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Abstract. The modal logic K is commonly used to represent and reason
about necessity and possibility and its extensions with combinations of
additional axioms are used to represent knowledge, belief, desires and
intentions. Here we present local reductions of all propositional modal
logics in the so-called modal cube, that is, extensions of K with arbitrary
combinations of the axioms B, D, T, 4 and 5 to a normal form comprising
a formula and the set of modal levels it occurs at. Using these reductions
we can carry out reasoning for all these logics with the theorem prover
KSP. We define benchmarks for these logics and experiment with the
reduction approach as compared to an existing resolution calculus with
specialised inference rules for the various logics.

1 Introduction

Modal logics have been used to represent and reason about mental attitudes such
as knowledge, belief, desire and intention, see for example [17,20,31]. These can
be represented using extensions of the basic modal logic K with one or more
of the axioms B (symmetry), D (seriality), T (reflexivity), 4 (transitivity) and
5 (Euclideaness). The logic K and these extensions form the so-called modal cube,
see Fig. 1. In the diagram, a line from a logic L1 to a logic L2 to its right and/or
above means that all theorems of L1 are also theorems of L2, but not vice versa.
As indicated in Fig. 1, some of the logics have the same theorems, e.g., KB5 and
KB4. Also, all logics not explicitly listed have the same theorems as KT5 aka S5.
In total there are 15 distinct logics.

While these modal logics are well-studied and a multitude of calculi and
translations to other logics exist, see, e.g., [1,3–6,9,13,14,16,18,22,41], fully
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Fig. 1. Modal Cube: Relationships between modal logics

automatic support by provers is still lacking. Early implementations covering
the full modal cube, such as Catach’s TABLEAUX system [7], are no longer
available. LoTREC 2.0 [10] supports a wide range of logics but is not intended
as an automatic theorem prover. MOIN [11] supports all the logics but the focus
is on producing human-readable proofs and countermodels for small formulae.
Other provers that go beyond just K, like MleanCoP [28] and CEGARBox [15]
only support a small subset of the 15 logics. There are also a range of transla-
tions from modal logics to first-order and higher-order logics [13,18,19,27,33].
Regarding implementations of those, SPASS [33,43] is limited to a subset of the
15 logics, while LEO-III [13,36] supports all the logics in the modal cube, but
can only solve very few of the available benchmark formulae.

KSP [23] is a modal logic theorem prover that implements both the modal-
layered resolution (MLR) calculus [25] for the modal logic K and the global
resolution (GMR) calculus [24] for all the 15 logics considered here. It also sup-
ports several refinements of resolution and a range of simplification rules. In this
paper, we give reductions of all logics of the modal cube into a normal form for
the basic modal logic K. We then compare the performance of the combination of
these reductions with the modal-layered resolution calculus to that of the global
resolution calculus on a new benchmark collection for the modal cube.

In [29] we have presented new reductions1 of the propositional modal logics
KB, KD, KT, K4, and K5 to Separated Normal Form with Sets of Modal Levels
SNFsml. SNFsml is a generalisation of the Separated Normal Form with Modal
Level, SNFml. In the latter, labelled modal clauses are used where a natural
number label refers to a particular level within a tree Kripke structure at which a
modal clause holds. In the former, a finite or infinite set of natural numbers labels
each modal clause with the intended meaning that such a modal clause is true
at every level of a tree Kripke structure contained in that set. As our prover KSP
and the modal-layered resolution calculus it implements currently only support
sets of modal clauses in SNFml, we then use a further reduction from SNFsml

1 A reduction here is a satisfiability preserving mapping between logics.
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to SNFml to obtain an automatic theorem prover for these modal logics. Where
all modal clauses are labelled with finite sets, this reduction is straightforward.
This is the case for KB, KD and KT. For K4 and K5, characterised by the axioms
�ϕ → ��ϕ and �ϕ → ��ϕ, modal clauses are in general labelled with infinite
sets. However, using a result by Massacci [21] for K4 and an analogous result
for K5 by ourselves, we are able to bound the maximal level occurring in those
labelling sets which in turn makes a reduction to SNFml possible.

Also in [29], we have shown experimentally that these reductions allow us
to reason effectively in these logics, compared to the global modal resolution
calculus [24] and to the relational and semi-functional translation built into the
first-order theorem prover SPASS 3.9 [33,38,42]. The reason that the comparison
only included a rather limited selection of provers is that these are the only ones
with built-in support for all six logics our reductions covered.

Unfortunately, we cannot simply combine our reductions for single axioms to
obtain satisfiability preserving reductions for their combinations. There are two
main reasons for this. First, our calculus does not use an explicit representation
of the accessibility relationship within a Kripke structure, which would make it
possible to reflect modal axioms via corresponding properties of that accessibil-
ity relationship. Instead, we add labelled modal clauses based on instances of the
modal axioms for �-formulae occurring in the modal formula we want to check
for satisfiability. However, if we deal with multiple modal axioms, then these
axioms might interact making it necessary to add instances that are not nec-
essary for each individual axiom. For instance, consider, the converse of axiom
B, ��ϕ → ϕ, and axiom 4, �ϕ → ��ϕ. Together they imply ��ϕ → �ϕ.
Instances of this derived axiom are necessary for completeness of a reduction
from KB4 to K, but are unsound for KB and K4 separately.

Second, our reductions attempt to keep the labelling sets minimal in size in
order to decrease the number of inferences that can be performed. Again, taking
axioms B and 4 as examples, in KB, a �-formula �ψ true at level ml in a tree-
like Kripke structure M forces ψ to be true at level ml − 1, while in K4, �ψ
true at level ml in M forces ψ to be true all levels ml′ with ml′ > ml. This is
reflected in the labelling sets we use for these two logics. However, for KB4, �ψ
true at level ml forces ψ to be true at every level in a tree-like Kripke structure
M (unless M consists only of a single world).

Since we intend to maintain these two properties of our reductions, we have to
consider each modal logic individually. As we will see, for some logics a reduction
can be obtained as the union of the existing reductions while for others we need
a logic-specific reduction to accommodate the interaction of axioms.

The structure of the paper is as follows. In Sect. 2 we recall common con-
cepts of propositional modal logic and the definition of our normal form SNFml.
Section 3 introduces our reduction for extensions of the basic modal logic K with
combinations of the axioms B, D, T, 4, and 5. Section 4 presents a transforma-
tion from SNFsml to SNFml which allows us to use the modal resolution prover
KSP to reason in all the modal logics. In Sect. 5 we compare the performance
of a combination of our reductions and the modal-layered resolution calculus
implemented in the prover KSP with resolution calculi specifically designed for
the logics under consideration as well as the prover LEO-III.
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2 Preliminaries

The language of modal logic is an extension of the language of propositional
logic with a unary modal operator � and its dual �. More precisely, given a
denumerable set of propositional symbols, P = {p, p0, q, q0, t, t0, . . .} as well as
propositional constants true and false, modal formulae are inductively defined
as follows: constants and propositional symbols are modal formulae. If ϕ and ψ
are modal formulae, then so are ¬ϕ, (ϕ ∧ ψ), (ϕ ∨ ψ), (ϕ → ψ), �ϕ, and �ϕ.
We also assume that ∧ and ∨ are associative and commutative operators and
consider, e.g., (p∨(q∨r)) and (r∨(q∨p)) to be identical formulae. We often omit
parentheses if this does not cause confusion. By var(ϕ) we denote the set of all
propositional symbols occurring in ϕ. This function straightforwardly extends
to finite sets of modal formulae. A modal axiom (schema) is a modal formula ψ
representing the set of all instances of ψ.

A literal is either a propositional symbol or its negation; the set of literals is
denoted by LP . By ¬l we denote the complement of the literal l ∈ LP , that is, if
l is the propositional symbol p then ¬l denotes ¬p, and if l is the literal ¬p then
¬l denotes p. By |l| for l ∈ LP we denote p if l = p or l = ¬p. A modal literal is
either �l or �l, where l ∈ LP .

A (normal) modal logic is a set of modal formulae which includes all propo-
sitional tautologies, the axiom schema �(ϕ → ψ) → (�ϕ → �ψ), called the
axiom K, it is closed under modus ponens (if � ϕ and � ϕ → ψ then � ψ) and
the rule of necessitation (if � ϕ then � �ϕ).

K is the weakest modal logic, that is, the logic given by the smallest set of
modal formulae constituting a normal modal logic. By KΣ we denote an extension
of K by a set Σ of axioms.

The standard semantics of modal logics is the Kripke semantics or possible
world semantics. A Kripke frame F is an ordered pair 〈W,R〉 where W is a non-
empty set of worlds and R is a binary (accessibility) relation over W . A Kripke
structure M over P is an ordered pair 〈F, V 〉 where F is a Kripke frame and the
valuation V is a function mapping each propositional symbol in P to a subset
V (p) of W . A rooted Kripke structure is an ordered pair 〈M,w0〉 with w0 ∈ W . To
simplify notation, in the following we write 〈W,R, V 〉 and 〈W,R, V,w0〉 instead
of 〈〈W,R〉, V 〉 and 〈〈〈W,R〉, V 〉, w0〉, respectively.

Satisfaction (or truth) of a formula at a world w of a Kripke structure M =
〈W,R, V 〉 is inductively defined by:

〈M,w〉 |= true; 〈M,w〉 	|= false;
〈M,w〉 |= p iff w ∈ V (p), where p ∈ P ;
〈M,w〉 |= ¬ϕ iff 〈M,w〉 	|= ϕ;
〈M,w〉 |= (ϕ ∧ ψ) iff 〈M,w〉 |= ϕ and 〈M,w〉 |= ψ;
〈M,w〉 |= (ϕ ∨ ψ) iff 〈M,w〉 |= ϕ or 〈M,w〉 |= ψ;
〈M,w〉 |= (ϕ → ψ) iff 〈M,w〉 |= ¬ϕ or 〈M,w〉 |= ψ;
〈M,w〉 |= �ϕ iff for every v, w R v implies 〈M,v〉 |= ϕ;
〈M,w〉 |= �ϕ iff there is v, w R v and 〈M,v〉 |= ϕ.
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Table 1. Modal axioms and relational frame properties

Name Axiom Frame Property

D �ϕ → �ϕ Serial ∀v∃w.v R w

T �ϕ → ϕ Reflexive ∀w.w R w

B ϕ → ��ϕ Symmetric ∀vw.v R w → w R v

4 �ϕ → ��ϕ Transitive ∀uvw.(u R v ∧ v R w) → u R w

5 �ϕ → ��ϕ Euclidean ∀uvw.(u R v ∧ u R w) → v R w

Table 2. Rewriting Rules for Simplification

ϕ ∧ ϕ ⇒ ϕ

ϕ ∨ ϕ ⇒ ϕ

ϕ ∧ true ⇒ ϕ

ϕ ∧ ¬ϕ ⇒ false

ϕ ∨ ¬ϕ ⇒ true

ϕ ∧ false ⇒ false

�true ⇒ true

�false ⇒ false

ϕ ∨ false ⇒ ϕ

¬true ⇒ false

¬false ⇒ true

ϕ ∨ true ⇒ true

¬¬ϕ ⇒ ϕ

If 〈M,w〉 |= ϕ holds then M is a model of ϕ, ϕ is true at w in M and M
satisfies ϕ. A modal formula ϕ is satisfiable iff there exists a Kripke structure
M and a world w in M such that 〈M,w〉 |= ϕ.

We are interested in extensions of K with the modal axioms shown in Table 1
and their combinations. Each of these axioms defines a class of Kripke frames
where the accessibility relation R satisfies the first-order property stated in the
table. Combinations of axioms then define a class of Kripke frames where the
accessibility relation satisfies the combination of their corresponding properties.

Given a normal modal logic L with corresponding class of frames F, we say
a modal formula ϕ is L-satisfiable iff there exists a frame F ∈ F, a valuation V
and a world w ∈ F such that 〈F, V,w〉 |= ϕ. It is L-valid or valid in L iff for
every frame F ∈ F, every valuation V and every world w ∈ F , 〈F, V,w〉 |= ϕ. A
normal modal logic L2 is an extension of a normal modal logic L1 iff all L1-valid
formulae are also L2-valid.

A rooted Kripke structure M = 〈W,R, V,w0〉 is a rooted tree Kripke structure
iff R is a tree, that is, a directed acyclic connected graph where each node has at
most one predecessor, with root w0. It is a rooted tree Kripke model of a modal
formula ϕ iff 〈W,R, V,w0〉 |= ϕ. In a rooted tree Kripke structure with root w0

for every world wk ∈ W there is exactly one path connecting w0 and wk, the
length of that path is the modal level of wk (in M), denoted by mlM (wk).

It is well-known [17] that a modal formula ϕ is K-satisfiable iff there is a
finite rooted tree Kripke structure M = 〈F, V,w0〉 such that 〈M,w0〉 |= ϕ.

For the reductions presented in the next section we assume that any modal
formula ϕ has been simplified by exhaustively applying the rewrite rules in
Table 2, and it is in Negation Normal Form (NNF). That is, a formula where
only propositional symbols are allowed in the scope of negations. We say that
such a formula is in simplified NNF.

The reductions produce formulae in a clausal normal form, called Separated
Normal Form with Sets of Modal Levels SNFsml, introduced in [29]. The language
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of SNFsml extends that of the basic modal logic K with sets of modal levels as
labels. Clauses in SNFsml have one of the following forms:

S :
∨n

i=1 li
(literal clause)

S : l′ → �l
(positive modal clause)

S : l′ → �l
(negative modal clause)

where S ⊆ N and l, l′, li are propositional literals with 1 ≤ i ≤ n, n ∈ N. We
write � : ϕ instead of N : ϕ and such clauses are called global clauses. Positive
and negative modal clauses are together known as modal clauses.

Given a rooted tree Kripke structure M and a set S of natural numbers,
by M [S] we denote the set of worlds that are at a modal level in S, that is,
M [S] = {w ∈ W | mlM (w) ∈ S}. Then

M |= S : ϕ iff 〈M,w〉 |= ϕ for every world w ∈ M [S].

The motivation for using a set S to label clauses is that in our reductions
the formula ϕ may hold at several levels, possibly an infinite number of levels.
It therefore makes sense to label such formulae not with just a single level, but
a set of levels. The Separated Normal Form with Modal Level, SNFml, can be
seen as the special case of SNFsml where all labelling sets are singletons.

Note that if S = ∅, then M |= S : ϕ trivially holds. Also, a Kripke structure
M can satisfy S : false if there is no world w with mlM (w) ∈ S. On the other
hand, S : false with 0 ∈ S is unsatisfiable as a rooted tree Kripke structure
always has a world with modal level 0.

If M |= S : ϕ, then we say that S : ϕ holds in M or is true in M . For a set
Φ of labelled formulae, M |= Φ iff M |= S : ϕ for every S : ϕ in Φ, and we say Φ
is K-satisfiable.

We introduce some notation that will be used in the following. Let S+ =
{l+1 ∈ N | l ∈ S}, S− = {l−1 ∈ N | l ∈ S}, and S≥ = {n | n ≥ min(S)}, where
min(S) is the least element in S. Note that the restriction of the elements being
in N implies that S− cannot contain negative numbers.

3 Extensions of K

In this section we define reductions from all the logics in the modal cube to
SNFsml. We assume that the set P of propositional symbols is partitioned into
two infinite sets Q and T such that Q contains the propositional symbols of
the modal formula ϕ under consideration, and T surrogate symbols tψ for every
subformula ψ of ϕ and supplementary propositional symbols. In particular, for
every modal formula ψ we have var(ψ) ⊂ Q and there exists a propositional sym-
bol tψ ∈ T uniquely associated with ψ. These surrogate symbols serve the same
purpose as Tseitin variables [40] and Skolem predicates [30,39] in the transfor-
mation of propositional and first-order formulae, respectively, to clausal form via
structural transformation.

It turns out that given a reduction ρKΣ for KΣ with {D,T} ∩ Σ = ∅, there
is a uniform and straightforward way we can obtain a reduction for KDΣ and
KTΣ from ρKΣ . Also, the valid formulae of KDTΣ are the same as those of
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Table 3. Categorisation of modal logics in the modal cube

‘Base logics’ K KB K4 K5 KB4 K45

Extensions with D KD KDB KD4 KD5 KD45

Extensions with T KT KTB KT4 KT5

KTΣ, so we do not need to consider the case of adding both axioms to KΣ.
Similarly, the logics KT45, KDB4, KTB4 and KT5 all have the same set of valid
formulae. Therefore, as shown in Table 3, we can divide the 15 modal logics into
three categories: Six ‘base logics’, five modal logics obtained by extending a ‘base
logic’ with D, and a further four modal logics obtained by extending a ‘base logic’
with T. For four of the six ‘base logics’ (namely, K, KB, K4, and K5) we have
already devised reductions in [29], so only two (i.e., KB4 and K45) remain.

Given a modal formula ϕ in simplified NNF and L = KΣ with Σ ⊆
{B,D,T, 4, 5}, we can obtain a set ΦL of clauses in SNFsml such that ϕ is
L-satisfiable iff ΦL is K-satisfiable with ΦL = ρsml

L (ϕ) = {{0} : tϕ} ∪ ρL({0} :
tϕ → ϕ), where ρL is defined as follows:

ρL(S : t → true) = ∅
ρL(S : t → false) = {S : ¬t}

ρL(S : t → (ψ1 ∧ ψ2)) = {S : ¬t ∨ η(ψ1), S : ¬t ∨ η(ψ2)}∪ δL(S, ψ1)∪ δL(S, ψ2)
ρL(S : t → ψ) = {S : ¬t ∨ ψ}

if ψ is a disjunction of literals

ρL(S : t → (ψ1 ∨ ψ2)) = {S : ¬t ∨ η(ψ1) ∨ η(ψ2)} ∪ δL(S, ψ1) ∪ δL(S, ψ2)
if ψ1 ∨ ψ2 is not a disjunction of literals

ρL(S : t → �ψ) = {S : t → �η(ψ)} ∪ δL(S+, ψ)
ρL(S : t → �ψ) = PL(S : t → �ψ) ∪ ΔL(S : t → �ψ)

η and δL are defined as follows:

η(ψ) =

{
ψ, if ψ is a literal
tψ, otherwise

δL(S, ψ) =

{
∅, if ψ is a literal
ρL(S : tψ → ψ), otherwise

and functions PL and ΔL, are defined as shown in Table 4.
We can see in Table 4 that the reduction for KB4 has an additional SNFsml

clause � : t�ψ ∨ t�¬t�ψ
that occurs neither in the reduction for KB nor in that for

K4. It can be seen as an encoding of the derived axiom ��ψ → �ψ that follows
from the contrapositive ��ψ → ψ of B and 4 �ψ′ → ��ψ′.

For K45 we see that all the SNFsml clauses in the reduction for K5 carry over.
These clauses are already sufficient to ensure that, semantically, if t�ψ is true at
any world at a level other than 0, then t�ψ is true at every world. Consequently,
to accommodate axiom 4, it suffices to add the SNFsml clause {0} : t�ψ → �t�ψ

to ensure that this also holds for the root world at level 0.



Local Reductions for the Modal Cube 493

L PL(S : t�ψ → �ψ) ΔL(S : t�ψ → �ψ)
K S : t�ψ → �η(ψ) δL(S+, ψ)
KB S : t�ψ → �η(ψ),

S− : η(ψ) ∨ t�¬t�ψ
, S− : t�¬t�ψ

→ �¬t�ψ

δL(S− ∪ S+, ψ)

K4 S≥ : t�ψ → �η(ψ), S≥ : t�ψ → �t�ψ δL((S+)≥, ψ)
K5 � : t�ψ → �η(ψ),

� : ¬t�t�ψ
∨ t�ψ, � : t�t�ψ

→ �t�ψ,
� : ¬t�t�ψ

→ �¬t�ψ, � : t�t�ψ
→ �t�t�ψ

δL(�, ψ)

KB4 � : t�ψ → �η(ψ),
� : η(ψ) ∨ t�¬t�ψ

, � : t�ψ ∨ t�¬t�ψ
,

� : t�¬t�ψ
→ �¬t�ψ, � : t�ψ → �t�ψ

δL(�, ψ)

K45 � : t�ψ → �η(ψ), {0} : t�ψ → �t�ψ iff 0 ∈ S,
� : ¬t�t�ψ

∨ t�ψ, � : t�t�ψ
→ �t�ψ,

� : ¬t�t�ψ
→ �¬t�ψ, � : t�t�ψ

→ �t�t�ψ

δL(�, ψ)

KDΣ {lbP
KΣ(S) : t�ψ → �η(ψ)} ∪ PKΣ(S : t�ψ → �ψ) δL(lbδ

KΣ(S), ψ)
KTΣ {lbP

KΣ(S) : ¬t�ψ ∨ η(ψ)} ∪ PKΣ(S : t�ψ → �ψ) δL(lbδ
KΣ(S) ∪ S, ψ)

where lbP
KΣ and lbδ

KΣ are defined as follows

Table 4. Reduction of �-formulae, Σ ⊆ {B, 4, 5}.

L K KB K4 K5 KB4 K45

lbP
L(S) S S S≥ � � �

lbδ
L(S) S+ S− ∪ S+ (S+)≥ � � �

For reductions of KDΣ and KTΣ we have favoured the reuse of reductions
for KΣ, KD and KT over optimisation for specific logics. For example, take KBD.
Given that in a symmetric model, every world w except the root world w0 has
an R-successor, the axiom D only ‘enforces’ that w0 also has an R-successor. So,
instead of adding a clause S : t�ψ → �ψ for every clause S : t�ψ → �η(ψ) we
could just add {0} : t�ψ → �ψ iff 0 ∈ S. Similarly, in KT5, because of 5, for all
worlds w except w0 we already have wRw. So, we could again {0} : ¬t�ψ ∨η(ψ)
for every clause S : t�ψ → �η(ψ) iff 0 ∈ S.

For the KB4-unsatisfiable formula ψ1 = (¬p ∧ ���p), if we were to inde-
pendently apply the reductions for KB and K4, that is, we compute {{0} :
tψ1}∪ρKB({0} : tψ1 → ψ1)∪ρK4({0} : tψ1 → ψ1), then the result is the following
set of clauses Φ1:

(1) {0} : tψ1

(2) {0} : ¬tψ1 ∨ ¬p
(3) {0} : ¬tψ1 ∨ t���p

(4) {0} : t���p → �t��p

(5) {1} : t��p → �t�p

(6) {2}≥ : t�p → �p
(7) {2}≥ : t�p → �t�p

(8) {1} : p ∨ t�¬t�p

(9) {1} : t�¬t�p
→ �¬t�p

Clauses (1) to (5) stem from the transformation of ψ1 to SNFsml for K,
Clauses (6) and (7) stem from the reduction for 4 and Clauses (8) and (9) stem
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from the reduction for B. This set of SNFsml clauses is K-satisfiable. The clauses
imply {1} : p, but neither {1} : �p nor {0} : p which we need to obtain a
contradiction. Part of the reason is that we would need to apply the reduction
for 4 and B recursively to newly introduced surrogates for �-formulae which
in turn leads to the introduction of further surrogates and problems with the
termination of the reduction.

In contrast, the clause set Φ2 obtained by our reduction for KB4 is:

(10) {0} : tψ1

(11) {0} : ¬tψ1 ∨ ¬p
(12) {0} : ¬tψ1 ∨ t���p

(13) {0} : t���p → �t��p

(14) {1} : t��p → �t�p

(15) � : t�p → �p
(16) � : t�p → �t�p

(17) � : p ∨ t�¬t�p

(18) � : t�¬t�p
→ �¬t�p

(19) � : t�p ∨ t�¬t�p

(20) � : t�¬t�p
→ �t�¬t�p

Note Clauses (19) and (20) in Φ2 for which there are no corresponding clauses
in Φ1. Also, the set of labels of Clauses (15) to (18) are strict supersets of those
of the corresponding Clauses (6) to (9). Φ2 implies both {1} : �p and {0} : p.
The latter, together with Clauses (10) and (11), means Φ2 is K-unsatisfiable.

Theorem 1. Let ϕ be a modal formula in simplified NNF, Σ ⊆ {B,D,T, 4, 5},
and ΦKΣ = ρsml

KΣ (ϕ). Then ϕ is KΣ-satisfiable iff ΦKΣ is K-satisfiable.

Proof (Sketch). For |Σ| ≤ 1 this follows from Theorem 5 in [29].
For K45, KB4, KDΣ′, and KTΣ′ with Σ′ ⊆ {B, 4, 5} we proceed in analogy

to the proofs of Theorems 3 and 4 in [29]. Let L be one of these logics.
To show that if ϕ is L-satisfiable then ΦL is K-satisfiable, we show that

given a rooted L-model M of ϕ a small variation of the unravelling of M is a
rooted tree K-model �ML of ΦL. The main step is to define the valuation of the
additional propositional symbols tψ so that we can prove that all clauses in ΦL

hold in �ML. To show that if ΦL is K-satisfiable then ϕ is L-satisfiable, we take a
rooted tree K-model M = 〈W,R, V,w0〉 of ΦL and construct a Kripke structure
ML = 〈W,RL, V, w0〉. The relation RL is the closure of R under the relational
properties associated with the axioms of L. The proof that ML is a model of ϕ
relies on the fact that the clauses in ΦL ensure that for subformulae �ψ of ϕ, ψ
will be true at all worlds reachable via RL from a world where �ψ is true. ��

4 From SNFsml to SNFml

As KSP does not support SNFsml, in our evaluation of the effectiveness of the
reductions defined in Sect. 3, we have used a transformation from SNFsml to
SNFml. An alternative approach would be to reflect the use of SNFsml in the
calculus and re-implement the prover. Whilst we believe that redesigning the
calculus presents few problems, re-implementing KSP needs more thought in
particular how to represent infinite sets. The route we adopt here allows us to
experiment with the approach in general without having to change the prover.
For extensions of K with one or more of the axioms B, D, T such a transformation
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Table 5. Bounds on the length of prefixes in SST tableaux

Logic L Bound dbϕ
L

K,KD,KT, KB,KDB,KTB 1 + dϕ
m

K4,S4 2 + dϕ
� + nϕ

� × nϕ
�

KD4 2 + dϕ
� + (max(1, nϕ

�) × nϕ
�)

KB4,KTB4, K5,S5,K45 2 + dϕ
� + nϕ

�

KD5 2 + dϕ
� + max(1, nϕ

�)

is straightforward as the sets of modal levels occurring in the normal form of
modal formulae are all finite. Thus, instead of a single SNFsml clause S : ¬tψ ∨
ηf (ψ) we can use the finite set of SNFml clauses {ml : ¬tψ ∨ ηf (ψ) | ml ∈ S}.

For extensions of K with at least one of the axioms 4 and 5, potentially
together with other axioms, the sets of modal levels labelling clauses are in
general infinite. For each logic L it is, however, possible to define a computable
function that maps the modal formula ϕ under consideration onto a bound dbϕ

L

such that, restricting the modal levels in the normal form of ϕ by dbϕ
L, preserves

satisfiability equivalence.
To establish the bound and prove satisfiability equivalence, we need to intro-

duce the basic notions of Single Step Tableaux (SST) calculi for a modal logic L
[14,21], which uses sequences of natural numbers to prefix modal formulae in a
tableau. The SST calculus consists of a set of rules, with the (π) rule being the
only rule increasing prefixes’ lengths (i.e., σ : �ϕ/σ.n : ϕ with σ.n new on the
branch). For a logic L, an L-tableau T in the SST calculus for a modal formula
ϕ is a (binary) tree where the root of T . is labelled with 1 : ϕ, and every other
node is labelled with a prefixed formula σ : ψ obtained by application of a rule
of the calculus. A branch B is a path from the root to a leaf. A branch B is closed
if it contains either false or a propositional contradiction at the same prefix. A
tableau ”T is closed if all its branches are closed. A prefixed formula σ : ψ is
reduced for rule (r) in B if the branch B already contains the conclusion of such
rule application. By a systematic tableau construction we mean an application
of the procedure in [14, p. 374] adapted to SST rules.

For each logic L, we establish its bound by considering an L-SST calculus,
where a modal level in an SNFsml clause corresponds to the length of a prefix in
an SST tableau. The bound then either follows from an already known bound
on the length of prefixes in an SST tableau preserving correctness of the SST
calculus, or we establish such a bound ourselves. To prove satisfiability equiva-
lence, we show that, for a closed SST tableau with such a bound on the length
of prefixes in place, we can construct a resolution refutation of a set of SNFsml

or SNFml clauses with a corresponding bound on modal levels in those clauses.
For a modal formula ϕ in simplified NNF let dϕ

m be the modal depth of
ϕ, dϕ

� be the maximal nesting of �-operators not under the scope of any �

operators in ϕ, nϕ
� be the number of �-subformulae in ϕ, and nϕ

� be the number of
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�-subformulae below �-operators in ϕ. Our results for the bounds on the length
of prefixes in SST tableaux can then be summarised by the following theorem.

Theorem 2. Let L = KΣ with Σ ⊆ {B,D,T, 4, 5}. A systematic tableau con-
struction of an L-tableau for a modal formula ϕ in simplified NNF under the
following Constraints (TC1) and (TC2)

(TC1) a rule (r) of the SST calculus is only applicable to a prefixed formula
σ : ψ in a branch B if the formula is not already reduced for (r) in B;

(TC2) rule (π) of the SST calculus is only applicable to prefixed formulae σ : �ψ
with |σ| < dbϕ

L for dbϕ
L as defined in Table 5

terminates in one of following states:

(1) all branches of the constructed tableau are closed and ϕ is L-unsatisfiable or
(2) at least one branch B is not closed, no rule is still applicable to a labelled

formula in B, and ϕ is L-satisfiable.

The proof is analogous to Massacci’s [21, Section B.2]. Note that for logics KD4
and KD5, we use max(1, nϕ

�) in the calculation of the bound. That is, if nϕ
� ≥ 1

then max(1, nϕ
�) = nϕ

� and the bound is the same as for K4 and K5. Otherwise
max(1, nϕ

�) = 1, that is, the bound is the same as for a formula with a single
�-subformula below �-operators in ϕ.

For K, KD, KT, KB and KDB these bounds were already stated in [21, Tables
III and IV]. The bound for KTB follows straightforwardly from that for KB and
KDB. For KD4, Massacci [21, Tables III and IV] states the bound to be the
same as for K4. However, this is not correct for the case that the formula ϕ
contains no �-formulae, where its bound would simply be 2, independent of ϕ.
For example, the formula ���false which is KD4-unsatisfiable, does not have
a closed KD4-tableau with this bound. For the other logics the bounds are new.
As argued in [21], the bounds allow tableau decision procedures for extensions
of K with axioms 4 and 5 that do not require a loop check and are therefore of
wider interest.

Note that in KT4, ��ψ and �ψ are equivalent and so are �(ψ∧�ϑ) and �(ψ∧
ϑ). So, it makes sense to further simplify KT4 formulae using such equivalences
before computing the normal form and the bound with the benefit that it may not
only reduce the bound but also the size of the normal form. Similar equivalences
that can be used to reduce the number of modal operators in a formula also
exist for other logics, see, e.g., [8, Chapter 4].

To establish a relationship between closed tableaux and resolution refuta-
tions of a set of SNFml clauses, we formally define the modal layered resolution
calculus. Table 6 shows the inference rules of the calculus restricted to labels
occurring in our normal form. For GEN1 and GEN3, if the modal clauses in
the premises occur at the modal level ml, then the literal clause in the premises
occurs at modal level ml + 1.
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Let Φ be a set of SNFml clauses. A (resolution) derivation from Φ is a sequence
of sets Φ0, Φ1, . . . where Φ0 = Φ and, for each i > 0, Φi+1 = Φi ∪ {D}, where
D 	∈ Φi is the resolvent obtained from Φi by an application of one of the inference
rules to premises in Φi. A (resolution) refutation of Φ is a derivation Φ0, . . . , Φk,
k ∈ N, where 0 : false ∈ Φk.

To map a set of SNFsml clauses to a set of SNFml clauses, using a bound
n ∈ N on the modal levels, we define a function dbn on clauses and sets of
clauses in SNFsml as follows:

dbn(S : ϕ) = {ml : ϕ | ml ∈ S and ml ≤ n}
dbn(Φ) =

⋃
S:ϕ∈Φ dbn(S : ϕ)

Note that prefixes in SST-tableaux have a minimal length of 1 while the
minimal modal level in SNFml clauses is 0. So, a prefix of length n in a prefixed
formula corresponds to a modal level n − 1 in an SNFml clause.

The proof of the following theorem then takes advantage of the fact that we
have surrogates and associated clauses for each subformula of ϕ and proceeds
by induction over applications of rule (π).

Theorem 3. Let L = KΣ with Σ ⊆ {B,D,T, 4, 5}, ϕ be a KΣ-unsatisfiable
formula in simplified NNF, dbϕ

L be as defined in Table 5, and ΦL = ρml
L (ϕ) =

dbdbϕ
L−1(ρsml

L (ϕ)). Then there is a resolution refutation of ΦL.

Regarding the size of the encoding, we note that, ignoring the labelling sets,
the reduction ρsml

L into SNFsml is linear with respect to the size of the original
formula. The size including the labelling sets would depend on the exact repre-
sentation of those sets, in particular, of infinite sets. As those are not arbitrary,
there is still an overall polynomial bound on the size of the sets of SNFsml clauses
produced by ρsml

L . When transforming clauses from SNFsml into SNFml, we may
need to add every clause to all levels within the bounds provided by Theorem 3.
The parameters for calculating those bounds, dϕ

m, dϕ
�, nϕ

�, and nϕ
�, are all them-

selves linearly bound by the size of the formula. Thus, in the worst case, which
is S4, the size of the clause set produced by ρml

L is bounded by a polynomial of
degree 3 with respect to the size of the original formula.

It is worth pointing out that both the reduction ρsml
L of a modal formula

to SNFsml and the reduction ρml
L to SNFml are also reversible, that is, we can

reconstruct the original formula from the SNFsml and from the SNFml clause set
obtained by ρsml

L or ρml
L , respectively. This reconstruction can also be performed

in polynomial time. Thus the reduction itself does not affect the complexity
of the satisfiability problem. For instance, the satisfiability problem for S5 is
NP-complete and so is the satisfiability problem of the subclass CS5 of SNFml

clause sets that can be obtained as the result of an application of ρml
S5 to a modal

formula. However, a generic decision procedure for K will not be a complexity-
optimal decision procedure for CS5.
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Table 6. Inference rules of the MLR calculus

LRES :

ml : D ∨ l

ml : D′ ∨ ¬l

ml : D ∨ D′ MRES :

ml : l1 → �l

ml : l2 → �¬l

ml : ¬l1 ∨ ¬l2
GEN2 :

ml : l′1 → �l1

ml : l′2 → �¬l1

ml : l′3 → �l2

ml : ¬l′1 ∨ ¬l′2 ∨ ¬l′3

GEN1 :

ml : l′1 → �¬l1
...

ml : l′m → �¬lm

ml : l′ → �¬l

ml + 1 : l1 ∨ . . . ∨ lm ∨ l

ml : ¬l′1 ∨ . . . ∨ ¬l′m ∨ ¬l′
GEN3 :

ml : l′1 → �¬l1
...

ml : l′m → �¬lm

ml : l′ → �l

ml + 1 : l1 ∨ . . . ∨ lm

ml : ¬l′1 ∨ . . . ∨ ¬l′m ∨ ¬l′

5 Evaluation

An empirical evaluation of the practical usefulness of the reductions we presented
in Sects. 3 and 4 faces the challenge that there is no substantive collection of
benchmark formulae for the 15 logics of the modal cube except for basic modal
logic. Catach [7] evaluates his prover on 31 modal formulae with a maximal
length of 22 and maximal modal depth of 4. They are not sufficiently challeng-
ing. The QMLTP Problem Library for First-Order Modal Logics [32] focuses on
quantified formulae and contains only a few formulae taken from the research
literature that are purely propositional and were not written for the basic modal
logic K. The Logics Workbench (LWB) benchmark collection [2] contains formu-
lae for K, KT and S4 but not for any of the other logics we consider. For each
of these three logics, the collection consists of 18 parameterised classes with 21
formulae each, plus scripts with which further formulae could be generated if
needed. All formulae in 9 classes are satisfiable and all formulae in the other 9
classes are unsatisfiable in the respective logic.

In [29] we have used the 18 classes of the LWB benchmark collection for K
to evaluate our approach for the six logics consisting of K and its extensions
with a single axiom. One drawback of using these 18 classes for other modal
logics is that formulae that are K-satisfiable are not necessarily KΣ-satisfiable
for non-empty sets Σ of additional axioms. For example, for K5, only 60 out of
180 K-satisfiable formulae were K5-satisfiable. Another drawback is that while
K-unsatisfiable formulae are also KΣ-unsatisfiable, a resolution refutation would
not necessarily involve any of the additional clauses introduced by our reduction
for KΣ. It may be that the additional clauses allow us to find a shorter refutation,
but it may just be a case of finding the same refutation in a larger search space.
It is also worth recalling that simplification alone is sufficient to determine that
all formulae in the class k lin p are K-unsatisfiable while pure literal elimination
can be used to reduce all formulae in k grz p to the same simple formula [26].
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Table 7. Logic-specific modification of unsatisfiable benchmark formulae

Logic L ψp
l

K false
KB (¬qp ∧ ��qp)
KDB (¬qp ∧ ��((�¬q′

p ∧ �q′
p) ∨ qp))

KTB (¬qp ∧ ��((¬q′
p ∧ �q′

p) ∨ qp))
KD (�¬qp ∧ �qp)
KT (¬qp ∧ �qp)
K4 (�qp ∧ ��¬qp)
K4B (¬qp ∧ ���qp)

Logic L ψp
l

KD4 (�qp ∧ ����¬qp)
K5 (�¬qp ∧ ��qp)
KD5 ((�¬qp ∧ �qp) ∨ (��q′

p ∧ �¬q′
p)

K45 (�qp ∧ ��q′
p ∧ ��(¬qp ∨ ¬q′

p))
KD45 ((�¬q′

p ∧ �q′
p) ∧

(�qp ∧ ��q′
p ∧ ��(¬qp ∨ ¬q′

p))
S4 (¬q′

p ∧ �(¬q′
p ∨ �qp) ∧ ��¬qp)

S5 ((¬qp ∧ �qp) ∨ (¬q′
p ∧ ����q′

p)

Thus, some of the classes evaluate the preprocessing capabilities of a prover but
not the actual calculus and its implementation.

We therefore propose a different approach here. The principles underlying
our approach are that (i) there should be the same number of formulae for
each logic though not necessarily the same formulae across all logics; (ii) there
should be an equal number of satisfiable and unsatisfiable formulae for each logic;
(iii) a formula that is L-unsatisfiable should only be L′-unsatisfiable for every
extension L′ of L; (iv) a formula that is L′-satisfiable should be L-satisfiable
for every extension L′ of L; (v) the formulae should belong to parameterised
classes of formulae of increasing difficulty. Note that Principles (iii) and (iv) are
intentionally not symmetric. For L-unsatisfiable formulae it should be necessary
for a prover to use the rules or clauses specific to L instead of being able to find
a refutation without those. For L-satisfiable formulae we want to maximise the
search space for a model.

For unsatisfiable formulae, we take the five LWB classes k branch p,
k path p, k ph p, k poly p, k t4p p and for each logic L in the modal cube
transform each formula in a class so that is L-unsatisfiable, but L′-satisfiable for
any logic L′ that is not an extension of L. The transformation proceeds by first
converting a formula ϕ to simplified NNF. Then for each propositional literal l
it replaces all its occurrences by (l∨ψp

L) where |l| = p and ψp
L is a modal formula

uniquely associated with p and L, resulting in a formula ϕ′. Finally, for logics
KD4 and KDB we need to add a disjunct (�q ∧ �¬q) to ϕ′, while for logics S4
and KTB we need to add a disjunct (q ∧�¬q), where q is a propositional symbol
not occurring in ϕ′. These disjuncts are unsatisfiable in the respective logics but
satisfiable in logics where D, or T, do not hold. Table 7 shows the formulae ψp

L

that we use in our evaluation. In the table, qp and q′
p are propositional variables

uniquely associated with p that do not occur in ϕ. The overall effect of this
transformation is that the resulting classes of formulae satisfy Principles (iii)
and (v).

For satisfiable formulae, we use the five classes k poly n, s4 md n, s4 ph n,
s4 path n, s4 s5 n without modification. Although the first of these classes was
designed to be K-satisfiable and the other four to be S4-satisfiable, the formulae
in those classes are satisfiable in all the logics we consider. s4 ipc n also consists
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Table 8. Benchmarking results

Logic Status Total GMR
(cneg)

GMR
(cord)

GMR
(cplain)

R+MLR
(cneg)

R+MLR
(cord)

R+MLR
(cplain)

LEO-
III+E

K S 100 84 85 77 100 100 100 0

KD S 100 84 85 77 96 100 93 0

KT S 100 70 81 50 66 68 61 0

KB S 100 58 58 29 51 64 51 0

K4 S 100 83 85 77 56 57 50 0

K5 S 100 67 60 45 36 37 26 0

KDB S 100 63 70 40 56 73 55 0

KTB S 100 58 59 38 52 57 31 0

KD4 S 100 83 85 77 52 53 46 0

KD5 S 100 73 70 61 46 47 38 0

K45 S 100 45 53 34 36 37 25 0

K4B S 100 18 19 11 23 38 15 0

KD45 S 100 67 66 56 46 47 38 0

S4 S 100 66 76 48 45 44 33 0

S5 S 100 32 28 32 32 35 24 0

All S 1500 951 980 752 793 857 686 0

K U 100 74 76 71 79 78 77 21

KD U 100 74 76 71 73 75 62 13

KT U 100 74 77 70 71 74 67 30

KB U 100 71 78 68 71 52 55 10

K4 U 100 55 52 57 41 29 35 4

K5 U 100 74 46 75 50 30 48 8

KDB U 100 73 77 71 73 52 56 8

KTB U 100 72 77 69 67 50 53 9

KD4 U 100 70 59 67 40 32 39 1

KD5 U 100 75 46 77 51 40 46 3

K45 U 100 51 37 49 16 12 8 3

K4B U 100 47 52 46 53 30 49 5

KD45 U 100 64 43 55 33 22 28 1

S4 U 100 47 68 66 45 21 23 4

S5 U 100 47 51 52 36 13 29 2

All U 1500 968 915 964 799 610 675 122

only of S5-satisfiable formulae but these appear to be insufficiently challenging
and have not been included in our benchmark set. All other classes of the LWB
benchmark classes for K and S4 are satisfiable in some of the logics, but not
in all. The five classes satisfy Principles (iv) and (v). The benchmark collection
consisting of all ten classes together then also satisfies Principles (i) and (ii).
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Another challenge for an empirical evaluation is the lack of available fully
automatic theorem provers for all 15 logics that we have already discussed in
Sect. 1. This leaves us with just three different approaches we can compare (i) the
higher-order logic prover LEO-III [12,37], with E 2.6 as external reasoner, LEO-
III+E for short, that supports a wide range of logics via semantic embedding
into higher-order logic (ii) the combination of our reductions with the modal-
layered resolution (MLR) calculus for SNFml clauses [25], R+MLR calculus for
short, implemented in the modal theorem prover KSP (iii) the global modal res-
olution (GMR) calculus, implemented in KSP, which has resolution rules for
all 15 logics [24]. For R+MLR and GMR calculi, resolution inferences between
literal clauses can either be unrestricted (cplain option), restricted by nega-
tive resolution (cneg option), or restricted by an ordering (cord option). It is
worth pointing out that negative and ordered resolution require slightly dif-
ferent transformations to the normal form that introduce additional clauses
(snf+ and snf++ options, respectively). Also, the ordering cannot be arbi-
trary [25]. For the experiments, we have used the following options: (i) input
processing: prenexing, together with simplification and pure literal elimination
(bnfsimp, prenex, early ple); (ii) preprocessing of clauses: renaming reuses
symbols (limited reuse renaming), forward and backward subsumption (fsub,
bsub) are enabled; the usable is populated with clauses whose maximal literal is
positive (populate usable, max lit positive); pure literal elimination is set
for GMR (ple) and modal level ple is set for MLR (mlple); (iii) processing: infer-
ence rules not required for completeness are also used (unit, lhs unit,mres),
the options for preprocessing of clauses are kept and clause selection takes the
shortest clause by level (shortest).

For LEO-III we provide the prover with a modal formula in the syntax it
expects plus a logic specification that tells the prover in which modal logic
the formula is meant to be solved, for example, $modal system S4. LEO-III
can collaborate with external reasoners during proof search and we have used
E 2.6 [34,35] as external reasoner and restricted LEO-III to one instance of E
running in parallel. LEO-III is implemented in Java and we have set the maxi-
mum heap size to 1 GB and the thread stack size to 64 MB for the JVM.

Table 8 shows our benchmarking results. The first three columns of the table
show the logic in which we determine the satisfiability status of each formula,
the satisfiability status of the formulae, and their number. The next six columns
then show how many of those formulae were solved by KSP with a particular
calculus and refinement. The last column shows the result for LEO-III. The
highest number or numbers are highlighted in bold. A time limit of 100 CPU
seconds was set for each formula. Benchmarking was performed on a PC with
an AMD Ryzen 5 5600X CPU @ 4.60 GHz max and 64 GB main memory using
Fedora release 34 as operating system.

While the R+MLR calculus is competitive with GMR on extensions of K
with axioms D, T and, possibly, B, the GMR calculus has better performance
on extensions with axioms 4 and 5.

On satisfiable formulae, where for all logics we use exactly the same formulae
and both resolution calculi have to saturate the set of clauses up to redundancy,
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the number of formulae solved is directly linked to the number of inferences
necessary to do so. The fact that we reduce SNFsml clauses to SNFml clauses via
the introduction of multiple copies of the same clausal formulae with different
labels clearly leads to a corresponding multiplication of the inferences that need
to be performed. LEO-III+E does not solve any of the satisfiable formulae. This
can be seen as an illustration of how important the use of additional techniques
is that can turn resolution into a decision procedure on embeddings of modal
logics into first-order logic [18,33].

On unsatisfiable formulae, where we use different formulae for each logic,
the number of formulae solved is linked to the number of inferences it takes to
find a refutation. For instance, on K it takes the GMR calculus on average 6.2
times the number of inferences to find a refutation than the R+MLR calculus.
However, for all other logics the opposite is true. On the remaining 14 logics, the
R+MLR calculus on average requires 6.5 times the number of inferences to find
a refutation than the GMR calculus. Given that the R+MLR calculus currently
uses a reduction from a modal logic to SNFsml followed by a transformation
from SNFsml to SNFml, it is difficult to discern which of the two is the major
problem. It is clear that multiple copies of the same clausal formulae are also
detrimental to proof search. LEO-III+E does reasonably well on unsatisfiable
formulae and the results clearly show the impact that additional axioms have on
its performance. It performs best for KT and K but for logics involving axioms
4 and 5 very few formulae can be solved. The external prover E finds the proof
for 121 out of the 122 modal formulae LEO-III+E can solve.

6 Conclusions

We have presented novel reductions of extensions of the modal logic K with
arbitrary combinations of the axioms B, D, T, 4, 5 to clausal normal forms
SNFsml and SNFml for K. The implementation of those reductions combined
with KSP [26], allows us to reason in all 15 logics of the modal cube in a fully
automatic way. Such support was so far extremely limited.

The transformation of sets of SNFsml to sets of SNFml relies on new results
that show that non-clausal closed tableaux in the Single Step Tableaux calculus
[14,21] can be simulated by refutations in the modal-layered resolution (MLR)
calculus for SNFml clauses [25].

We have also developed a new collection of benchmark formulae that covers
all 15 logics of the modal cube. The collection consists of classes of parameterised
and therefore scalable formulae. It contains an equal number of satisfiable and
unsatisfiable formulae for each logic and the satisfiability status of each formula is
known in advance. So far extensive collections of benchmark formulae were only
available for K with smaller collections available for KT and S4. A key feature
of the approach is that it uses the systematic modification of K-unsatisfiable
formulae to obtain unsatisfiable formulae in other logics. Thus, we could obtain
a more extensive collection by applying this approach to further collections of
benchmark formulae for K.
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The evaluation we presented shows that on most of the 15 modal logics the
combination of our reduction to SNFml with the MLR calculus does not per-
form as well as the global modal resolution (GMR) calculus, also implemented
in KSP. This contrasts with the evaluation in [29], where we only considered six
logics and used a different collection of benchmarks. We believe that the new
benchmark collection more clearly indicates weaknesses in the current approach,
in particular, the reduction from SNFsml to SNFml. It is possible that the imple-
mentation of a calculus that operates directly on sets of SNFsml clauses would
perform considerably better as it avoids the repetition of clauses with different
labels. However, it does so by using potentially infinite sets of labels which makes
an implementation challenging. We intend to explore this possibility in future
work.
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