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Abstract. Treating a saturation-based automatic theorem prover
(ATP) as a Las Vegas randomized algorithm is a way to illuminate the
chaotic nature of proof search and make it amenable to study by prob-
abilistic tools. On a series of experiments with the ATP Vampire, the
paper showcases some implications of this perspective for prover evalua-
tion.
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1 Introduction

Saturation-based proof search is known to be fragile. Even seemingly insignificant
changes in the search procedure, such as shuffling the order in which input
formulas are presented to the prover, can have a huge impact on the prover’s
running time and thus on the ability to find a proof within a given time limit.

This chaotic aspect of the prover behaviour is relatively poorly understood,
yet has obvious consequences for evaluation. A typical experimental evaluation
of a new technique T compares the number of problems solved by a baseline
run with a run enhanced by T (over an established benchmark and with a fixed
timeout). While a higher number of problems solved by the run enhanced by
T indicates a benefit of the new technique, it is hard to claim that a certain
problem P is getting solved thanks to T . It might be that T just helps the
prover get lucky on P by a complicated chain of cause and effect not related to
the technique T—and the original idea behind it—in any reasonable sense.

We propose to expose and counter the effect of chaotic behaviours by delib-
erately injecting randomness into the prover and observing the results of many
independently seeded runs. Although computationally more costly than stan-
dard evaluation, such an approach promises to bring new insights. We gain the
ability to apply the tools of probability theory and statistics to analyze the
results, assign confidences, and single out those problems that robustly benefit
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from the evaluated technique. At the same time, by observing the changes in
the corresponding runtime distributions we can even meaningfully establish the
effect of the new technique on a single problem in isolation, something that is
normally inconclusive due to the threat of chaotic fluctuations.

In this paper, we report on several experiments with a randomized version
of the ATP Vampire [9]. After explaining the method in more detail (Sect. 2),
we first demonstrate the extent in which the success of a typical Vampire
proof search strategy can be ascribed to chance (Sect. 3). Next, we use the col-
lected data to highlight the specifics of comparing two strategies probabilisti-
cally (Sect. 4). Finally, we focus on a single problem to see a chaotic behaviour
smoothened into a distribution with a high variance (Sect. 5). The paper ends
with an overview of related work (Sect. 6) and a discussion (Sect. 7).

2 Randomizing Out Chaos

Any developer of a saturation-based prover will confirm that the behaviour of a
specific proving strategy on a specific problem is extremely hard to predict, that
a typical experimental evaluation of a new technique (such as the one described
earlier) invariably leads to both gains and losses in terms of the solved problems,
and that a closer look at any of the “lost” problems often reveals just a com-
plicated chain of cause and effect that steers the prover away from the original
path (rather than a simple opportunity to improve the technique further).

These observations bring indirect evidence that the prover’s behaviour is
chaotic: A specific prover run can be likened to a single bead falling down through
the pegs of the famous Galton board1. The bead follows a deterministic trajec-
tory, but only because the code fixes every single detail of the execution, includ-
ing many which the programmer did not care about and which were left as they
are merely out of coincidence. We put forward here that any such fixed detail
(which does not contribute to an officially implemented heuristic) represents a
candidate location for randomization, since a different programmer could have
fixed the detail differently and we would still call the code essentially the same.

Implementation: We implemented randomization on top of Vampire version
4.6.1; the code is available as a separate git branch2. We divided the randomiza-
tion opportunities into three groups (governed by three new Vampire options).

Shuffling the input (-si on) randomly reorders the input formulas and,
recursively, sub-formulas under commutative logical operations. This is done
several times throughout the preprocessing pipeline, at the end of which a fin-
ished clause normal form is produced. Randomizing traversals (-rtra on) hap-
pens during saturation and consists of several randomized reorderings including:
reordering literals in a newly generated clause and in each given clause before
activation, and shuffling the order in which generated clauses are put into the

1 https://en.wikipedia.org/wiki/Galton board.
2 https://github.com/vprover/vampire/tree/randire.

https://en.wikipedia.org/wiki/Galton_board
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Fig. 1. Blue: first-order TPTP problems ordered by the decreasing probability of being
solved by the dis10 strategy within 50 billion instruction limit. Red: a cactus plot for
the same strategy, showing the dependence between a given instruction budget (y-axis)
and the number of problems on average solved within that budget (x-axis). (Color figure
online)

passive set. It also (partially) randomizes term ids, which are used as tiebreak-
ers in various term indexing operations and determine the default orientation of
equational literals in the term sharing structure. Finally, “randomized age-weight
ratio” (-rawr on) swaps the default, deterministic mechanism for choosing the
next queue to select the given clause from [13] for a randomized one (which only
respects the age-weight ratio probabilistically).

All the three options were active by default during our experiments.

3 Experiment 1: A Single-Strategy View

First, we set out to establish to what degree the performance of a Vampire
strategy can be affected by randomization. We chose the default strategy of the
prover except for the saturation algorithm, which we set to Discount, and the
age-weight ratio, set to 1:10 ( calling the strategy dis10). We ran our experiment
on the first-order problems from the TPTP library [15] version 7.5.03.

To collect our data, we repeatedly (with different seeds) ran the prover on
the problems, performing full randomization. We measured the executed instruc-
tions4 needed to successfully solve a problem and used a limit of 50 billion
instructions (which roughly corresponds to 15 s of running time on our machine5)
after which a run was declared unsuccessful. We ran the prover 10 times on each
problem and additionally as many times as required to observe the instruction
count average (over both successful and unsuccessful runs) stabilize within 1%
from any of its 10 previously recorded values6.

A summary view of the experiment is given by Fig. 1. The most important to
notice is the shaded region there, which spans 965 problems that were solved by
3 Materials accompanying the experiments can be found at https://bit.ly/3JDCwea.
4 As measured via the perf event open Linux performance monitoring feature.
5 A server with Intel(R) Xeon(R) Gold 6140 CPUs @ 2.3 GHz and 500GB RAM.
6 Utilizing all the 72 cores of our machine, such data collection took roughly 12 h.

https://bit.ly/3JDCwea
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Fig. 2. The effect of turning AVATAR off in the dis10 strategy (cf. Figure 1).

dis10 at least once but not by every run. In other words, these problems have
probability p of being solved between 0 < p < 1. This is a relatively large number
and can be compared to the 8720 “easy” problems solved by every run. The
collected data implies that 9319.1 problems are being solved on average (marked
by the left-most dashed line in Fig. 1) with a standard deviation σ = 11.7. The
latter should be an interesting indicator for prover developers: beating a baseline
by only 12 TPTP problems can easily be ascribed just to chance.

Figure 1 also contains the obligatory “cactus plot” (explained in the caption),
which—thanks to the collected data—can be constructed with the “on average”
qualifier. By definition, the plot reaches the left-most dashed line for the full
instruction budged of 50 billion. The subsequent dashed lines mark the number
of problems we would on average expect to solve by running the prover (indepen-
dently) on each problem twice, three, four and five times. This is an information
relevant for strategy scheduling: e.g., one can expect to solve whole additional
137 problems by running randomized dis10 for a second time.

Not every strategy exhibits the same degree of variability under randomiza-
tion. Observe Fig. 2 with a plot analogous to Fig. 1, but for dis10 in which the
AVATAR [16] has been turned off. The shaded area there is now much smaller
(and only spans 448 problems). The powerful AVATAR architecture is getting
convicted of making proof search more fragile and the prover less robust7.

Remark. Randomization incurs a small but measurable computational over-
head. On a single run of dis10 over the first-order TPTP (filtering out cases
that took less than 1 s to finish, to prevent distortion by rounding errors) the
observed median relative time spent randomizing on a single problem was 0.47%,
the average 0.59%, and the worse8 13.86%. Without randomization, the dis10
strategy solved 9335 TPTP problems under the 50 billion instruction limit, i.e.,
16 problems more than the average reported above. Such is the price we pay for
turning our prover into a Las Vegas randomized algorithm.

7 Another example of a strong but fragile heuristic is the lookahead literal selection
[5], which selects literals in a clause based on the current content of the active set:
dis10 enhanced with lookahead solves 9512.4 (±13.8) TPTP problems on average,
8672 problems with p = 1 and additional 1382 (!) problems with 0 < p < 1.

8 On the hard-to-parse, trivial-to-solve HWV094-1 with 361 199 clauses.
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Fig. 3. Scatter plots comparing probabilities of solving a TPTP problem by the baseline
dis10 strategy and 1) dis10 with AVATAR turned off (left), and 2) dis10 with blocked
clause elimination turned on (right). On problems marked red the respective technique
could not be applied (no splittable clauses derived / no blocked clauses eliminated).

4 Experiment 2: Comparing Two Strategies

Once randomized performance profiles of multiple strategies are collected, it is
interesting to look at two at a time. Figure 3 shows two very different scatter
plots, each comparing our baseline dis10 to its modified version in terms of the
probabilities of solving individual problems.

On the left we see the effect of turning AVATAR off. The technique affects
the proving landscape quite a lot and most problems have their mark along the
edges of the plot where at least one of the two probabilities has the extreme
value of either 0 or 1. What the plot does not show well, is how many marks end
up at the extreme corners. These are: 7896 problems easy for both, 661 easy for
AVATAR and hard without, 135 hard for AVATAR and easy without.

Such “purified”, one-sided gains and losses constitute a new interesting indi-
cator of the impact of a given technique. They should be the first to look at,
e.g., during debugging, as they represent the most extreme but robust examples
of how the new technique changes the capabilities of the prover.

The right plot is an analogous view, but now at the effect of turning on blocked
clause elimination (BCE). This is a preprocessing technique coming from the
context of propositional satisfiability [7] extended to first-order logic [8]. We see
that here most of the visible problems show up as marks along the plot’s main
diagonal, suggesting a (mostly) negligible effect of the technique. The extreme
corners hide: 8648 problems easy for both, 17 easy with BCE (11 satisfiable and
6 unsatisfiable), and 2 easy without BCE (1 satisfiable and 1 unsatisfiable).



664 M. Suda

Fig. 4. 2D-histograms for the relative frequencies (color-scale) of how often, given a
specific awr (x-axis), solving PRO017+2 required the shown number of instructions (y-
axis). The curves in pink highlight the mean y-value for every x. The performance of
dis10 (left) and the same strategy enhanced by a goal-directed heuristic (right). (Color
figure online)

5 Experiment 3: Looking at One Problem at a Time

In their paper on age/weight shapes [13, Fig. 2], Rawson and Reger plot the
number of given-clause loops required by Vampire to solve the TPTP problem
PRO017+2 as a function of age/weight ratio (awr), a ratio specifying how often
the prover selects the next clause to activate from its age-ordered and weight-
ordered queues, respectively. The curve they obtain is quite “jiggly”, indicating
a fragile (discontinuous) dependence. Randomization allows us to smoothen the
picture and reveal new, until now hidden, (probabilistic) patterns.

The 2D-histogram in Fig. 4 (left) was obtained from 100 independently seeded
runs for each of 1200 distinct values of awr from between 1:1024 = 2−10 and
4:1 = 22. We can confirm Rawson and Reger’s observation of the best awr for
PRO017+2 lying at around 1:2. However, we can now also attempt to explain the
“jiggly-ness” of their curve: With a fragile proof search, even a slight change in
awr effectively corresponds to an independent sample from the prover’s execution
resource9 distribution, which—although changing continuously with awr—is of
a high variance for our problem (note the log-scale of the y-axis)10.

The distribution has another interesting property: At least for certain values
of awr it is distinctly multi-modal. As if the prover can either find a proof quickly
(after a lucky event?) or only after much harder effort later and almost nothing
in between. Shedding more light on this phenomenon is left for further research.

It is also very interesting to observe the change of such a 2D-histogram
when we modify the proof search strategy. Figure 4 (right) shows the effect of
turning on SInE-level split queues [3], a goal directed clause selection heuristic

9 Rawson and Reger [13] counted given-clause loops, we measure instructions.
10 Even with 100 samples for each value of awr , the mean instruction count (rendered

in pink in Fig. 4) looks jiggly towards the weight-heavy end of the plot.
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(Vampire option -slsq on). We can see that the mean instruction count gets
worse (for every tried awr value) and also the variance of the distribution dis-
tinctly increases. A curious effect of this is that we observe the shortest suc-
cessful runs with -slsq on, while we still could not recommend (in the case of
PRO017+2) this heuristic to the user. The probabilistic view makes us realize that
there are competing criteria of prover performance for which one might want to
optimize.

6 Related Work

The idea of randomizing a theorem prover is not new. Ertel [2] studied the
speedup potential of running independently seeded instances of the connection
prover SETHEO [10]. The dashed lines in our Figs. 1 and 2 capture an analogous
notion in terms of “additional problems covered” for levels of parallelism 1−5.
randoCoP [12] is a randomized version of another connection prover, leanCoP 2.0
[11]: especially in its incomplete setup, several restarts with different seeds helped
randoCoP improve over leanCoP in terms of the number of solved problems.

Gomes et al. [4] notice that randomized complete backtracking algorithms for
propositional satisfiability (SAT) lead to heavy-tailed runtime distributions on
satisfiable instances. While we have not yet analyzed the runtime distributions
coming from saturation-based first-order proof search in detail, we definitely
observed high variance also for unsatisfiable problems. Also in the domain of
SAT, Brglez et al. [1] proposed input shuffling as a way of turning solver’s runtime
into a random variable and studied the corresponding distributions.

An interesting view on the trade-offs between expected performance of a
randomized solver and the risk associated with waiting for an especially long
run to finish is given by Huberman et al. [6]. This is related to the last remark
of the previous section.

Finally, in the satisfiability modulo theories (SMT) community, input shuf-
fling, or scrambling, has been discussed as an obfuscation measure in competi-
tions [17], where it should prevent the solvers to simply look up a precomputed
answer upon recognising a previously seen problem. Notable is also the use of
randomization in solver debugging via fuzz testing [14,18].

7 Discussion

As we have seen, the behaviour of a state-of-the-art saturation-based theorem
prover is to a considerable degree chaotic and on many problems a mere per-
turbation of seemingly unimportant execution details decides about the success
or the failure of the corresponding run. While this may be seen as a sign of our
as-of-yet imperfect grasp of the technology, the author believes that an equally
plausible view is that some form of chaos is inherent and originates from the
complexity of the theorem proving task itself. (A higher-order logic proof search
is expected to exhibit an even higher degree of fragility.)

This paper has proposed randomization as a key ingredient to a prover eval-
uation method that takes the chaotic nature of proof search into account. The
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extra cost required by the repeated runs, in itself not unreasonable to pay on con-
temporary parallel hardware, seems more than compensated by the new insights
coming from the probabilistic picture that emerges. Moreover, other uses of ran-
domization are easy to imagine, such as data augmentation for machine learning
approaches or the construction of more robust strategy schedules. It feels that
we only scratched the surface of the opened-up possibilities. More research will
be needed to fully harness the potential of this perspective.
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