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Abstract. Our goal is to develop a logic-based component for hybrid –
machine learning plus logic – commonsense question answering systems.
The paper presents an implementation GK of default logic for handling
rules with exceptions in unrestricted first order knowledge bases. GK is
built on top of our existing automated reasoning system with confidence
calculation capabilities. To overcome the problem of undecidability of
checking potential exceptions, GK performs delayed recursive checks with
diminishing time limits. These are combined with the taxonomy-based
priorities for defaults and numerical confidences.

1 Introduction

The problem of handling uncertainty is one of the critical issues when considering
the use of logic for automating commonsense reasoning. Most of the facts and
rules people use in their daily lives are uncertain. There are many types of
uncertainty, like fuzziness (is a person somewhat tall or very tall), confidence
(how certain does some fact seem) and exceptions (birds can typically fly, but
penguins, ostriches etc., can not). Some of these uncertainties, like fuzziness
and confidence, can be represented numerically, while others, like rules with
exceptions, are discrete. In [18] we present the design and implementation of
the CONFER framework for extending existing automated reasoning systems
with confidence calculation capabilities. In the current paper we present the
implementation called GK for default logic [13], built by further extending the
CONFER implementation. Importantly, we design a novel practical framework
for implementing default logic for the full, undecidable first order logic on the
basis of a conventional resolution prover.

1.1 Default Logic

Default logic was introduced in 1980 by R. Reiter [13] to model one aspect of
common-sense reasoning: rules with exceptions. It has remained one of the most
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well-known logic-based mechanisms devoted to this goal, with the circumscrip-
tion by J. McCarthy and the autoepistemic logic being the early alternatives.
Several similar systems have been proposed later, like defeasible logic [11].

Default logic [13] extends classical logic with default rules of the form

α(x) : β1(x), ...βn(x)
γ(x)

where a precondition α(x), justifications β1(x), ...βn(x) and a consequent γ(x)
are first order predicate calculus formulas whose free variables are among
x = x1, ..., xm. For every tuple of individuals t = t1, ..., tn, if the precondition α(t)
is derivable and none of the negated justifications ¬β(t) are derivable from a given
knowledge base KB, then the consequent γ(t) can be derived from KB. Differ-
ently from classical and most other logics, default logic is non-monotonic: adding
new assumptions can make some previously derivable formulas non-derivable.

As investigated in [7], the interpretation of quantifiers in default rules can
lead to several versions of default logic. We follow the original interpretation
of Reiter in [13] which requires the use of Skolemization in a specific manner
over default rules. For example, a default rule: ∃xP (x) � ∃xP (x) should be
interpreted as : P (c) � P (c), where c is a Skolem constant.

Consider a typical example for default logic: birds can normally fly, but pen-
guins cannot fly. The classical logic part

penguin(p) & bird(b) & ∀x.penguin(x) ⇒ bird(x) & ∀x.penguin(x) ⇒ ¬fly(x).

is extended with the default rule bird(x) : fly(x) � fly(x). From here we can
derive that an arbitrary bird b can fly, but a penguin p cannot. The default
rule cannot be applied to p, since a contradiction is derivable from fly(p). This
argument cannot be easily modelled using numerical confidences: the probability
of an arbitrary living bird being able to fly is relatively high, while the penguins
form a specific subset of birds, for which this probability is zero.

Another well-known example – Nixon’s triangle – introduces the prob-
lem of multiple extensions and sceptical vs credulous entailment: the classical
facts republican(nixon) & quaker(nixon) extended with two mutually exclud-
ing default rules republican(x) : ¬pacifist(x) � ¬pacifist(x) and quaker(x) :
pacifist(x) � pacifist(x). The credulous entailment allows giving different priori-
ties to the default rules and accepts different sets (extensions) of consequences, if
there is a way to assign priorities so that all the consequences in an extension can
be derived. The sceptical entailment requires that a consequence is present in all
extensions. GK follows the latter interpretation, but allows explicit priorities to
be assigned to the default rules.

The concept of priorities for default rules has been well investigated, with
several mechanisms proposed. G. Brewka argues in [4] that “for realistic applica-
tions involving default reasoning it is necessary to reason about the priorities of
defaults” and introduces an ordering of defaults based on specificity: default rules
for a more specific class of objects should take priority over rules for more gen-
eral classes. For example, since birds (who typically do fly) are physical objects



302 T. Tammet et al.

and physical objects typically do not fly, we have contradictory default rules
describing the flying capability of arbitrary birds. Since birds are a subset of
physical objects, the flying rule of birds should have a higher priority than the
non-flying rule of physical objects.

1.2 Undecidability, Grounding and Implementations

Perhaps the most significant problem standing in the way of automating default
logic is undecidability of the applicability of rules. Indeed, in order to apply a
default rule, we must prove that the justifications do not lead to a contradic-
tion with the rest of the knowledge base KB. For full first order logic this is
undecidable. Hence, the standard approach for handling default logic has been
creating a large ground instance KBg of the KB, and then performing decidable
propositional reasoning on the KBg.

Almost all the existing implementations of default logic like DeReS [5], DLV2
[1] or CLINGO [8], with the noteworthy exception of s(CASP) [2], follow the
same principle. More generally, the field of Answer Set Programming (ASP), see
[10], is devoted to this approach. As an exception, the s(CASP) system [2] solves
queries without the grounding step and is thus better suited for large domains.
It is noteworthy that the s(CASP) system has been used in [9] for automating
common sense reasoning for autonomous driving with the help of default rules.
However, s(CASP) is a logic programming system, not a universal automated
reasoner. For example, when we add a rule bird(father(X)) :- bird(X) to
the formulation of the above birds example in s(CASP), the search does not
terminate, apparently due to the infinitely growing nesting of terms.

While ASP systems are very well suited for specific kinds of problems over a
small finite domain, grounding becomes infeasible for large first order knowledge
bases (KB in the following), in particular when the domain is infinite and nested
terms can be derived from the KB. The approach described in this paper accepts
the lack of logical omniscience and performs delayed recursive checking of excep-
tions with diminishing time limits directly on non-grounded clauses, combined
with the taxonomy-based priorities for defaults and numerical confidences.

2 Algorithms

Our approach of implementing default rules in GK for first order logic is to
delay justification checking until a first-order proof is found and then perform
recursively deepening checks with diminishing time limits. Thus, our system first
produces a potentially large number of different candidate proofs and then enters
a recursive checking phase. The idea of delaying justification checking is already
present in the original paper of R. Reiter [13], where he uses linear resolution
and delayed checks as the main machinery of his proofs. The results produced by
GK thus depend on the time limits and are not stable. Showing specific fixpoint
properties of the algorithm is not in the scope of our paper.
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A practical question for implementation is the actual representation of default
rules and making the rules fit the first-order proof search machinery. To this
end we introduce blocker atoms which are similar to the justification indexes of
Reiter.

In the following we will assume that the underlying first order reasoner uses
the resolution method, see [3] for details. The rest of the paper assumes famil-
iarity with the basic concepts, terminology and algorithms of the resolution
method.

2.1 Background: Queries and Answers

We assume our system is presented with a question in one of two forms: (1) Is
the statement Q true? (2) Find values V for existentially bound variables in Q
so that Q is true. For simplicity’s sake we will assume that the statement Q is in
the prefix form, i.e., no quantifiers occur in the scope of other logical connectives.

In the second case, it could be that several different value vectors can be
assigned to the variables, essentially giving different answers. We also note that
an answer could be a disjunction, giving possible options instead of a single
definite answer.

A widely used machinery in resolution-based theorem provers for extracting
values of existentially bound variables in Q is to use a special answer predicate,
converting a question statement Q to a formula ∃X(Q(X)&¬answer(X)) for
a tuple of existentially quantified variables X in Q [6]. Whenever a clause is
derived which consists of only answer predicates, it is treated as a contradiction
(essentially, answer) and the arguments of the answer predicate are returned as
the values looked for. A common convention is to call such clauses answer clauses.
We will require that the proof search does not stop whenever an answer clause
is found, but will continue to look for new answer clauses until a predetermined
time limit is reached. See [16] for a framework of extracting multiple answers.

We also assume that queries take a general form (KB&A) ⇒ Q where KB is a
commonsense knowledge base, A is an optional set of precondition statements for
this particular question and Q is a question statement. The whole general query
form is negated and converted to clauses, i.e., disjunctions of literals (positive or
negative atoms). We will call the clauses stemming from the question statement
question clauses.

2.2 Blocker Atoms and Justification Checking

Without loss of generality we assume that the precondition and consequent for-
mulas α and γ in default rules are clauses and justifications β1, ..., βn are lit-
erals, i.e. positive or negative atoms: α : β1, ...βn � γ. Complex formulas can
be encoded with a new predicate over the free variables of the formula and an
equivalence of the new atom with the formula. Recall that Reiter assumes that
the default rules are Skolemized.

We encode a default rule as a clause by concatenating into one clause the pre-
condition and consequent clauses α(x) and γ(x) and blocker atoms block(¬β1),



304 T. Tammet et al.

..., block(¬βn) where each justification βi is either a positive or a negative atom.
The negation ¬ is used since we prefer to speak about blockers and not justifi-
catons. For example, the “birds can fly” default rule is represented as a clause

¬bird(X) ∨ fly(X) ∨ block(0, neg(fly(X)))

where X is a variable and neg(fly(X)) encodes the negated justification. The first
argument of the blocker (0 above) encodes priority information covered in the
next section.

A proof of a question clause is a clause containing only answer atoms and
blocker atoms. In the justification checking phase the system attempts to prove
each decoded second blocker argument ¬βi in turn: the proof is considered
invalid if some of ¬βi can be proved and this checking-proof itself is valid. If
we pose a question fly(X) ⇒ answer(X) to the system to be proved (see the
earlier example), we get two different answers: answer(p) ∨ block(neg(fly(p))
and answer(b) ∨ block(neg(fly(b)). Checking the first of these means trying to
prove ¬fly(p) which succeeds, hence the first answer is invalid. Checking the
second answer we try to prove ¬fly(b) which fails, hence the answer is valid.

Notice that the contents ¬βi of blockers, just like answer clauses, have a role
of collecting substitutions during the proof search: this enables us to disregard
the order in which the clauses are used, i.e. both top-down, bottom-up and mixed
proof search strategies can be used.

Importantly, blockers are used during the subsumption checks similarly to
ordinary literals. A clause C1 with fewer or more general literals than C2 is
hence always preferred to C2, given that (a) the literals of C1 subsume C2,
disregarding the priority arguments of blockers, and (b) the priority arguments
of corresponding blocker literals in C1 are equal or stronger than these of C2.
When combined with the uncertainty and inconsistency handling mechanisms of
CONFER, the subsumption restrictions of the latter also apply. There are also
other differences to ordinary literals. First, we prohibit the application of equality
(demodulation or paramodulation) to the contents of blocker atoms during proof
search. Second, we discard clauses containing mutually contradictory blockers
(assuming the decoding of the second argument) like we would discard ordinary
tautologies.

2.3 Priorities, Recursion and Infinite Branches

Default rule priorities are critical for the practical encoding of commonsense
knowledge. The usage of priorities in proof search is simple: when checking a
blocker with a given priority, it is not allowed to use default rules with a lower
priority. We encode priority information as a first argument of the blocker literal,
offering several ways to determine priority: either as an integer, a taxonomy class
number, a string in a taxonomy or a combination of these with an integer.

For automatically using specificity we employ taxonomy classes: a class has
a higher prirority than those above it on the taxonomy branch. We have built a
topologically sorted acyclic graph of English words using the WordNet taxonomy
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along with an efficient algorithm for quick priority checks during proof search.
Taxonomy classes are indicated with a special term like $(61598). Alternatively
one can use an actual English word like $(“bird”) which is automatically rec-
ognized to be more specific than, say, $(“object”). To enable more fine-grained
priorities, an integer can be added to the term like $(“bird”, 2) generating a
lexicographic order.

The recursive check for the non-provability of blockers can go arbitrarily deep,
except for the time limits. Our algorithm allocates N seconds for the whole proof
search and spends half of N for looking for different proofs and answers for the
query, with the other half split evenly for each answer. Again, the time allocated
for checking an answer is split evenly between the blockers in the answer. Each
such time snippet is again split between a search for the proof of the blocker, and
if found, for recursively checking the validity of this proof. Once the allocated
time is below a given threshold (currently one millisecond) the proof is assumed
to be not found.

Answers given by the system depend on the amount of time given, the search
strategy chosen etc. For example, consider the Nixon triangle presented earlier,
with two contradictory default rules. In case the priorities of these rules are equal
and we allow defaults with the same priority to be used for checking an answer
containing a blocker, the recursive check terminates only because of a time limit,
which is unpredictable. Hence, we may sometimes get one answer and sometimes
another. In order to increase both stability and efficiency, GK checks the blockers
in the search nodes above, and terminates with failure in cases nonterminating
loops are detected. Therefore GK always gives a sceptical result to the Nixon
triangle: neither pacifist(nixon) nor ¬pacifist(nixon) is proven.

3 Confidences and Inconsistencies

GK integrates the exception-handling algorithms described in the previous
chapter with the algorithms designed for handling inconsistent KB-s and numeric
confidences assigned to clauses, previously presented as a CONFER framework in
[18]. The framework is built on the resolution method. It calculates the estimates
for the confidences of derived clauses, using both (a) the decreasing confidence of
a conjunction of clauses as performed by the resolution and paramodulation rule,
and (b) the increasing confidence of a disjunction of clauses for cumulating evi-
dence. CONFER handles inconsistent KB-s by requiring the proofs of answers to
contain the clauses stemming from the question posed. It performs searches both
for the question and its negation and returns the resulting confidence calculated
as a difference of the confidences found by these two searches.

The integrated algorithm is more complex than the one we previously
described. Whenever the algorithms of the previous chapter speak about “prov-
ing”, the system actually performs two independent searches – one for the pos-
itive and one for the negated goal – with the confidences calculated for both
of these. A blocker is considered to be proved in case the resulting confidence
is over a pre-determined configurable threshold, by default 0.5. Blocker proofs
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must also contain the clause built from the blocker. Thus, the whole search tree
for a query consists of two types of interleaved layers: positive/negative confi-
dence searches and blocker checking searches, the latter type potentially making
the tree arbitrarily deep up to the minimal time limit threshold.

4 Implementation and Experiments

The described algorithms are implemented by the first author as a software
system GK available at https://logictools.org/gk/. GK is written in C on top of
our implementation of the CONFER framework [18] which is built on top of a
high-performance resolution prover GKC [17] (see https://github.com/tammet/
gkc) for conventional first order logic. Thus GK inherits most of the capabilities
and algorithms of GKC.

A tutorial and a set of default logic example problems along with proofs
from GK are also available at http://logictools.org/gk. GK is able to quickly
solve nontrivial problems built by extending classic default logic examples. It
is also able to solve classification problems combining exception and cumulative
evidence and problems with dynamic situations using fluents, including planning
problems. We have built a very large integrated knowledge base from the Quasi-
modo [14] and ConceptNet [15] knowledge bases, converting these to default logic
plus confidences. GK is able to solve simple problems using this large knowledge
base along with the Wordnet taxonomy for specificity: see the referenced web
page for examples.

The following small example illustrates the fundamental difference of GK
from the existing ASP systems for default logic. The standard penguins and
birds example presented above in the ASP syntax is

bird(b1).
penguin(p1).
bird(X) :- penguin(X).
flies(X) :- bird(X), not -flies(X).
-flies(X) :- penguin(X).

Both GK and the ASP systems clingo 5.4.0, dlv 2.1.1 and s(CASP) 0.21.10.09
give an expected answer to the queries flies(b1) and flies(p1). However,
when we add the rules

bird(father(X)) :- bird(X).
penguin(father(X)) :- penguin(X).

none of these ASP systems terminate for these queries, while GK does solve
the queries as expected. Notably, as pointed out by the author of s(CASP), this
system does terminate for the reformulation of the same problem with the two
replacement rules

flies(X) :- bird(X), not abs(X).
abs(X) :- penguin(X).

https://logictools.org/gk/
https://github.com/tammet/gkc
https://github.com/tammet/gkc
http://logictools.org/gk
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while clingo and dlv do not terminate. When we instead add the facts and rules

father(b1,b2).
father(p1,p2).
...
father(bN-1,bN).
father(pN-1,pN).

ancestor(X,Y):- father(X,Y).
ancestor(X,Y) :- ancestor(X,Z), ancestor(Z,Y).

for a large N , s(CASP) does not terminate and clingo and dlv become slow for
flies(b1): ca 8 s for N = 500 and ca 1 min for N = 1000 on a laptop with a
10-th generation i7 processor. GK solves the same question with N = 1000 under
half a second and with N = 100000 under three seconds: the latter problem size
is clearly out of scope of the capabilities of existing ASP systems.

We have previously shown that the confidence handling mechanisms in CON-
FER may slow down proof search for certain types of problems, but do not have
a strong negative effect on very large commonsense CYC [12] problems in the
TPTP problem collection. Differently from CONFER, the algorithms for default
logic described above do not substantially modify the resolution method imple-
mentation of pure first order logic search, thus the performance of these parts
of GK are mostly the same as of GKC. The ability to give a correct answer to a
query during a given time limit depends on the performance of these components,
and not on the overall recursively branching algorithm.

5 Summary and Future Work

We have presented algorithms and an implementation of an automated reason-
ing system for default logic on the basis of unrestricted first order logic and a
resolution method. While there are several systems able to solve default logic or
similar nonmonotonic logic problems, these are built on the basis of answer set
programming and are normally based on grounding. We are not aware of other
full first order logic reasoning systems for default logic, and neither of systems
integrating confidences and inconsistency-handling with rules with exceptions.

Future work is planned on three directions: adding features to the solver,
proving several useful properties of the algorithms and incorporating the solver
into a commonsense reasoning system able to handle nontrivial tasks posed in
natural language. The work on incorporating similarity-based reasoning into GK
and building a suitable semantic parser for natural language is currently ongoing.
We are particularly interested in exploring practical ways to integrate GK with
the machine learning techniques for natural language.
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which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.
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