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Abstract. Problems in many theories axiomatised by unit equalities
(UEQ), such as groups, loops, lattices, and other algebraic structures,
are notoriously difficult for automated theorem provers to solve. Con-
sequently, there has been considerable effort over decades in developing
techniques to handle these theories, notably in the context of Knuth-
Bendix completion and derivatives. The superposition calculus is a gen-
eralisation of completion to full first-order logic; however it does not carry
over all the refinements that were developed for it, and is therefore not
a strict generalisation. This means that (i) as of today, even state of the
art provers for first-order logic based on the superposition calculus, while
more general, are outperformed in UEQ by provers based on completion,
and (ii) the sophisticated techniques developed for completion are not
available in any problem which is not in UEQ. In particular, this includes
key simplifications such as ground joinability, which have been known for
more than 30 years. In fact, all previous completeness proofs for ground
joinability rely on proof orderings and proof reductions, which are not
easily extensible to general clauses together with redundancy elimina-
tion. In this paper we address this limitation and extend superposition
with ground joinability, and show that under an adapted notion of redun-
dancy, simplifications based on ground joinability preserve completeness.
Another recently explored simplification in completion is connectedness.
We extend this notion to “ground connectedness” and show superposi-
tion is complete with both connectedness and ground connectedness. We
implemented ground joinability and connectedness in a theorem prover,
iProver, the former using a novel algorithm which we also present in this
paper, and evaluated over the TPTP library with encouraging results.

Keywords: Superposition · Ground joinability · Connectedness ·
Closure redundancy · First-order theorem proving

1 Introduction

Automated theorem provers based on equational completion [4], such as Wald-
meister, MædMax or Twee [13,21,25], routinely outperform superposition-based
provers on unit equality problems (UEQ) in competitions such as CASC [22],
despite the fact that the superposition calculus was developed as a generalisation
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of completion to full clausal first-order logic with equality [19]. One of the main
ingredients for their good performance is the use of ground joinability criteria for
the deletion of redundant equations [1], among other techniques. However, exist-
ing proofs of refutational completeness of deduction calculi wrt. these criteria
are restricted to unit equalities and rely on proof orderings and proof reduc-
tions [1,2,4], which are not easily extensible to general clauses together with
redundancy elimination.

Since completion provers perform very poorly (or not at all) on non-UEQ
problems (relying at best on incomplete transformations to unit equality [8]), this
motivates an attempt to transfer those techniques to the superposition calculus
and prove their completeness, so as to combine the generality of the superposition
calculus with the powerful simplification rules of completion. To our knowledge,
no prover for first-order logic incorporates ground joinability redundancy criteria,
except for particular theories such as associativity-commutativity (AC) [20].

For instance, if f(x, y) ≈ f(y, x) is an axiom, then the equation
f(x, f(y, z)) ≈ f(x, f(z, y)) is redundant, but this cannot be justified by any
simplificaton rule in the superposition calculus. On the other hand, a comple-
tion prover which implements ground joinability can easily delete the latter
equation wrt. the former. We show that ground joinability can be enabled in the
superposition calculus without compromising completeness.

As another example, the simplification rule in completion can use f(x) ≈ s
(when f(x) � s) to rewrite f(a) ≈ t regardless of how s and t compare, while
the corresponding demodulation rule in superposition can only rewrite if s ≺ t.
Our “encompassment demodulation” rule matches the former, while also being
complete in the superposition calculus.

In [11] we introduced a novel theoretical framework for proving complete-
ness of the superposition calculus, based on an extension of Bachmair-Ganzinger
model construction [5], together with a new notion of redundancy called “closure
redundancy”. We used it to prove that certain AC joinability criteria, long used
in the context of completion [1], could also be incorporated in the superposition
calculus for full first-order logic while preserving completeness.

In this paper, we extend this framework to show the completeness of the
superposition calculus extended with: (i) a general ground joinability simplifi-
cation rule, (ii) an improved encompassment demodulation simplification rule,
(iii) a connectedness simplification rule extending [3,21], and (iv) a new ground
connectedness simplification rule. The proof of completeness that enables these
extensions is based on a new encompassment closure ordering. In practice, these
extensions help superposition to be competitive with completion in UEQ prob-
lems, and improves the performance on non-UEQ problems, which currently do
not benefit from these techniques at all.

We also present a novel incremental algorithm to check ground joinability,
which is very efficient in practice; this is important since ground joinability can
be an expensive criterion to test. Finally, we discuss some of the experimental
results we obtained after implementing these techniques in iProver [10,16].

The paper is structured as follows. In Sect. 2 we define some basic notions to
be used throughout the paper. In Sect. 3 we define the closure ordering we use to
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prove redundancies. In Sect. 4 we present redundancy criteria for demodulation,
ground joinability, connectedness, and ground connectedness. We prove their
completeness in the superposition calculus, and discuss a concrete algorithm for
checking ground joinability, and how it may improve on the algorithms used in
e.g. Waldmeister [13] or Twee [21]. In Sect. 5 we discuss experimental results.

2 Preliminaries

We consider a signature consisting of a finite set of function symbols and the
equality predicate as the only predicate symbol. We fix a countably infinite set
of variables. First-order terms are defined in the usual manner. Terms without
variables are called ground terms. A literal is an unordered pair of terms with
either positive or negative polarity, written s ≈ t and s �≈ t respectively (we
write s ≈̇ t to mean either of the former two). A clause is a multiset of literals.
Collectively terms, literals, and clauses will be called expressions.

A substitution is a mapping from variables to terms which is the identity
for all but finitely many variables. An injective substitution onto variables is
called a renaming. If e is an expression, we denote application of a substitution
σ by eσ, replacing all variables with their image in σ. Let GSubs(e) = {σ |
eσ is ground} be the set of ground substitutions for e. Overloading this notation
for sets we write GSubs(E) = {σ | ∀e ∈ E. eσ is ground}. Finally, we write e.g.
GSubs(e1, e2) instead of GSubs({e1, e2}). The identity substitution is denoted
by ε.

A substitution θ is more general than σ if θρ = σ for some substitution ρ
which is not a renaming. If s and t can be unified, that is, if there exists σ such
that sσ = tσ, then there also exists the most general unifier, written mgu(s, t).
A term s is said to be more general than t if there exists a substitution θ that
makes sθ = t but there is no substitution σ such that tσ = s. Two terms s and t
are said to be equal modulo renaming if there exist injective θ, σ such that sθ = t
and tσ = s. The relations “less general than”, “equal modulo renaming”, and
their union are represented respectively by the symbols �, ≡, and 	.

A more refined notion of instance is that of closure [6]. Closures are pairs
e · σ that are said to represent the expression eσ while retaining information
about the original term and its instantiation. Closures where eσ is ground are
said to be ground closures. Let GClos(e) = {e · σ | eσ is ground} be the set of
ground closures of e. Overloading the notation for sets, if N is a set of clauses
then GClos(N) =

⋃
C∈N GClos(C).

We write s[t] if t is a subterm of s. If also s �= t, then it is a strict subterm.
We denote these relations by s � t and s � t respectively. We write s[t 
→ t′] to
denote the term obtained from s by replacing all occurrences of t by t′.

A (strict) partial order is a binary relation which is transitive (a � b � c ⇒
a � c), irreflexive (a � a), and asymmetric (a � b ⇒ b � a). A (non-strict)
partial preorder (or quasiorder) is any transitive, reflexive relation. A (pre)order
is total over X if ∀x, y ∈ X. x  y ∨ y  x. Whenever a non-strict (pre)order
 is given, the induced equivalence relation ∼ is  ∩ , and the induced strict
pre(order)� is\∼. The transitive closure of a relation�, the smallest transitive
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relation that contains �, is denoted by �+. A transitive reduction of a relation
�, the smallest relation whose transitive closure is �, is denoted by �−.

For an ordering � over a set X, its multiset extension �� over multisets of X
is given by: A �� B iff A �= B and ∀x ∈ B. B(x) > A(x) ∃y ∈ A. y � x∧A(y) >
B(y), where A(x) is the number of occurrences of element x in multiset A (we
also use ��� for the the multiset extension of ��). It is well known that the mutl-
tiset extension of a well-founded/total order is also a well-founded/total order,
respectively [9]. The (n-fold) lexicographic extension of � over X is denoted
�lex over ordered n-tuples of X, and is given by 〈x1, . . . , xn〉 �lex 〈y1, . . . , yn〉
iff ∃i. x1 = y1 ∧ · · · ∧ xi−1 = yi−1 ∧ xi � yi. The lexicographic extension of a
well-founded/total order is also a well-founded/total order, respectively.

A binary relation → over the set of terms is a rewrite relation if (i) l →
r ⇒ lσ → rσ and (ii) l → r ⇒ s[l] → s[l 
→ r]. The reflexive-transitive closure
of a relation is the smallest reflexive-transitive relation which contains it. It is
denoted by ∗→. Two terms are joinable (s ↓ t) if s

∗→ u
∗← t.

If a rewrite relation is also a strict ordering, then it is a rewrite ordering. A
reduction ordering is a rewrite ordering which is well-founded. In this paper we
consider reduction orderings which are total on ground terms, such orderings are
also simplification orderings i.e., satisfy s � t ⇒ s � t.

3 Ordering

In [11] we presented a novel proof of completeness of the superposition calculus
based on the notion of closure redundancy, which enables the completeness of
stronger redundancy criteria to be shown, including AC normalisation, AC join-
ability, and encompassment demodulation. In this paper we use a slightly different
closure ordering (�cc), in order to extract better completeness conditions for the
redundancy criteria that we present in this paper (the definition of closure redun-
dant clause and closure redundant inference is parametrised by this �cc).

Let �t be a simplification ordering which is total on ground terms. We extend
this first to an ordering on ground term closures, then to an ordering on ground
clause closures. Let

s · σ �tc′ t · ρ iff either sσ �t tρ
or else sσ = tρ and s � t, (1)

where sσ and tρ are ground, and let �tc be an (arbitrary) total well-founded
extension of �tc′ . We extend this to an ordering on clause closures. First let

Mlc((s ≈ t) · θ) = {sθ · ε, tθ · ε}, (2)

Mlc((s �≈ t) · θ) = {sθ · ε, tθ · ε, sθ · ε, tθ · ε}, (3)

and let Mcc be defined as follows, depending on whether the clause is unit or
non-unit:

Mcc(∅ · θ) = ∅, (4)
Mcc((s ≈ t) · θ) = {{s · θ}, {t · θ}}, (5)
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Mcc((s �≈ t) · θ) = {{s · θ, t · θ, sθ · ε, tθ · ε}}, (6)
Mcc((s ≈̇ t ∨ · · · ) · θ) = {Mlc(L · θ) | L ∈ (s ≈̇ t ∨ · · · )}, (7)

then �cc is defined by

C · σ �cc D · ρ iff Mcc(C · σ) ���tc Mcc(D · ρ). (8)

The main purpose of this definition is twofold: (i) that when sθ �t tθ and u
occurs in a clause D, then sθ �u or s � sθ = u implies (s ≈ t) · θρ ≺cc D ·ρ, and
(ii) that when C is a positive unit clause, D is not, s is the maximal subterm
in Cθ and t is the maximal subterm in Dσ, then s t t implies C · θ ≺cc D · σ.
These two properties enable unconditional rewrites via oriented unit equations
on positive unit clauses to succeed whenever they would also succeed in unfailing
completion [4], and rewrites on negative unit and non-unit clauses to always
succeed. This will enable us to prove the correctness of the simplification rules
presented in the following section.

4 Redundancies
In this section we present several redundancy criteria for the superposition cal-
culus and prove their completeness. Recall the definitions in [11]: a clause C
is redundant in a set S if all its ground closures C · θ follow from closures in
GClos(S) which are smaller wrt. �cc; an inference C1, . . . , Cn |− D is redundant
in a set S if, for all θ ∈ GSubs(C1, . . . , Cn, D) such that C1θ, . . . , Cnθ |− Dθ is
a valid inference, the closure D · θ follows from closures in GClos(S) such that
each is smaller than some C1 ·θ, . . . , Cn ·θ. These definitions (in terms of ground
closures rather than in terms of ground clauses, as in [19]) arise because they
enable us to justify stronger redundancy criteria for application in superposition
theorem provers, including the AC criteria developed in [11] and the criteria in
this section.
Theorem 1. The superposition calculus [19] is refutationally complete wrt. clo-
sure redundancy, that is, if a set of clauses is saturated up to closure redundancy
(meaning any inference with non-redundant premises in the set is redundant)
and does not contain the empty clause, then it is satisfiable.
Proof. The proof of completeness of the superposition calculus wrt. this closure
ordering carries over from [11] with some modifications, which are presented in
a full version of this paper [12].

4.1 Encompassment Demodulation
We introduce the following definition, to be re-used throughout the paper.
Definition 1. A rewrite via l ≈ r in clause C[lθ] is admissible if one of the
following conditions holds: (i) C is not a positive unit, or (let C = s[lθ] ≈ t for
some θ) (ii) lθ �= s, or (iii) lθ � l, or (iv) s ≺t t, or (v) rθ ≺t t.1

1 We note that (iv) is superfluous, but we include it since in practice it is easier to
check, as it is local to the clause being rewritten and therefore needs to be checked
only once, while (v) needs to be checked with each demodulation attempt.
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We then have

Encompassment
Demodulation

l ≈ r ���C[lθ]
C[lθ 
→ rθ]

,
where lθ �t rθ, and
rewrite via l ≈ r in C is admissible. (9)

In other words, given an equation l ≈ r, if an instance lθ is a subterm in
C, then the rewrite is admissible (meaning, for example, that an unconditional
rewrite is allowed when lθ �t rθ) if C is not a positive unit, or if lθ occurs at
a strict subterm position, or if lθ is less general than l, or if lθ occurs outside
a maximal side, or if rθ is smaller than the other side. This restriction is much
weaker than the one given for the usual demodulation rule in superposition [17],
and equivalent to the one in equational completion when we restrict ourselves
to unit equalities [4].

Example 1. If f(x) �t s, we can use f(x) ≈ s to rewrite f(x) ≈ t when s ≺t t,
and f(a) ≈ t, f(x) �≈ t, or f(x) ≈ t ∨ C regardless of how s and t compare.

4.2 General Ground Joinability

In [11] we developed redundancy criteria for the theory of AC functions in the
superposition calculus. In this section we extend these techniques to develop
redundancy criteria for ground joinability in arbitrary equational theories.

Definition 2. Two terms are strongly joinable (s t), in a clause C wrt. a set
of equations S, if either s = t, or s → s[l1σ1 
→ r1σ1] ∗→ t via rules li ≈ ri ∈ S,
where the rewrite via l1 ≈ r1 is admissible in C, or s → s[l1σ1 
→ r1σ1] ↓
t[l2σ2 
→ r2σ2] ← t via rules li ≈ ri ∈ S, where the rewrites via l1 ≈ r1 and
l2 ≈ r2 are admissible in C. To make the ordering explicit, we may write s � t.
Two terms are strongly ground joinable (s t), in a clause C wrt. a set of
equations S, if for all θ ∈ GSubs(s, t) we have sθ tθ in C wrt. S.

We then have:

Ground joinability
�����s ≈ t ∨ C S

, where s t in s ≈ t ∨ C wrt. S, (10a)

Ground joinability �����s �≈ t ∨ C S

C
, where s t in s �≈ t ∨ C wrt. S. (10b)

Theorem 2. Ground joinability is a sound and admissible redundancy criterion
of the superposition calculus wrt. closure redundancy.

Proof. We will show the positive case first. If s t, then for any instance (s ≈
t ∨ C) · θ we either have sθ = tθ, and therefore ∅ |= (s ≈ t) · θ, or we have wlog.
sθ �t tθ, with sθ ↓ tθ. Then sθ and tθ can be rewritten to the same normal form
u by liσi→ riσi where li ≈ ri ∈ S. Since u ≺t sθ and u t tθ, then (s ≈ t∨C) ·θ
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follows from smaller (u ≈ u ∨ C) · θ2 (a tautology, i.e. follows from ∅) and from
the instances of clauses in S used to rewrite sθ → u ← tθ. It only remains to
show that these latter instances are also smaller than (s ≈ t ∨ C) · θ. Since we
have assumed sθ �t tθ, then at least one rewrite step must be done on sθ. Let
l1σ1→ r1σ1 be the instance of the rule used for that step, with (l1 ≈ r1) · σ1 the
closure that generates it. By Definition 1 and 2, one of the following holds:

– C �= ∅, therefore (l1 ≈ r1) · σ1 ≺cc (s ≈ t ∨ C) · θ, or
– l1σ1�sθ, therefore l1σ1 ≺t sθ ⇒ l1 ·σ1 ≺tc s·θ ⇒ (l1 ≈ r1)·σ1 ≺cc (s ≈ t)·θ,

or
– l1σ1 = sθ and s � l1, therefore l1 · σ1 ≺tc s · θ ⇒ (l1 ≈ r1) · σ1 ≺cc (s ≈ t) · θ,

or
– l1σ1 = sθ and s ≡ l1 and r1σ1 ≺t tθ, therefore r1 · σ1 ≺tc t · θ ⇒ (l1 ≈

r1) · σ1 ≺cc (s ≈ t) · θ.

As for the remaining steps, they are done on the smaller side tθ or on the other
side after this first rewrite, which is smaller than sθ. Therefore all subsequent
steps done by any ljσj → rjσj will have rj · σj ≺tc lj · σj ≺tc s · θ ⇒ (lj ≈
rj) · σj ≺cc (s ≈ t ∨ C) · θ. As such, since this holds for all ground closures
(s ≈ t ∨ C) · θ, then s ≈ t ∨ C is redundant wrt. S.

For the negative case, the proof is similar. We will conclude that (s �≈ t∨C)·θ
follows from smaller (li ≈ ri) · σi ∈ GClos(S) and smaller (u �≈ u ∨ C) · θ. The
latter, of course, follows from smaller C · θ, therefore s �≈ t∨C is redundant wrt.
S ∪ {C}. ��
Example 2. If S = {f(x, y) ≈ f(y, x)}, then f(x, f(y, z)) ≈ f(x, f(z, y)) is
redundant wrt. S. Note that f(x, y) ≈ f(y, x) is not orientable by any sim-
plification ordering, therefore this cannot be justified by demodulation alone.

Testing for Ground Joinability. The general criterion presented above begs
the question of how to test, in practice, whether s t in a clause s≈̇t∨C. Several
such algorithms have been proposed [1,18,21]. All of these are based on the
observation that if we consider all total preorders v on Vars(s, t) and for all of
them show strong joinability with a modified ordering—which we denote �t[v]—
then we have shown strong ground joinability in the order �t [18].

Definition 3. A simplification order on terms �t extended with a preorder on
variables v, denoted t[v], is a simplification preorder (i.e. satisfies all the
relevant properties in Sect. 2) such that t[v] ⊇ �t ∪ v.

Example 3. If x �v y, then g(x) �t[v] g(y), g(x) �t[v] y, f(x, y) �t[v] f(y, x),
etc.

The simplest algorithm based on this approach would be to enumerate all
possible total preorders v over Vars(s, t), and exhaustively reduce both sides

2 Wlog. uθ = u, renaming variables in u if necessary.
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via equations in S orientable by �t[v], checking if the terms can be reduced to the
same normal form for all total preorders. This is very inefficient since there are
O(n!en) such total preorders [7], where n is the cardinality of Vars(s, t). Another
approach is to consider only a smaller number of partial preorders, based on the
obvious fact that s �t[v]

t ⇒ ∀′
v ⊇ v. s �t[v′]

t, so that joinability under
a smaller number of partial preorders can imply joinability under all the total
preorders, necessary to prove ground joinability.

However, this poses the question of how to choose which partial preorders to
check. Intuitively, for performance, we would like that whenever the two terms
are not ground joinable, that some total preorder where they are not joinable is
found as early as possible, and that whenever the two terms are joinable, that
all total preorders are covered in as few partial preorders as possible.
Example 4. Let S = {f(x, f(y, z))≈f(y, f(x, z))}. Then f(x, f(y, f(z, f(w, u))))
≈f(x, f(y, f(w, f(z, u)))) can be shown to be ground joinable wrt. S by checking
just three cases: v ∈ {z�w , z∼w , z≺w}, even though there are 6942 possible
preorders.

Waldmeister first tries all partial preorders relating two variables among
Vars(s, t), then three, etc. until success, failure (by trying a total order and fail-
ing to join) or reaching a predefined limit of attempts [1]. Twee tries an arbitrary
total strict order, then tries to weaken it, and repeats until all total preorders are
covered [21]. We propose a novel algorithm—incremental ground joinability—
whose main improvement is guiding the process of picking which preorders to
check by finding, during the process of searching for rewrites on subterms of the
terms we are attempting to join, minimal extensions of the term order with a
variable preorder which allow the rewrite to be done in the � direction.

Our algorithm is summarised as follows. We start with an empty queue of
variable preorders, V , initially containing only the empty preorder. Then, while
V is not empty, we pop a preorder v from the queue, and attempt to perform
a rewrite via an equation which is newly orientable by some extension ′

v of v.
That is, during the process of finding generalisations of a subterm of s or t among
left-hand sides of candidate unoriented unit equations l ≈ r, when we check that
the instance lθ ≈ rθ used to rewrite is oriented, we try to force this to be true
under some minimal extension �t[v′] of �t[v], if possible. If no such rewrite exists,
the two terms are not strongly joinable under �t[v] or any extension, and so are
not strongly ground joinable and we are done. If it exists, we exhaustively rewrite
with �t[v′], and check if we obtain the same normal form. If we do not obtain
it yet, we repeat the process of searching rewrites via equations orientable by
further extensions of the preorder. But if we do, then we have proven joinability
in the extended preorder; now we must add back to the queue a set of preorders
O such that all the total preorders which are ⊇ v (popped from the queue)
but not ⊇ ′

v (minimal extension under which we have proven joinability) are
⊇ of some ′′

v ∈ O (pushed back into the queue to be checked). Obtaining this
O is implemented by order diff(v,′

v), defined below. Whenever there are no
more preorders in the queue to check, then we have checked that the terms are
strongly joinable under all possible total preorders, and we are done.



Ground Joinability and Connectedness in the Superposition Calculus 177

Together with this, some book-keeping for keeping track of completeness
conditions is necessary. We know that for completeness to be guaranteed, the
conditions in Definition 1 must hold. They automatically do if C is not a positive
unit or if the rewrite happens on a strict subterm. We also know that after a
term has been rewritten at least once, rewrites on that side are always complete
(since it was rewritten to a smaller term). Therefore we store in the queue,
together with the preorder, a flag in P({L, R}) indicating on which sides does a
top rewrite need to be checked for completeness. Initially the flag is {L} if s �t t,
{R} if s ≺t t, {L, R} if s and t are incomparable, and {} if the clause is not a
positive unit. When a rewrite at the top is attempted (say, l ≈ r used to rewrite
s = lθ with t being the other side), if the flag for that side is set, then we check if
lθ � l or rθ ≺ t. If this fails, the rewrite is rejected. Whenever a side is rewritten
(at any position), the flag for that side is cleared.

The definition of order diff is as follows. Let the transitive reduction of  be
represented by a set of links of the form x�y / x∼y.

order diff(1,2) = {+|  ∈ order diff ′(1,2
−)} , (11a)

order diff ′(1,−
2 ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
2 = {x�y} � −

2
′ ⇒

⎧
⎪⎪⎨

⎪⎪⎩

x �1 y ⇒ order diff ′(1,−
2

′)

x �1 y ⇒
{1 ∪ {y�x} , 1 ∪ {x∼y}}
∪ order diff ′(1 ∪ {x�y},−

2
′)

−
2 = {x∼y} � −

2
′ ⇒

⎧
⎪⎪⎨

⎪⎪⎩

x ∼1 y ⇒ order diff ′(1,−
2

′)

x �1 y ⇒
{1 ∪ {x�y} , 1 ∪ {y�x}}
∪ order diff ′(1 ∪ {x∼y},−

2
′)

−
2= ∅ ⇒ ∅ .

(11b)

where 1 ⊆ 2. In other words, we take a transitive reduction of 2, and for
all links � in that reduction which are not part of 1, we return orders 1
augmented with the reverse of � and recurse with 1 = 1 ∪ �.

Example 5.

�1 �2 order diff(�1, �2)
x � y x � y � z � w x � y ∼ z , x � y ≺ z , x � y � z ∼ w , x � y � z ≺ w

y ≺ x � z x � y � z x � y ∼ z , x � z � y

Theorem 3. For all total T
v ⊇ 1, there exists one and only one i ∈ {2}∪

order diff(1,2) such that T
v ⊇ i. For all T

v � 1, there is no i ∈
{2} ∪ order diff(1,2) such that T

v ⊇ i.
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Proof. See full version of the paper [12].

An algorithm based on searching for rewrites in minimal extensions of a
variable preorder (starting with minimal extensions of the bare term ordering,
�t[∅]), has several advantages. The main benefit of this approach is that, instead
of imposing an a priori ordering on variables and then checking joinability under
that ordering, we instead build a minimal ordering while searching for candidate
unit equations to rewrite subterms of s, t. For instance, if two terms are not
ground joinable, or not even rewritable in any �t[v] where it was not rewritable in
�t, then an approach such as the one used in Avenhaus, Hillenbrand and Löchner
[1] cannot detect this until it has extended the preorder arbitrarily to a total
ordering, while our incremental algorithm immediately realises this. We should
note that empirically this is what happens in most cases: most of the literals we
check during a run are not ground joinable, so for practical performance it is
essential to optimise this case.

Theorem 4. Algorithm 1 returns “Success” only if s t in C wrt. S.3

Proof. We will show that Algorithm 1 returns “Success” if and only if s �t[vT ]
t

for all total T
v over Vars(s, t), which implies s �t

t.
When 〈v, s, t, c〉 is popped from V , we exhaustively reduce s, t via equations

in S oriented wrt. �t[v], obtaining sr, tr. If sr ∼t[v] tr, then s �t[v]
t, and so

s �t[vT ]
t for all total T

v ⊇ v. If sr �t[v] tr, we will attempt to rewrite one
of sr, tr using some extended �t[v′] where ′

v ⊃ v. If this is impossible, then
s � �t[v′]

t for any ′
v ⊇ v, and therefore there exists at least one total T

v such
that s � �T

v
t, and we return “Fail”.

If this is possible, then we repeat the process: we exhaustively reduce wrt.
�t[v′], obtaining s′, t′. If s′ �t[v′] t′, then we start again the process from the step
where we attempt to rewrite via an extension of ′

v: we either find a rewrite with
some �t[v′′] with ′′

v ⊃ ′
v, and exhaustively normalise wrt. �t[v′′] obtaining

s′′, t′′, etc., or we fail to do so and return “Fail”.
If in any such step (after exhaustively normalising wrt. �t[v′]) we find s′ ∼t[v′]

t′, then s �t[v′]
t, and so s �t[vT ]

t for all total T
v ⊇ ′

v. Now at this point
we must add back to the queue a set of preorders ′′

v i such that: for all total
T

v ⊇ v, either T
v ⊇ ′

v (proven to be ) or T
v ⊇ some ′′

v i (added to V
to be checked). For efficiency, we would also like for there to be no overlap: no
total T

v ⊇ v is an extension of more than one of {′
v,′′

v 1, . . .}.
This is true because of Theorem 3. So we add {〈′′

v i, sr, tr, cr〉 | ′′
v i ∈

order diff(v,′
v)} to V , where cr = c \ (if sr �= s then {L} else {}) \(if tr �=

t then {R} else {}). Note also that s �t[v]
sr and t �t[v]

tr, therefore also
s �t[vi′′]

sr and t �t[vi′′]
tr if ′′

v i ⊃ v.

3 Note that the other direction may not always hold, there are strongly ground joinable
terms which are not detected by this method of analysing all preorders between
variables, e.g. f(x, g(y)) f(g(y), x) wrt. S = {f(x, y) ≈ f(y, x)}.
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Algorithm 1: Incremental ground joinability test
Input: literal s ≈̇ t ∈ C; set of unorientable equations S
Output: whether s t in C wrt. S
begin

c ← ∅ if C is not pos. unit, {L} if s � t, {R} if s ≺ t, {L, R} otherwise
V ← {〈∅, s, t, c〉}
while V is not empty do

〈�v, s, t, c〉 ← pop from V
s, t ← normalise s, t wrt. �t[v], with completeness flag c
c ← c \ ({L} if s was changed) \ ({R} if t was changed)
if s ∼t[v] t then

continue
else

s′, t′, c′ ← s, t, c
while there exists l ≈ r ∈ S that can rewrite s′ or t′ wrt. some
�′

v ⊃ �v, with completeness flag c do
s′, t′ ← normalise s′, t′ wrt. �t[v′], with completeness flag c
c′ ← c′ \ ({L} if s′ was changed) \ ({R} if t′ was changed)
if s′ ∼t[v′] t′ then

for �′′
v in order diff(�v, �′

v) do push 〈�′′
v , s, t, c〉 to V

break
end
�v ← �′

v

else
return Fail

end
end

else
return Success

end
end
where rewriting u in s, t wrt. � with completeness flag c succeeds if

(i) u is a strict subterm of s or t,
(ii) u = s with L /∈ c,
(iii) u = t with R /∈ c,
(iv) instance lσ ≈ rσ used to rewrite has l � u,
(v) u = s with rσ ≺ t,
(vi) or u = t with rσ ≺ s.

end

During this whole process, any rewrites must pass a completeness test men-
tioned previously, such that the conditions in the definition of hold. Let s0, t0
be the original terms and s, t be the ones being rewritten and c the completeness
flag. If the rewrite is at a strict subterm position, it succeeds by Definition 2.
If the rewrite is at the top, then we check c. If L is unset (L /∈ c), then either
s  s0 ≺ t0 or s ≺ s0 or the clause is not a positive unit, so we allow a rewrite
at the top of s, again by Definition 2. If L is set (L ∈ c), then an explicit check
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must be done: we allow a rewrite at the top of s (= s0) iff it is done by lσ→ rσ
with lσ � l or rσ ≺ t0. Respectively for R, with the roles of s and t swapped.

In short, we have shown that if 〈v, s′, t′, c′〉 is popped from V , then V is only
ever empty, and so the algorithm only terminates with “Success”, if s′

�t[vT ]
t′

for all total T
v ⊇ v. Since V is initialised with 〈∅, s, t, c〉, then the algorithm

only returns “Success” if s �t[vT ]
t for all total T

v . ��

Orienting via Extension of Variable Ordering. In order to apply the
ground joinability algorithm we need a way to check, for a given �t and v

and some s, t, whether there exists a ′
v ⊃ v such that s �t[v′] t. Here we show

how to do this when �t is a Knuth-Bendix Ordering (KBO) [15].
Recall the definition of KBO. Let �s be a partial order on symbols, w be

an N-valued weight function on symbols and variables, with the property that
∃m ∀x ∈ V. w(x) = m, w(c) ≥ m for all constants c, and there may only exist
one unary symbol f with w(f) = 0 and in this case f �s g for all other symbols
g. For terms, their weight is w(f(s1, . . . )) = w(f) + w(s1) + · · · . Let also |s|x be
the number of occurrences of x in s. Then

f(s1, . . . ) �KBO g(t1, . . . ) iff

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

either w(f(s1, . . . )) > w(g(t1, . . . )),
or w(f(s1, . . . )) = w(g(t1, . . . ))

and f �s g,
or w(f(s1, . . . )) = w(g(t1, . . . ))

and f = g,
and s1, . . . �KBOlex t1, . . . ;

and ∀x ∈ V. |f(. . . )|x ≥ |g(. . . )|x.

(12a)

f(s1, . . . ) �KBO x iff |f(s1, . . . )|x ≥ 1 . (12b)
x �KBO y iff ⊥ . (12c)

The conditions on variable occurrences ensure that s �KBO t ⇒ ∀θ. sθ �KBO tθ.
When we extend the order �KBO with a variable preorder v, the starting

point is that x �v y ⇒ x �KBO[v] y and x ∼v y ⇒ x ∼KBO[v] y. Then, to ensure
that all the properties of a simplification order (included the one mentioned
above) hold, we arrive at the following definition (similar to [1]).

f(s1, . . . ) �KBO[v] g(t1, . . . ) iff

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

either w(f(. . . )) > w(g(. . . )),
or w(f(s1, . . . )) = w(g(t1, . . . ))

and f �s g,
or w(f(s1, . . . )) = w(g(t1, . . . ))

and f = g,
and s1, . . . �KBO[v]lex t1, . . . ;

and ∀x ∈ V.
∑

y�vx
|f(. . . )|y

≥ ∑
y�vx

|g(. . . )|y.

(13a)

f(s1, . . . ) �KBO[v] x iff ∃y v x. |f(s1, . . . )|y ≥ 1 . (13b)
x �KBO[v] y iff x �v y . (13c)
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To check whether there exists a ′
v ⊃ v such that s �KBO[v′] t, we need

to check whether there are some x�y or x = y relations that we can add to v

such that all the conditions above hold (and such that it still remains a valid
preorder). Let us denote “there exists a ′

v ⊃ v such that s �KBO[v′] t” by
s �KBO[v,v′] t. Then the definition is

f(s1, . . . ) �KBO[v,v′] g(t1, . . . ) iff

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

either w(f(. . . )) > w(g(. . . )),
or w(f(s1, . . . )) = w(g(t1, . . . ))

and f �s g,
or w(f(s1, . . . )) = w(g(t1, . . . ))

and f = g,
and s1, . . . �KBOlex t1, . . . ;

and ∃x1, y1, . . .
�′

v = (�v ∪ {〈x1, y1〉, . . .})+ is a preorder
such that ∀x∈V.

∑
y�′

vx
|f(. . . )|y

≥ ∑
y�′

vx
|g(. . . )|y.

(14a)

f(s1, . . . ) �KBO[v,v′] x iff

{∃y ⊀v x. |f(s1, . . . )|y ≥ 1 ,
with �′

v = �v ∪ {x�y}
or �′

v = �v ∪ {x=y} .
(14b)

x �KBO[v,v′] y iff
{

x ⊀v y
with �′

v = �v ∪ {x�y} . (14c)

This check can be used in Algorithm 1 for finding extensions of variable order-
ings that orient rewrite rules allowing required normalisations.

4.3 Connectedness
Testing for joinability (i.e. demodulating to s ≈ s or s �≈ s) and ground joinability
(presented in the previous section) require that each step in proving them is done
via an oriented instance of an equation in the set. However, we can weaken this
restriction, if we also change the notion of redundancy being used.

As criteria for redundancy of a clause, finding either joinability or ground
joinability of a literal in the clause means that the clause can be deleted or the
literal removed from the clause (in case of a positive or negative literal, resp.)
in any context, that is, we can for example add them to a set of deleted clauses,
and for any new clause, if it appears in that set, then immediately remove it
since we already saw that it is redundant. The criterion of connectedness [3,21],
however, is a criterion for redundancy of inferences. This means that a conclusion
simplified by this criterion can be deleted (or rather, not added), but in that
context only; if it ever comes up again as a conclusion of a different inference,
then it is not necessarily also redundant. Connectedness was introduced in the
context of equational completion, here we extend it to general clauses and show
that it is a redundancy in the superposition calculus.
Definition 4. Terms s and t are connected under clauses U and uni-
fier ρ wrt. a set of equations S if there exist terms v1, . . . , vn, equations
l1 ≈ r1, . . . , ln−1 ≈ rn−1, and substitutions σ1, . . . , σn−1 such that:
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(i) v1 = s and vn = t,
(ii) for all i ∈ 1, . . . , n− 1, either vi+1 = vi[liσi 
→ riσi] or vi = vi+1[liσi 
→ riσi],

with li ≈ ri ∈ S,
(iii) for all i ∈ 1, . . . , n− 1, there exists w in

⋃
C∈U

⋃
p≈̇q∈C{p, q}4 such that for

ui ∈ {li, ri}, either (a) uiσi ≺ wρ, or (b) uiσi = wρ and either ui � w or
w ∈ C such that C is not a positive unit.

Theorem 5. Superposition inferences of the form

l ≈ r ∨ C s[u] ≈ t ∨D

(s[u 
→ r] ≈ t ∨ C ∨D)ρ
,

where ρ = mgu(l, u),
lρ � rρ, sρ � tρ,
and u not a variable,

(15)

where s[u 
→ r]ρ and tρ are connected under {l ≈ r ∨ C, s ≈ t ∨D} and unifier
ρ wrt. some set of clauses S, are redundant inferences wrt. S.

Proof. Let us denote s′ = s[u 
→ r]. Let also U = {l ≈ r ∨ C, s ≈ t ∨ D} and
M =

⋃
C∈U

⋃
p≈̇q∈C{p, q}. We will show that if s′ρ and tρ are connected under

U and ρ, by equations in S, then every instance of that inference obeys the
condition for closure redundancy of an inference (see, Sect. 4), wrt. S.

Consider any (s′ ≈ t ∨ C ∨D)ρ · θ where θ ∈ GSubs(Uρ). Either s′ρθ = tρθ,
and we are done (it follows from ∅), or s′ρθ � tρθ, or s′ρθ ≺ tρθ.

Consider the case s′ρθ � tρθ. For all i ∈ 1, . . . , n−1, there exists a C ′ ∈ U and
a w ∈ C ′ such that either (iii.a) liσiθ ≺ wρθ, or (iii.b) liσiθ = wρθ and li � v,
or (iii.b) liσiθ = wρθ and C ′ is not a positive unit. Likewise for ri. Therefore,
for all i ∈ 1, . . . , n − 1, there exists a C ′ ∈ U such that (li ≈ ri) · σiθ ≺ C ′ · ρθ.
Since (t ≈ t ∨ · · · )ρ · θ is also smaller than (s′ ≈ t ∨ · · · )ρ · θ and a tautology,
then the instance (s′ ≈ t ∨ · · · )ρ · θ of the conclusion follows from closures in
GClos(S) such that each is smaller than one of (l ≈ r ∨C) · ρθ, (s ≈ t ∨D) · ρθ.

In the case that s′ρθ ≺ tρθ, the same idea applies, but now it is (s′ ≈
s′ ∨ · · · )ρ · θ which is smaller than (s′ ≈ t ∨ · · · )ρ · θ and is a tautology.

Therefore, we have shown that for all θ ∈ GSubs((l ≈ r∨C)ρ, (s ≈ t∨D)ρ),
the instance (s′ ≈ t∨· · · )ρ ·θ of the conclusion follows from closures in GClos(S)
which are all smaller than one of (l ≈ r ∨ C) · ρθ, (s ≈ t ∨ D) · ρθ. Since
any valid superposition inference with ground clauses has to have l = u, then
any θ′ ∈ GSubs(l ≈ r ∨ C, s ≈ t ∨ D, (s′ ≈ t ∨ C ∨ D)ρ) such that the
inference (l ≈ r ∨ C)θ′, (s ≈ t ∨ D)θ′ |− (s′ ≈ t ∨ C ∨ D)ρθ′ is valid must
have θ′ = ρθ′′, since ρ is the most general unifier. Therefore, we have shown
that for all θ′ ∈ GSubs(l ≈ r ∨ C, s ≈ t ∨ D, (s′ ≈ t ∨ C ∨ D)ρ) for which
(l ≈ r ∨ C)θ′, (s ≈ t ∨ D)θ′ |− (s′ ≈ t ∨ C ∨ D)ρθ′ is a valid superposition
inference, the instance (s′ ≈ t ∨ · · · )ρ · θ′ of the conclusion follows from closures
in GClos(S) which are all smaller than one of (l ≈ r ∨C) · θ′, (s ≈ t∨D) · θ′, so
the inference is redundant. ��

4 That is, in the set of top-level terms of literals of clauses in U .
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Theorem 6. Superposition inferences of the form

l ≈ r ∨ C s[u] �≈ t ∨D

(s[u 
→ r] �≈ t ∨ C ∨D)ρ
,

where ρ = mgu(l, u),
lρ � rρ, sρ � tρ,
and u not a variable,

(16)

where s[u 
→ r]ρ and tρ are connected under {l ≈ r ∨ C, s �≈ t ∨D} and unifier
ρ wrt. some set of clauses S, are redundant inferences wrt. S ∪ {(C ∨D)ρ}.
Proof. Analogously to the previous proof, we find that for all instances of the
inference, the closure (s′ �≈ t∨· · · )ρ·θ follows from smaller closure (t �≈ t∨· · · )ρ·θ
or (s′ �≈ s′∨ · · · )ρ · θ and closures (li ≈ ri) ·σiθ smaller than max{(l ≈ r∨C) · θ ,
(s �≈ t∨D)·θ , (s′ �≈ t∨C∨D)ρ·θ}. But (t �≈ t∨C∨D)ρ·θ and (s′ �≈ s′∨C∨D)ρ·θ
both follow from smaller (C ∨D)ρ · θ, therefore the inference is redundant wrt.
S ∪ {(C ∨D)ρ}. ��

4.4 Ground Connectedness
Just as joinability can be generalised to ground joinability, so can connectedness
be generalised to ground connectedness. Two terms s, t are ground connected
under U and ρ wrt. S if, for all θ ∈ GSubs(s, t), sθ and tθ are connected under
D and ρ wrt. S. Analogously to strong ground joinability, we have that if s and t
are connected using �t[v] for all total v over Vars(s, t), then s and t are ground
connected.

Theorem 7. Superposition inferences of the form

l ≈ r ∨ C s[u] ≈ t ∨D

(s[u 
→ r] ≈ t ∨ C ∨D)ρ
,

where ρ = mgu(l, u),
lρ � rρ, sρ � tρ,
and u not a variable,

(17)

where s[u 
→ r]ρ and tρ are ground connected under {l ≈ r ∨C, s ≈ t ∨D} and
unifier ρ wrt. some set of clauses S, are redundant inferences wrt. S.

Theorem 8. Superposition inferences of the form

l ≈ r ∨ C s[u] �≈ t ∨D

(s[u 
→ r] �≈ t ∨ C ∨D)ρ
,

where ρ = mgu(l, u),
lρ � rρ, sρ � tρ,
and u not a variable,

(18)

where s[u 
→ r]ρ and tρ are ground connected under {l ≈ r ∨C, s �≈ t ∨D} and
unifier ρ wrt. some set of clauses S, are redundant inferences wrt. S∪{(C∨D)ρ}.
Proof. The proof of Theorem 7 and 8 is analogous to that of Theorem 5 and 6.
The weakening of connectedness to ground connectedness only means that the
proof of connectedness (e.g. the vi, li ≈ ri, σi) may be different for different
ground instances. For all the steps in the proof to hold we only need that for all
the instances θ ∈ GSubs(l ≈ r ∨ C , s ≈̇ t ∨D , (s[u 
→ r] ≈̇ t ∨ C ∨D)ρ) of the
inference, θ = σθ′ with σ ∈ GSubs(s[u 
→ r]ρ, tρ), which is true. ��
Discussion about the strategy for implementation of connectedness and ground
connectedness is outside the scope of this paper.
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5 Evaluation

We implemented ground joinability in a theorem prover for first-order logic,
iProver [10,16].5 iProver combines superposition, Inst-Gen, and resolution cal-
culi. For superposition, iProver implements a range of simplifications including
encompassment demodulation, AC normalisation [10], light normalisation [16],
subsumption and subsumption resolution. We run our experiments over FOF
problems of the TPTP v7.5 library [23] (17 348 problems) on a cluster of Linux
servers with 3 GHz 11 core CPUs, 128 GB memory, with each problem running on
a single core with a time limit of 300 s. We used a default strategy (which has not
yet been fine-tuned after the introduction of ground joinability), with superpo-
sition enabled and the rest of the components disabled. With ground joinability
enabled, iProver solved 133 problems more which it did not solve without ground
joinability. Note that this excludes the contribution of AC ground joinability or
encompassment demodulation [11] (always enabled).

Some of the problems are not interesting for this analysis because ground
joinability is not even tried, either because they are solved before superposition
saturation begins, or because they are ground. If we exclude these, we are left
with 10 005 problems. Ground joinability is successfully used to eliminate clauses
in 3057 of them (30.6%, Fig. 1a). This indicates that ground joinability is useful
in many classes of problems, including in non-unit problems where it previously
had never been used.

Fig. 1. (a) Clauses simplified by ground joinability. (b) % of runtime spent in gr.
joinability

In terms of the performance impact of enabling ground joinability, we mea-
sure that among problems whose runtime exceeds 1 s, only in 72 out of 8574
problems does the time spent inside the ground joinability algorithm exceed 20%
of runtime, indicating that our incremental algorithm is efficient and suitable for
broad application (Fig. 1b).

5 iProver is available at http://www.cs.man.ac.uk/∼korovink/iprover.

http://www.cs.man.ac.uk/~korovink/iprover
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TPTP classifies problems by rating in [0,1]. Problems with rating ≥0.9 are
considered to be very challenging. Problems with rating 1.0 have never been
solved by any automated theorem prover. iProver using ground joinability solves
3 previously unsolved rating 1.0 problems, and 7 further problems with rating in
[0.9,1.0[ (Table 1). We note that some of these latter (e.g. LAT140-1, ROB018-10,
REL045-1) were previously only solved by UEQ or SMT provers, but not by any
full first-order prover.

Table 1. Hard or unsolved problems in TPTP, solved by iProver with ground joinabil-
ity.

Name Rating Name Rating
LAT140-1 0.90 ROB018-10 0.95
REL045-1 0.90 LCL477+1 0.97
LCL557+1 0.92 LCL478+1 1.00
LCL563+1 0.92 CSR039+6 1.00
LCL474+1 0.94 CSR040+6 1.00

6 Conclusion and Further Work

In this work we extended the superposition calculus with ground joinability and
connectedness, and proved that these rules preserve completness using a modified
notion of redundancy, thus bringing for the first time these techniques for use in
full first-order logic problems. We have also presented an algorithm for checking
ground joinability which attempts to check as few variable preorders as possible.

Preliminary results show three things: (1) ground joinability is applicable in
a sizeable number of problems across different domains, including in non-unit
problems (where it was never applied before), (2) our proposed algorithm for
checking ground joinability is efficient, with over 3

4 of problems spending less
than 1% of runtime there, and (3) application of ground joinability in the super-
position calculus of iProver improves overall performance, including discovering
solutions to hitherto unsolved problems.

These results are promising, and further optimisations can be done. Imme-
diate next steps include fine-tuning the implementation, namely adjusting the
strategies and strategy combinations to make full use of ground joinability and
connectedness. iProver uses a sophisticated heuristic system which has not yet
been tuned for ground joinability and connectedness [14].

In terms of practical implementation of connectedness and ground connect-
edness, further research is needed on the interplay between those (criteria for
redundancy of inferences) and joinability and ground joinability (criteria for
redundancy of clauses).

On the theoretical level, recent work [24] provides a general framework for
saturation theorem proving, and we will investigate how techniques developed
in this paper can be incorporated into this framework.
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