safety of trastuzumab combined with docetaxel in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer administered as first-line treatment: the M77001 study group. J Clin Oncol. 2005;23(19):4265–74. https://doi.org/10.1200/JCO.2005.04.173.

    Article  PubMed  CAS  Google Scholar 

  108. Li H, Shao B, Yan Y, Guohong C, Liu X, Wang J, Liang X. Efficacy and safety of trastuzumab combined with chemotherapy for first-line treatment and beyond progression of HER2-overexpressing advanced breast cancer. Chin J Cancer Res. 2016;28(3):330–8. https://doi.org/10.21147/j.issn.1000-9604.2016.03.07.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Martin M, Ramos-Medina R, Bernat R, García-Saenz JÁ, Monte-Millan M, Alvarez E, Cebollero M, Moreno F, Gonzalez-Haba E, Bueno O, Romero P, Massarrah T, Echavarria I, Jerez Y, Herrero B, Rincon P, Palomero MI, Marquez-Rodas I, Lizarraga S, Asensio F, Lopez-Tarruella S. Activity of docetaxel, carboplatin, and doxorubicin in patient-derived triple-negative breast cancer xenografts. Sci Rep. 2021;11:7064. https://doi.org/10.1038/s41598-021-85962-4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Grem JL, Quinn MG, Keith B, Monahan BP, Hamilton JM, Xu Y, Harold N, Nguyen D, Takimoto CH, Rowedder A, Pang J, Morrison G, Chen A. A phase I and pharmacologic study of weekly gemcitabine in combination with infusional 5-fluorodeoxyuridine and oral calcium leucovorin. Chem Fac Publ. 2003;167:487–96. https://doi.org/10.1007/s00280-003-0698-5.

    Article  CAS  Google Scholar 

  111. Chiti F, Silva FMC, Canelas A, Gonçalves P, Gomes JM. Phase II study of oral vinorelbine plus hormone therapy in hormone-refractory prostate cancer. J Clin Oncol. 2008;26(15):16075. https://doi.org/10.1200/jco.2008.26.15_suppl.16075.

    Article  Google Scholar 

  112. Reni M, Passoni P, Panucci MG, Nicoletti R, Galli L, Balzano G, Zerbi A, Di Carlo V, Villa E. Definitive results of a phase II trial of cisplatin, epirubicin, continuous-infusion fluorouracil, and gemcitabine in stage IV pancreatic adenocarcinoma. J Clin Oncol. 2016;19(10):2679–86. https://doi.org/10.1200/JCO.2001.19.10.2679.

    Article  Google Scholar 

  113. Braun EM, Kikot VA, Ugrinov OG, Lishchishina EM. Neoadjuvant intra-arterial polychemotherapy of locally advanced rectal cancer. Eur J Surg Oncol. 1997;23(3):P228–32. https://doi.org/10.1016/S0748-7983(97)92412-4.

    Article  Google Scholar 

  114. LoRusso PM, Canetta R, Wagner JÁ, Balogh EP, Nass SJ, Boerner SA, Hohneker J. Accelerating cancer therapy development: the importance of combination strategies and collaboration. Summary of an institute of medicine workshop. Clin Cancer Res. 2012;18(22):6101–9. https://doi.org/10.1158/1078-0432.CCR-12-2455.

    Article  PubMed  Google Scholar 

  115. Lopez JS, Banerji U. Combine and conquer: challenges for targeted therapy combinations in early phase trials. Nat Rev Clin Oncol. 2017;14(1):57–66. https://doi.org/10.1038/nrclinonc.2016.96.

    Article  PubMed  CAS  Google Scholar 

  116. Latimer NR, Pollard D, Towse A, Henshall C, Sansom L, Ward RL, Bruce A, Deakin C. Challenges in valuing and paying for combination regimens in oncology: reporting the perspectives of a multi-stakeholder, international workshop. BMC Health Serv Res. 2021;21:412. https://doi.org/10.1186/s12913-021-06425-0.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Shalom-Sharabi I, Lavie O, Samuels N, Keinan-Boker L, Lev E, Ben-Arye E. Can complementary medicine increase adherence to chemotherapy dosing protocol? A controlled study in an integrative oncology setting. J Cancer Res Clin Oncol. 2017;143(12):2535–43. https://doi.org/10.1007/s00432-017-2509-0.

    Article  PubMed  CAS  Google Scholar 

  118. Fumet JD, Vincent J, Bengrine L, Hennequin A, Granconato L, Palmier R, Ghiringhelli F. Safety and efficacy of gemcitabine, docetaxel, capecitabine, cisplatin as second-line therapy for advanced pancreatic cancer after FOLFIRINOX. Anticancer Res. 2020;40(7):4011–5. https://doi.org/10.21873/anticanres.14395.

    Article  PubMed  CAS  Google Scholar 

  119. Schlick K, Magnes T, Ratzinger L, Jaud B, Weiss L, Melchardt T, Greil R, Egle A. Novel models for prediction of benefit and toxicity with FOLFIRINOX treatment of pancreatic cancer using clinically available parameters. PLoS One. 2018;13(11):e0206688. https://doi.org/10.1371/journal.pone.0206688.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Falcetta F, Bizzaro F, D’Agostini E, Bani MR, Giavazzi R, Ubezio P. Modeling cytostatic and cytotoxic responses to new treatment regimens for ovarian cancer. Cancer Res. 2017;77(23):6759–69. https://doi.org/10.1158/0008-5472.CAN-17-1099.

    Article  PubMed  CAS  Google Scholar 

  121. Senkova AV, Mironova NL, Patutina AO, Ageeva TA, Zenkova MA. The toxic effects of polychemotherapy onto the liver are accelerated by the upregulated MDR of lymphosarcoma. Int Sch Res Not. 2012;2012:721612. https://doi.org/10.5402/2012/721612.

    Article  Google Scholar 

  122. Cameron AC, Touyz RM, Lang NN. Vascular complications of cancer chemotherapy. Can J Cardiol. 2016;32(7):852–62. https://doi.org/10.1016/j.cjca.2015.12.023.

    Article  PubMed  Google Scholar 

  123. Huang CY, Ju DT, Chang CF, Reddy PM, Velmurugan BK. A review on the effects of current chemotherapy drugs and natural agents in treating non-small cell lung cancer. Biomedicine. 2017;7(4):23. https://doi.org/10.1051/bmdcn/2017070423.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Wang X, Zhang H, Chen X. Drug resistance and combating drug resistance in cancer. Cancer Drug Resist. 2019;2:141–60. https://doi.org/10.20517/cdr.2019.10.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Torrisi JM, Schwartz LH, Gollub MJ, Ginsberg MS, Bosl GJ, Hrick H. CT findings of chemotherapy-induced toxicity: what radiologists need to know about the clinical and radiologic manifestations of chemotherapy toxicity. Radiology. 2011;258(1):41–56.

    Article  Google Scholar 

  126. Adão R, Keulenaer G, Leite-Moreira A, Brás-Silva C. Cardiotoxicity associated with cancer therapy: pathophysiology and prevention. Rev Port Cardiol. 2013;32(5):395–409. https://doi.org/10.1016/j.repce.2012.11.019.

    Article  PubMed  Google Scholar 

  127. Barbosa RR, Bourguignon TB, Torres LD, Arruda LS, Jacques TM, Serpa RG, Calil AO, Barbosa LFM. Anthracycline-associated cardiotoxicity in adults: systematic review on the cardioprotective role of beta-blockers. Rev Assoc Med Bras. 2018;64(8):745–54. https://doi.org/10.1590/1806-9282.64.08.745.

    Article  PubMed  Google Scholar 

  128. Cai F, Luis MAF, Lin X, Wang M, Cai L, Cen C, Biskup E. Anthracycline-induced cardiotoxicity in the chemotherapy treatment of breast cancer: preventive strategies and treatment. Mol Clin Oncol. 2019;11(1):15–23. https://doi.org/10.3892/mco.2019.1854.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Sobczuk P, Czerwinska M, Kleibert M, Cudnoch-Jedrzejewska A. Anthracycline-induced cardiotoxicity and renin-angiotensin-aldosterone system-from molecular mechanisms to therapeutic applications. Heart Fail Rev. 2020;27(1):295–319. https://doi.org/10.1007/s10741-020-09977-1.

    Article  PubMed Central  CAS  Google Scholar 

  130. Tannapfel A, Reinacher-Schick A. Chemotherapy associated hepatotoxicity in the treatment of advanced colorectal cancer (CRC). Z Gastroenterol. 2008;46(5):435–40. https://doi.org/10.1055/s-2008-1027151.

    Article  PubMed  CAS  Google Scholar 

  131. Cavalcanti IDL, Costa DT, Silva ATA, Peres AL, Coimbra CGO. Importance of pharmacist in oxaliplatin hepatotoxicity associated with inadequate nutritional diet: case report. Curr Nutr Food Sci. 2020;16(5):839–44. https://doi.org/10.2174/1573401316666200120110632.

    Article  Google Scholar 

  132. Gangi A, Lu SC. Chemotherapy-associated liver injury in colorectal cancer. Ther Adv Gastroenterol. 2020;13:1756284820924194. https://doi.org/10.1177/1756284820924194.

    Article  CAS  Google Scholar 

  133. Perse M, Veceric-Haler Z. Cisplatin-induced rodent model of kidney injury: characteristics and challenges. Biomed Res Int. 2018;2018:1462802. https://doi.org/10.1155/2018/1462802.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Santos MLC, Brito BB, Silva FAF, Botelho ACS, Melo FF. Nephrotoxicity in cancer treatment: an overview. World J Clin Oncol. 2020;11(4):190–204. https://doi.org/10.5306/wjco.v11.i4.190.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Miyoshi T, Uoi M, Omura F, Tsumagari K, Maesaki S, Yokota C. Induced nephrotoxicity: a multicenter retrospective study. Oncology. 2021;99:105–13. https://doi.org/10.1159/000510384.

    Article  PubMed  CAS  Google Scholar 

  136. Unek IT, Akman T, Oztop I, Unal OU, Salman T, Yilmaz U. Bimonthly regimen of high-dose leucovorin, infusional 5-fluorouracil, docetaxel, and cisplatin (modified DCF) in advanced gastric adenocarcinoma. Gastric Cancer. 2013;16(3):428–34. https://doi.org/10.1007/s10120-012-0206-x.

    Article  PubMed  CAS  Google Scholar 

  137. Xu N, Shen P, Zhang XC, Yu LF, Bao HY, Shi GM, Huang S, Chen J, Mou HB, Fang WJ. Phase II trial of a 2-h infusion of gemcitabine plus carboplatin as first-line chemotherapy for advanced non-small-cell lung cancer. Cancer Chemother Pharmacol. 2007;59(1):1–7. https://doi.org/10.1007/s00280-006-0237-2.

    Article  PubMed  CAS  Google Scholar 

  138. Paula DP, Costa VIB, Jorge RV, Nobre FF. Impact of protocol change on individual factors related to course of adverse reactions to chemotherapy for breast cancer. Support Care Cancer. 2020;28(1):395–403. https://doi.org/10.1007/s00520-019-04841-x.

    Article  PubMed  Google Scholar 

  139. Azim HA, Azambuja E, Colozza M, Bines J, Piccart MJ. Long-term toxic effects of adjuvant chemotherapy in breast cancer. Ann Oncol. 2011;22(9):1939–47. https://doi.org/10.1093/annonc/mdq683.

    Article  PubMed  Google Scholar 

  140. Volkova M, Russel R. Anthracycline cardiotoxicity: prevalence, pathogenesis and treatment. Curr Cardiol Rev. 2011;7(4):214–20. https://doi.org/10.2174/157340311799960645.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Peroukides S, Alexopoulos A, Kalofonos H, Papadaki H. Cardiovascular effects of treatment with taxanes. J Cardiovasc Med. 2012;13(5):319–24. https://doi.org/10.2459/JCM.0b013e3283529060.

    Article  CAS  Google Scholar 

  142. Florescu M, Mihalcea D, Enescu AO, Radu E, Chirca A, Acasandrei AM, Magda LS, Rimbas RC, Cirstoiu C, Vinereanu D. Eur Heart J. 2011;34(1):541. https://doi.org/10.1093/eurheartj/eht309.P3006.

    Article  Google Scholar 

  143. Gianni L, Salvatorelli E, Minotti G. Anthracycline cardiotoxicity in breast cancer patients: synergism with trastuzumab and taxanes. Cardiovasc Toxicol. 2007;7:67–71. https://doi.org/10.1007/s12012-007-0013-5.

    Article  PubMed  CAS  Google Scholar 

  144. Baker AF, Dorr RT. Drug interactions with the taxanes: clinical implications. Cancer Treat Rev. 2001;27(4):221–33. https://doi.org/10.1053/ctrv.2001.0228.

    Article  PubMed  CAS  Google Scholar 

  145. Esposito M, Venturini M, Vannozzi MO, Tolino G, Lunardi G, Garrone O, Angiolini C, Viale M, Bergaglio M, Del Mastro L, Rosso R. Comparative effects of paclitaxel and docetaxel on the metabolism and pharmacokinetics of epirubicin in breast cancer patients. J Clin Oncol. 1999;17(4):1132. https://doi.org/10.1200/JCO.1999.17.4.1132.

    Article  PubMed  CAS  Google Scholar 

  146. Venturini M, Lunardi G, Del Mastro L, Vannozzi MO, Tolino G, Numico G, Viale M, Pastrone I, Angiolini C, Bertelli G, Straneo M, Rosso R, Eposito M. Sequence effect of epirubicin and paclitaxel treatment on pharmacokinetics and toxicity. J Clin Oncol. 2000;18(10):2116–25. https://doi.org/10.1200/JCO.2000.18.10.2116.

    Article  PubMed  CAS  Google Scholar 

  147. Dang CT, D’Andrea GM, Moynahan ME, Dickler MN, Seidman AD, Fornier M, Robson ME, Theodoulou M, Lake D, Currie VE, Hurria A, Panageas KS, Norton L, Hudis CA. Phase II study of feasibility of dose-dense FEC followed by alternating weekly taxanes in high-risk, four or more node-positive breast cancer. Clin Cancer Res. 2004;10(17):5754–61. https://doi.org/10.1158/1078-0432.CCR-04-0634.

    Article  PubMed  CAS  Google Scholar 

  148. Vahid B, Marik PE. Pulmonary complications of novel antineoplastic agents for solid tumors. Chest J. 2008;133(2):528–38. https://doi.org/10.1378/chest.07-0851.

    Article  CAS  Google Scholar 

  149. Kennedy MJ, Zahurak ML, Donehower RC, Noe DA, Sartorius S, Chen TL, Bowling K, Rowinsky EK. Phase I and pharmacologic study of sequences of paclitaxel and cyclophosphamide supported by granulocyte colony-stimulating factor in women with previously treated metastatic breast cancer. J Clin Oncol. 1996;14(3):783–91. https://doi.org/10.1200/JCO.1996.14.3.783.

    Article  PubMed  CAS  Google Scholar 

  150. Tolcher AW, Cowan KH, Noone MH, Denicoff AM, Kohler DR, Goldspiel BR, Barnes CS, McCabe M, Gossard MR, Zujewski J, O’Shaughnessy JA. Phase I study of paclitaxel in combination with cyclophosphamide and granulocyte colony-stimulating factor in metastatic breast cancer patients. J Clin Oncol. 1996;14(1):95–102. https://doi.org/10.1200/JCO.1996.14.1.95.

    Article  PubMed  CAS  Google Scholar 

  151. Petrelli F, Borgonovo K, Cabiddu M, Lonati V, Barni S. Mortality, leukemic risk, and cardiovascular toxicity of adjuvant anthracycline and taxane chemotherapy in breast cancer: a meta-analysis. Breast Cancer Res Treat. 2012;135:335–46. https://doi.org/10.1007/s10549-012-2121-6.

    Article  PubMed  CAS  Google Scholar 

  152. Paul DM, Garrett AM, Meshad M, DeVore RD, Porter LL, Johnson DH. Paclitaxel and 5-fluorouracil in metastatic breast cancer: the US experience. Semin Oncol. 1996;23(1):48–52.

    PubMed  CAS  Google Scholar 

  153. Nicholson BP, Paul DM, Hande KR, Shyr Y, Meshad M, Cohen A, Johnson DH. Paclitaxel, 5-fluorouracil, and leucovorin (TFL) in the treatment of metastatic breast cancer. Clin Breast Cancer. 2000;1(2):136–43. https://doi.org/10.3816/CBC.2000.n.012.

    Article  PubMed  CAS  Google Scholar 

  154. Loesch DM, Asmar L, Canfield VA, Parker GA, Hynes HE, Ellis PG, Ferri WA Jr, Robert NJ. A phase II trial of weekly paclitaxel, 5fluorouracil, and leucovorin as first-line treatment for metastatic breast cancer. Breast Cancer Res Treat. 2003;77:115–23.

    Article  CAS  Google Scholar 

  155. Berruti A, Bitossi R, Gorzegno G, Bottini A, Generali D, Milani M, Katsaros D, Rigault de la Longrais IA, Bellino R, Donadio M, Ardine M, Bertetto O, Danese S, Sarobba MG, Farris A, Lorusso V, Dogliotti L. Paclitaxel, vinorelbine and 5-fluorouracil in breast câncer patients pretreated with adjuvant anthracyclines. Br J Cancer. 2005;92:634–8.

    Article  CAS  Google Scholar 

  156. Steward WP, Dunlop DJ. New drugs in the treatment of non-small cell lung cancer. Ann Oncol. 1995;6(1):49–54.

    Article  Google Scholar 

  157. Cherif H, Bacha S, Habibech S, Racil H, Cheikhrouhou S, Chaouech N, Chabbou A, Megdiche ML. Chemotherapy toxicity in advanced non-small cell lung cancer and its impact on survival. Eur Respir J. 2016;48:4841. https://doi.org/10.1183/13993003.congress-2016.PA4841.

    Article  Google Scholar 

  158. Lee SH. Chemotherapy for lung cancer in the era of personalized medicine. Tuberc Respir Dis. 2019;82(3):179–89. https://doi.org/10.4046/trd.2018.0068.

    Article  Google Scholar 

  159. Fan Y, Lin NM, Ma SL, Luo LH, Fang L, Huang ZY, Yu HF, Wu FQ. Phase II trial of gemcitabine plus cisplatin in patients with advanced non-small cell lung cancer. Acta Pharmacol Sin. 2010;31:746–52. https://doi.org/10.1038/aps.2010.50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Ryu JH. Chemotherapy-induced pulmonary toxicity in lung cancer patients. J Thorac Oncol. 2010;5(9):1313–4. https://doi.org/10.1097/JTO.0b013e3181e9dbb9.

    Article  PubMed  Google Scholar 

  161. Niho S, Kubota K, Goto K, Yoh K, Ohmatsu H, Kakinuma R, Saijo N, Nishiwaki Y. First-line single agent treatment with gefitinib in patients with advanced non-small-cell lung cancer: a phase II study. J Clin Oncol. 2006;24(1):64–9. https://doi.org/10.1200/JCO.2005.02.5825.

    Article  PubMed  CAS  Google Scholar 

  162. Liu V, White DA, Zakowski MF, Travis W, Kris MG, Ginsberg MS, Miller VA, Azzoli CG. Pulmonary toxicity associated with erlotinib. Chest J. 2007;132(3):1042–4. https://doi.org/10.1378/chest.07-0050.

    Article  Google Scholar 

  163. Chen YM, Shih JF, Lee CS, Chen MC, Lin WC, Tsai CM, Perng RP. Phase II study of docetaxel and ifosfamide combination chemotherapy in non-small-cell lung cancer patients failing previous chemotherapy with or without paclitaxel. Lung Cancer. 2003;39(2):209–14. https://doi.org/10.1016/s0169-5002(02)00445-2.

    Article  PubMed  Google Scholar 

  164. Skubitz KM, Skubitz AP. Mechanism of transient dyspnea induced by pegylated-liposomal doxorubicin (Doxil). Anti-Cancer Drugs. 1998;9(1):45–50. https://doi.org/10.1097/00001813-199801000-00005.

    Article  PubMed  CAS  Google Scholar 

  165. Pavlakis N, Bell DR, Millward MJ, Levi JA. Fatal pulmonary toxicity resulting from treatment with gemcitabine. Cancer. 1997;80(2):286–91.

    Article  CAS  Google Scholar 

  166. Marruchella A, Fiorenzano G, Merizzi A, Rossi G, Chiodera PL. Diffuse alveolar damage in a patient treated with gemcitabine. Eur Respir J. 1998;11(2):504–6. https://doi.org/10.1183/09031936.98.11020504.

    Article  PubMed  CAS  Google Scholar 

  167. Roychowdhury DF, Cassidy CA, Peterson P, Arning M. A report on serious pulmonary toxicity associated with gemcitabine-based therapy. Investig New Drugs. 2002;20(3):311–5. https://doi.org/10.1023/a:1016214032272.

    Article  CAS  Google Scholar 

  168. Barlési F, Villani P, Doddoli C, Gimenez C, Kleisbauer JP. Gemcitabine-induced severe pulmonar toxicity. Fundam Clin Pharmacol. 2004;18(1):85–91. https://doi.org/10.1046/j.0767-3981.2003.00206.x.

    Article  PubMed  Google Scholar 

  169. Saravanan V, Kelly CA. Reducing the risk of methotrexate pneumonitis in rheumatoid arthritis. Rheumatology. 2004;43(2):143–7. https://doi.org/10.1093/rheumatology/keg466.

    Article  PubMed  CAS  Google Scholar 

  170. Zimmerman MS, Ruckdeschel JC, Hussain M. Chemotherapy-induced interstitial pneumonitis during treatment of small cell anaplastic lung cancer. J Clin Oncol. 1984;2(5):396–405. https://doi.org/10.1200/JCO.1984.2.5.396.

    Article  PubMed  CAS  Google Scholar 

  171. Dajczman E, Srolovitz H, Kreisman H, Frank H. Fatal pulmonary toxicity following oral etoposide therapy. Lung Cancer. 1995;12(1):81–6. https://doi.org/10.1016/0169-5002(94)00410-o.

    Article  PubMed  CAS  Google Scholar 

  172. Gurjal A, An T, Valdivieso M, Kalemkerian GP. Etoposide-induced pulmonary toxicity. Lung Cancer. 1999;26(2):109–12. https://doi.org/10.1016/s0169-5002(99)00081-1.

    Article  PubMed  CAS  Google Scholar 

  173. Siderov J, Prasad P, De Boer R, Desai J. Safe administration of etoposide phosphate after hypersensitivity reaction to intravenous etoposide. Br J Cancer. 2002;86(1):12–3. https://doi.org/10.1038/sj.bjc.6600003.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. Toschi L, Finocchiaro G, Bartolini S, Gioia V, Cappuzzo F. Role of gemcitabine in cancer therapy. Future Oncol. 2005;1(1):7–17. https://doi.org/10.1517/14796694.1.1.7.

    Article  PubMed  CAS  Google Scholar 

  175. Ciccolini J, Serdjebi C, Peters GJ, Giovanneti E. Pharmacokinetics and pharmacogenetics of Gemcitabine as a mainstay in adult and pediatric oncology: an EORTC-PAMM perspective. Cancer Chemother Pharmacol. 2016;78:1–12. https://doi.org/10.1007/s00280-016-3003-0.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Mohelnikova-Duchonova B, Melichar B, Soucek P. FOLFOX/FOLFIRI pharmacogenetics: the call for a personalized approach in colorectal cancer therapy. World J Gastroenterol. 2014;20(30):10316–30. https://doi.org/10.3748/wjg.v20.i30.10316.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Xie YH, Chen YX, Fang JY. Comprehensive review of targeted therapy for colorectal cancer. Signal Transduct Target Ther. 2020;5:22. https://doi.org/10.1038/s41392-020-0116-z.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  178. Eng C. Toxic effects and their management: daily clinical challenges in the treatment of colorectal cancer. Nat Rev Clin Oncol. 2009;6:207–18. https://doi.org/10.1038/nrclinonc.2009.16.

    Article  PubMed  CAS  Google Scholar 

  179. Tong L, Ahn C, Symanski E, Lai D, Du XL. Effects of newly developed chemotherapy regimens, comorbidities, chemotherapy-related toxicities on the changing patterns of the leading causes of death in elderly patients with colorectal cancer. Ann Oncol. 2014;25(6):1234–42. https://doi.org/10.1093/annonc/mdu131.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  180. Aoullay Z, Slaoui M, Razine R, Er-Raki A, Meddah B, Cherrah Y. Therapeutic characteristics, chemotherapy-related toxicities and survivorship in colorectal cancer patients. Ethiop J Health Sci. 2020;30(1):65–74. https://doi.org/10.4314/ejhs.v30i1.9.

    Article  PubMed  PubMed Central  Google Scholar 

  181. Grivicich I, Mans DRA, Peters GJ, Schwartsmann G. Irinotecan and oxaliplatin: an overview of the novel chemotherapeutic options for the treatment of advanced colorectal cancer. Braz J Med Biol Res. 2001;34(9):1087–103. https://doi.org/10.1590/S0100-879X2001000900001.

    Article  PubMed  CAS  Google Scholar 

  182. Braun MS, Seymour MT. Balancing the efficacy and toxicity of chemotherapy in colorectal cancer. Therap Adv Med Oncol. 2011;3(1):43–52. https://doi.org/10.1177/1758834010388342.

    Article  CAS  Google Scholar 

  183. Cunningham D, Pyrhonen S, James RD, Punt CJ, Hickish TF, Heikkila R, Johannesen TB, Starkhammar H, Topham CA, Awad L, Jacques C, Herait P. Randomised trial of irinotecan plus supportive care versus supportive care alone after fluorouracil failure for patients with metastatic colorectal cancer. Lancet. 1998;352(9138):1413–8. https://doi.org/10.1016/S0140-6736(98)02309-5.

    Article  PubMed  CAS  Google Scholar 

  184. Ledermann JA, Leonard P, Seymour M. Recommendation for caution with irinotecan fluorouracil, and leucovorin for colorectal cancer. N Engl J Med. 2001;345(2):145–6.

    PubMed  CAS  Google Scholar 

  185. Sargent DJ, Niedzwiecki D, O’Connell MJ, Schilsky RL. Recommendation for caution with irinotecan, fluorouracil, and leucovorin for colorectal cancer. N Engl J Med. 2001;345(2):144–5. https://doi.org/10.1056/NEJM200107123450213.

    Article  PubMed  CAS  Google Scholar 

  186. Goldberg RM, Sargent DJ, Morton RF, Fuchs CS, Ramanathan RK, Williamson SK, Findlay BP, Pitot HC, Alberts SR. A randomized controlled trial of fluorouracil plus leucovorin, irinotecan, and oxaliplatin combinations in patients with previously untreated metastatic colorectal cancer. J Clin Oncol. 2004;22(1):23–30. https://doi.org/10.1200/JCO.2004.09.046.

    Article  PubMed  CAS  Google Scholar 

  187. Saltz LB, Niedzwiecki D, Hollis D, Goldberg RM, Hantel A, Thomas JP, Fields ALA, Mayer RJ. Irinotecan fluorouracil plus leucovorin is not superior to fluorouracil plus leucovorin alone as adjuvant treatment for stage III colon cancer: results of CALGB 89803. J Clin Oncol. 2007;25(23):3456–61. https://doi.org/10.1200/JCO.2007.11.2144.

    Article  PubMed  CAS  Google Scholar 

  188. Grothey A. Clinical management of oxaliplatin-associated neurotoxicity. Clin Colorectal Cancer. 2005;5(1):38–46. https://doi.org/10.3816/ccc.2005.s.006.

    Article  Google Scholar 

  189. Gramont A, Figer A, Seymour M, Homerin M, Hmissi A, Cassidy J, Boni C, Cortes-Funes H, Cervantes A, Freyer G, Papamichael D, Le Bail N, Louvet C, Hendler D, Braud F, Wilson C, Morvan F, Bonetti A. Leucovorin and fluorouracil with or without oxaliplatin as first-line treatment in advanced colorectal cancer. J Clin Oncol. 2000;18(16):2938–47. https://doi.org/10.1200/JCO.2000.18.16.2938.

    Article  PubMed  Google Scholar 

  190. Cassidy J, Twelves C, Van Cutsem E, Hoff P, Bajetta E, Boyer M, Bugat R, Burger U, Garin A, Graeven U, McKendric J, Maroun J, Marshall J, Osterwalder B, Pérez-Manga G, Rosso R, Rougier P, Schilsky RL. First-line oral capecitabine therapy in metastatic colorectal cancer: a favorable safety profile compared with intravenous 5-fluorouracil/leucovorin. Ann Oncol. 2002;13(4):566–75. https://doi.org/10.1093/annonc/mdf089.

    Article  PubMed  CAS  Google Scholar 

  191. Tournigand C, André T, Achille E, Lledo G, Flesh M, Mery-Mignard D, Quinaux E, Couteau C, Buyse M, Ganem G, Landi B, Colin P, Louvet C, Gramont A. FOLFIRI followed by FOLFOX6 or the reverse sequence in advanced colorectal cancer: a randomized GERCOR study. J Clin Oncol. 2004;22(2):229–37. https://doi.org/10.1200/JCO.2004.05.113.

    Article  PubMed  CAS  Google Scholar 

  192. Eisenberger MA, Simon R, O’Dwyer PJ, Wittes RE, Friedman MA. A reevaluation of nonhormonal cytotoxic chemotherapy in the treatment of prostatic carcinoma. J Clin Oncol. 1985;3(6):827–41. https://doi.org/10.1200/JCO.1985.3.6.827.

    Article  PubMed  CAS  Google Scholar 

  193. Beer TM, Bubalo JS. Complications of chemotherapy for prostate cancer. Semin Urol Oncol. 2001;19(3):222–30.

    PubMed  CAS  Google Scholar 

  194. Denmeade SR, Isaacs JT. A history of prostate cancer treatment. Nat Rev Cancer. 2002;2(5):389–96. https://doi.org/10.1038/nrc801.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  195. Sciarra A, Cardi A, Salvatori G, D’Eramo G, Mariotti G, Silverio FD. Which patients with prostate cancer are actually candidates for hormone therapy? Int Braz J Urol. 2004;30(6):455–65. https://doi.org/10.1590/S1677-55382004000600002.

    Article  PubMed  Google Scholar 

  196. Kaliks RA, Giglio AD. Management of advanced prostate cancer. Rev Assoc Med Bras. 2008;54(2):178–82. https://doi.org/10.1590/S0104-42302008000200025.

    Article  PubMed  Google Scholar 

  197. Behrens RJ, Gulley JL, Dahut WL. Pulmonary toxicity during prostate cancer treatment with docetaxel and thalidomide. Am J Ther. 2003;10(3):228–32. https://doi.org/10.1097/00045391-200305000-00011.

    Article  PubMed  Google Scholar 

  198. Kellokumpu-Lehtinen PL, Hjalm-Eriksson M, Thellenberg-Karlsson C, Astrom L, Franzen L, Marttila T, Seke M, Taalikka M, Ginman C. Toxicity in patients receiving adjuvant docetaxel + hormonal treatment after radical radiotherapy for intermediate or high-risk prostate cancer: a preplanned safety report of the SPCG-13 trial. Prostate Cancer Prostatic Dis. 2012;15:303–7. https://doi.org/10.1038/pcan.2012.13.

    Article  PubMed  CAS  Google Scholar 

  199. Terada N, Kamoto T, Tsukino H, Mukai S, Akamatsu S, Inoue T, Ogawa O, Narita S, Habuchi T, Yamashita S, Mitsuzuka K, Arai Y, Kandori S, Kojima T, Nishiyama H, Kawamura Y, Shimizu Y, Terachi T, Sugi M, Kinoshita H, Matsuda T, Yamada Y, Yamamoto S, Hirama H, Sugimoto M, Kakehi Y, Sakurai T, Tsuchiya N. The efficacy and toxicity of cabazitaxel for treatment of docetaxel-resistant prostate cancer correlating with the initial doses in Japanese patients. BMC Cancer. 2019;19:156. https://doi.org/10.1186/s12885-019-5342-9.

    Article  PubMed  PubMed Central  Google Scholar 

  200. Scott WW, Johnson DE, Schimidt JE, Gibbons RP, Prout GR, Joiner JR, Saroff J, Murphy GP. Chemotherapy of advanced prostatic carcinoma with cyclophosphamide or 5-fluorouracil: results of first national randomized study. J Urol. 1975;114(6):909–11. https://doi.org/10.1016/s0022-5347(17)67172-6.

    Article  PubMed  CAS  Google Scholar 

  201. Tannock IF, Osoba D, Stockler MR, Ernst DS, Neville AJ, Moore MJ, Armitage GR, Wilson JJ, Venner PM, Coppin CM, Murphy KC. Chemotherapy with mitoxantrone plus prednisone or prednisone alone for symptomatic hormone-resistant prostate cancer: a Canadian randomized trial with palliative end points. J Clin Oncol. 1996;14(6):1756–64. https://doi.org/10.1200/JCO.1996.14.6.1756.

    Article  PubMed  CAS  Google Scholar 

  202. Hudes GR, Greenberg R, Krigel RL, Fox S, Scher R, Litwin S, Watts P, Speicher L, Tew K, Comis R. Phase II study of estramustine and vinblastine, two microtubule inhibitors, in hormone-refractory prostate cancer. J Clin Oncol. 1992;10(11):1754–61. https://doi.org/10.1200/JCO.1992.10.11.1754.

    Article  PubMed  CAS  Google Scholar 

  203. Hudes GR, Nathan F, Khater C, Haas N, Cornfield M, Giantonio B, Greenberg R, Gomella L, Litwin S, Ross E, Roethke S, McAleer C. Phase II trial of 96-hour paclitaxel plus oral estramustine phosphate in metastatic hormone-refractory prostate cancer. J Clin Oncol. 1997;15(9):3156–63. https://doi.org/10.1200/JCO.1997.15.9.3156.

    Article  PubMed  CAS  Google Scholar 

  204. Pienta KJ, Redman B, Hussain M, Cummings G, Esper PS, Appel C, Flaherty LE. Phase II evaluation of oral estramustine and oral etoposide in hormone-refractory adenocarcinoma of the prostate. J Clin Oncol. 1994;12(10):2005–12. https://doi.org/10.1200/JCO.1994.12.10.2005.

    Article  PubMed  CAS  Google Scholar 

  205. Savarese DM, Halabi S, Hars V, Akerley WL, Taplin ME, Godley PA, Hussain A, Small EJ, Vogelzang NJ. Phase II study of docetaxel, estramustine, and low-dose hydrocortisone in men with hormone-refractory prostate cancer: a final report of CALGB 9780. Cancer and Leukemia Group B. J Clin Oncol. 2001;19(9):2509–16. https://doi.org/10.1200/JCO.2001.19.9.2509.

    Article  PubMed  CAS  Google Scholar 

  206. Sella A, Kilbourn R, Amato R, Bui C, Zukiwski AA, Ellerhorst J, Logothetis CJ. Phase II study of ketoconazole combined with weekly doxorubicin in patients with androgen-independent prostate cancer. J Clin Oncol. 1994;12(4):683–8. https://doi.org/10.1200/JCO.1994.12.4.683.

    Article  PubMed  CAS  Google Scholar 

  207. Jones B. Toxicity after cervical cancer treatment using radiotherapy and chemotherapy. Clin Oncol J. 2009;21(1):56–63. https://doi.org/10.1016/j.clon.2008.10.009.

    Article  CAS  Google Scholar 

  208. Zuliani AC, Cunha MO, Esteves SCB, Teixeira JC. Brachytherapy for stage IIIB squamous cell carcinoma of the uterine cervix: survival and toxicity. Rev Assoc Med Bras. 2010;56(1):37–40. https://doi.org/10.1590/S0104-42302010000100013.

    Article  PubMed  Google Scholar 

  209. Chen HHW, Kuo MT. Improving radiotherapy in cancer treatment: promises and challenges. Oncotarget. 2017;8(37):62742–58. https://doi.org/10.18632/oncotarget.18409.

    Article  PubMed  PubMed Central  Google Scholar 

  210. Fu ZZ, Li K, Peng Y, Zheng Y, Cao LY, Zhang YJ, Sun YM. Efficacy and toxicity of different concurrent chemoradiotherapy regimens in the treatment of advanced cervical cancer: a network meta-analysis. Medicine. 2017;96(2):e5853. https://doi.org/10.1097/MD.0000000000005853.

    Article  PubMed  PubMed Central  Google Scholar 

  211. Dasari S, Tchounwou PB. Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol. 2014;740:364–78. https://doi.org/10.1016/j.ejphar.2014.07.025.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  212. Ghosh S. Cisplatin: the first metal based anticancer drug. Bioorg Chem. 2019;88:102925. https://doi.org/10.1016/j.bioorg.2019.102925.

    Article  PubMed  CAS  Google Scholar 

  213. Tan LT, Zahra M. Long-term survival and late toxicity after chemoradiotherapy for cervical cancer – the Addenbrooke’s experience. Clin Oncol. 2008;20(5):358–64. https://doi.org/10.1016/j.clon.2008.03.001.

    Article  CAS  Google Scholar 

  214. Tan LT, Russell S, Burgess L. Acute toxicity of chemo-radiotherapy for cervical cancer: the Addenbrooke’s experience. Clin Oncol J. 2004;16(4):255–60. https://doi.org/10.1016/j.clon.2003.12.004.

    Article  CAS  Google Scholar 

  215. Coronel JA, Cetina LC, Cantú D, Cerezo O, Hernández CS, Rivera L, Chacón AP, Duenas-Gonzalez A. A randomized comparison of cisplatin and oral vinorelbine as radiosensitizers in aged or comorbid locally advanced cervical cancer patients. Int J Gynecol Cancer. 2013;23(5):884–9. https://doi.org/10.1097/IGC.0b013e3182915c69.

    Article  PubMed  Google Scholar 

  216. Wang CC, Chou HH, Yang LY, Lin H, Liou WS, Tseng CW, Liu FY, Liou JD, Huang KG, Huang HJ, Huang EY, Chen CH, Chang TC, Chang CJ, Hong JH, Lai CH. A randomized trial comparing concurrent chemoradiotherapy with single-agent cisplatin versus cisplatin plus gemcitabine in patients with advanced cervical cancer: An Asian Gynecologic Oncology Group study. Gynecol Oncol. 2015;137(3):462–7. https://doi.org/10.1016/j.ygyno.2015.03.046.

    Article  PubMed  CAS  Google Scholar 

  217. Kong TW, Chang SJ, Paek J, Yoo SC, Yoon JH, Chang KH, Chun M, Ryu HS. Comparison of concurrent chemoradiation therapy with weekly cisplatin versus monthly fluorouracil plus cisplatin in FIGO stage IIB-IVA cervical cancer. J Gynecol Oncol. 2012;23(4):235–41. https://doi.org/10.3802/jgo.2012.23.4.235.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  218. Araújo DFB, Cavalcanti IDL, Larrazabal-Hadj-Idris BR, Peres AL. Hematological and biochemical toxicity analysis of chemotherapy in women diagnosed with cervical cancer. J Bras Patol Med Lab. 2020;56:1–6. https://doi.org/10.5935/1676-2444.20200038.

    Article  CAS  Google Scholar 

  219. Cognetti DM, Weber RS, Lai SY. Head and neck cancer: an evolving treatment paradigm. Cancer. 2008;113(7):1911–32. https://doi.org/10.1002/cncr.23654.

    Article  PubMed  Google Scholar 

  220. Yeh SA. Radiotherapy for head and neck cancer. Semin Plast Surg. 2010;24(2):127–36. https://doi.org/10.1055/s-0030-1255330.

    Article  PubMed  PubMed Central  Google Scholar 

  221. Trotti A. Toxicity in head and neck cancer: a review of trends and issues. Int J Radiat Oncol Biol Phys. 2000;47(1):1–12. https://doi.org/10.1016/s0360-3016(99)00558-1.

    Article  PubMed  CAS  Google Scholar 

  222. Biswal BM. Current trends in the management of oral mucositis related to cancer treatment. Malays J Med Sci. 2008;15(3):4–13.

    PubMed  PubMed Central  Google Scholar 

  223. Corrêa DS, Oliveira TFL, Santos PSS. Management of oral adverse effects related to cetuximab plus radiotherapy. J Oral Diagn. 2017;2:e20170003. https://doi.org/10.5935/2525-5711.20170003.

    Article  Google Scholar 

  224. Hu MH, Wang LW, Lu HJ, Chu PY, Tai SK, Lee TL, Chen MH, Yang MH, Chang PMH. Cisplatin-based chemotherapy versus cetuximab in concurrent chemoradiotherapy for locally advanced head and neck cancer treatment. Biomed Res Int. 2014;2014:904341. https://doi.org/10.1155/2014/904341.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  225. Albers AE, Grabow R, Qian X, Jumah MD, Holfmann VM, Krannich A, Pecher G. Efficacy and toxicity of docetaxel combination chemotherapy for advanced squamous cell cancer of the head and neck. Mol Clin Oncol. 2017;7(1):151–7. https://doi.org/10.3892/mco.2017.1281.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  226. Posner MR, Hershock DM, Blajman CR, Mickiewicz E, Winquist E, Gorbounova V, Tjulandin S, Shin DM, Cullen K, Ervin TJ, Murphy BA, Raez LE, Cohen RB, Spaulding M, Tishler RB, Roth B, Viroglio RC, Venkatesan V, Romanov I, Agarwala S, Harter KW, Dugan M, Cmelak A, Markoe AM, Read PW, Read PW, Steinbrenner L, Colevas AD, Norris CM, Haddad RI. Cisplatin and fluorouracil alone or with docetaxel in head and neck cancer. N Engl J Med. 2007;357(17):1705–15. https://doi.org/10.1056/NEJMoa070956.

    Article  PubMed  CAS  Google Scholar 

  227. Vermorken JB, Remenar E, van Herpen C, Gorlia T, Mesia R, Degardin M, Stewart JS, Jelic S, Betka J, Preiss JH, van den Weyngaert D, Awada A, Cupissol D, Kienzer HR, Rey A, Desaunois I, Bernier J, Lefebvre JL. Cisplatin, fluorouracil, and docetaxel in unresectable head and neck cancer. N Engl J Med. 2007;357(17):1695–704. https://doi.org/10.1056/NEJMoa071028.

    Article  PubMed  CAS  Google Scholar 

  228. Qian X, Ma C, Hoffmann TK, Kaufmann AM, Albers AE. Taxane-cisplatin-fluorouracil as induction chemotherapy for advanced head and neck cancer: a meta-analysis of the 5-year efficacy and safety. Springerplus. 2015;4:208. https://doi.org/10.1186/s40064-015-0988-5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  229. Hodgson DC. Long-term toxicity of chemotherapy and radiotherapy in lymphoma survivors: optimizing treatment for individual patients. Clin Adv Hematol Oncol. 2015;13(2):103–12.

    PubMed  Google Scholar 

  230. Shanbhag S, Ambinder R. Hodgkin lymphoma: a review and update on recent progress. CA Cancer J Clin. 2018;68(2):116–32. https://doi.org/10.3322/caac.21438.

    Article  PubMed  Google Scholar 

  231. Limat S, Daguindau E, Cahn JY, Nerich V, Brion A, Perrin S, Woronoff-Lemsi MC, Deconinck E. Incidence and risk-factors of CHOP/R-CHOP-related cardiotoxicity in patients with aggressive non-Hodgkin’s lymphoma. J Clin Pharm Ther. 2014;39(2):168–74. https://doi.org/10.1111/jcpt.12124.

    Article  PubMed  CAS  Google Scholar 

  232. Swerdlow AJ, Higgins CD, Smith P, Cunningham D, Hancock BW, Horwich A, Hoskin PJ, Lister A, Radford JA, Rohatiner AZS, Linch DC. Myocardial infarction mortality risk after treatment for Hodgkin disease: a collaborative British cohort study. J Natl Cancer Inst. 2007;99(3):206–14. https://doi.org/10.1093/jnci/djk029.

    Article  PubMed  Google Scholar 

  233. Hershman DL, McBride RB, Eisenberger A, Tsai WY, Grann VR, Jacobson JS. Doxorubicin, cardiac risk factors, and cardiac toxicity in elderly patients with diffuse B-cell non-Hodgkin’s lymphoma. J Clin Oncol. 2008;26(19):3159–65. https://doi.org/10.1200/JCO.2007.14.1242.

    Article  PubMed  CAS  Google Scholar 

  234. Herbrecht R, Cernohous P, Engert A, Le Gouill S, Macdonald D, Machida C, Myint H, Saleh A, Singer J, Wilhelm M, van der Jagt R. Comparison of pixantrone-based regimen (CPOP-R) with doxorubicin-based therapy (CHOP-R) for treatment of diffuse large B-cell lymphoma. Ann Oncol. 2013;24(10):2618–23. https://doi.org/10.1093/annonc/mdt289.

    Article  PubMed  CAS  Google Scholar 

  235. Swerdlow AJ, Schoemaker MJ, Allerton R, Horwich A, Barber JA, Cunningham D, Lister TA, Rohatiner AZ, Vaughan Hudson G, Williams MV, Linch DC. Lung cancer after Hodgkin’s disease: a nested case-control study of the relation to treatment. J Clin Oncol. 2001;19(6):1610–8. https://doi.org/10.1200/JCO.2001.19.6.1610.

    Article  PubMed  CAS  Google Scholar 

  236. Travis LB, Gospodarowicz M, Curtis RE, Clarke EA, Andersson M, Glimelius B, Joensuu T, Lynch CF, van Leeuwen FE, Holowaty E, Storm H, Glimelius I, Pukkala E, Stovall M, Fraumeni JF Jr, Boice JD Jr, Gilbert E. Lung cancer following chemotherapy and radiotherapy for Hodgkin’s disease. J Natl Cancer Inst. 2002;94(3):182–92. https://doi.org/10.1093/jnci/94.3.182.

    Article  PubMed  Google Scholar 

  237. Van Leeuwen FE, Chorus AM, van den Belt-Dusebout AW, Hagenbeek A, Noyon R, van Kerkhoff EH, Pinedo HM, Somers R. Leukemia risk following Hodgkin’s disease: relation to cumulative dose of alkylating agents, treatment with teniposide combinations, number of episodes of chemotherapy, and bone marrow damage. J Clin Oncol. 1994;12(5):1063–73. https://doi.org/10.1200/JCO.1994.12.5.1063.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lima Cavalcanti, I.D. (2022). Combined Therapy for the Treatment of Cancer. In: Chemotherapy Protocols and Infusion Sequence. Springer, Cham. https://doi.org/10.1007/978-3-031-10839-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-10839-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-10838-9

  • Online ISBN: 978-3-031-10839-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics