Skip to main content

Physiology of Sleep and Diagnosis: Basic Information for Dentists

  • Chapter
  • First Online:
Dental Sleep Medicine

Abstract

Sleep is a reversible state of behavioral quietness and lack of responsiveness to normal stimuli. The reversibility of this process distinguishes sleep from other states of unconsciousness. The human brain goes to sleep gradually and becomes less responsive to visual, somatosensory, auditory, and other environmental stimuli during the transition. During the sleep state, there is reduction of responsiveness to external sensory stimuli, associated with closed eyes, limited muscle activity, and recumbent position. During sleep, the body is in a rest and restoration state, while the brain is in a state of suspension of consciousness.

Sleep has unique effects on the body systems influencing autonomic changes involving the cardiovascular, respiratory, and thermoregulatory systems. The cardiovascular physiological changes during sleep are a reduction in heart rate, cardiac output, and blood pressure. Systemic vascular resistance and stroke volume remain unchanged. Ten percent reduction in blood pressure is known as nocturnal dip. Only the metabolic system drives ventilation during sleep, as opposed to metabolic and voluntary drive during wake. Body temperature is linked to the sleep-wake cycle but is independent of the circadian rhythm. Sleep also promotes neuronal function, increases immune defense, and is essential for growth and development.

Deepak Shrivastava is a co-author from Sleep Technology Review.

There is some information reprinted with permission from Sleep Technology Review, 2021. ISBN 9354460623.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AHI:

Apnea-hypopnea index

ATP:

Adenosine triphosphate

BZD:

Benzodiazepine

CEMG:

Chin electromyogram

CNS:

Central nervous system

CPAP:

Continuous positive airway pressure

ECG:

Electrocardiogram

EEG:

Electroencephalogram

EMG:

Electromyogram

EOG:

Electrooculogram

FSH:

Follicle-stimulating hormone

GABA:

Gamma-aminobutyric acid

GH:

Growth hormone

GHB:

Gamma-hydroxybutyrate

HRV:

Heart rate variability

HSAT:

Home sleep apnea test

LAMF:

Low-amplitude mixed frequency

LC:

Locus coeruleus

LDT:

Lateral dorsal tegmentum

MAO:

Monoamine oxidase

NREM:

Non-rapid eye movement

OC:

Outer canthus

OSA:

Obstructive sleep apnea

PCO2 :

Partial pressure of carbon dioxide

PFR:

Pontine reticular formation

PM:

Portable monitor

PPT:

Pedunculopontine nucleus

PSG:

Polysomnography

RDI:

Respiratory distress index

REM:

Rapid eye movement

RIP:

Respiratory inductance plethysmography

SCN:

Suprachiasmatic nucleus

SEM:

Slow eye movement

SH:

Sleep hygiene

SpO2 :

Oxygen saturation

SRBD:

Sleep-related breathing disorder

SWA:

Slow-wave activity

SWS:

slow-wave sleep

THC:

Marijuana

TSH:

Thyroid-stimulating hormone

TST:

Total sleep time

VLPO:

Ventrolateral preoptic

WASO:

Wake after sleep onset

References

  1. Meerlo P, Mistlberger RE, Jacobs BL, Heller HC, McGinty D. New neurons in the adult brain: the role of sleep and consequences of sleep loss. Sleep Med Rev. 2009;13:187–94. PMID: 18848476.

    Article  PubMed  Google Scholar 

  2. Tononi G, Cirelli C, Tononi G, Tobler I. Sleep function and synaptic homeostasis. Sleep Med Rev. 2006;10:49–62. PMID: 18355635.

    Article  PubMed  Google Scholar 

  3. Lee-Chiong T. Sleep medicine: essentials and review. New York: Oxford University Press; 2008.

    Google Scholar 

  4. Everson CA, Bergmann BM, Rechtschaffen A. Sleep deprivation in the rat: III. Total sleep deprivation. Sleep. 1989;12(1):13–21. PMID: 2928622.

    Article  PubMed  Google Scholar 

  5. Gilliland MA, Bergmann BM, Rechtschaffen A. Sleep deprivation in the rat: VIII. High EEG amplitude sleep deprivation. Sleep. 1989;12(1):53–9. PMID: 2928626.

    Article  PubMed  Google Scholar 

  6. Kushida CA, Bergmann BM, Rechtschaffen A. Sleep deprivation in the rat: IV. Paradoxical sleep deprivation. Sleep. 1989;12(1):22–30. PMID: 2928623.

    Article  PubMed  Google Scholar 

  7. Peever J. Control of motoneuron function and muscle tone during REM sleep, REM sleep behavior disorder and cataplexy/narcolepsy. Arch Ital Biol. 2011;149(4):454–66. PMID: 22205591. https://doi.org/10.4449/aib.v149i4.1257.

    Article  PubMed  Google Scholar 

  8. Saper CB, Fuller PM. Wake-sleep circuitry: an overview. Curr Opin Neurobiol. 2017;44:186–92. https://doi.org/10.1016/j.conb.2017.03.021. Epub 2017 May 31. PMID: 28577468.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Strecker RE, Morairty S, Thakkar MM, Porkka-Heiskanen T, Basheer R, Dauphin LJ, Rainnie DG, Portas CM, Greene RW, McCarley RW. Adenosinergic modulation of basal forebrain and preoptic/anterior hypothalamic neuronal activity in the control of behavioral state. Behav Brain Res. 2000;115(2):183–204. PMID: 11000420.

    Article  PubMed  Google Scholar 

  10. Dunmyre JR. Qualitative validation of the reduction from two reciprocally coupled neurons to one self-coupled neuron in a respiratory network model. J Biol Phys. 2011;37(3):307–16. https://doi.org/10.1007/s10867-011-9213-0. Epub 2011 Feb 18. PMID: 22654179.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Borbély AA. A two process model of sleep regulation. Hum Neurobiol. 1982;1(3):195–204. PMID: 7185792.

    PubMed  Google Scholar 

  12. Daan S, Beersma DG, Borbély AA. Timing of human sleep: recovery process gated by a circadian pacemaker. Am J Physiol. 1984;246(2 Pt 2):R161–83. PMID: 6696142.

    PubMed  Google Scholar 

  13. Achermann P, Dijk DJ, Brunner DP, Borbély AA. A model of human sleep homeostasis based on EEG slow-wave activity: quantitative comparison of data and simulations. Brain Res Bull. 1993;31(1–2):97–113. PMID: 8453498.

    Article  PubMed  Google Scholar 

  14. Van Dongen HPA, Dinges DF. Investigating the interaction between the homeostatic and circadian processes of sleep-wake regulation for the prediction of waking neurobehavioral performance. J Sleep Res. 2003;12(3):181–7. PMID: 12941057.

    Article  PubMed  Google Scholar 

  15. Borbély AA. Refining sleep homeostasis in the two-process model. J Sleep Res. 2009;18(1):1–2. PMID: 19250170.

    Article  PubMed  Google Scholar 

  16. Franken P, Dijk DJ, Tobler I, Borbély AA. Sleep deprivation in rats: effects on EEG power spectra, vigilance states, and cortical temperature. Am J Physiol. 1991;261(1 Pt 2):R198–208. PMID: 1858947.

    PubMed  Google Scholar 

  17. Achermann P, Borbély AA. Mathematical models of sleep regulation. Front Biosci. 2003;8:s683–93. PMID: 12700054.

    Article  PubMed  Google Scholar 

  18. Collop NA, Salas RE, Delayo M, Gamaldo C. Normal sleep and circadian processes. Crit Care Clin. 2008;24(3):449–60, v. PMID: 18538194.

    Article  PubMed  Google Scholar 

  19. Carskadon MA, Dement WC. Multiple sleep latency tests during the constant routine. Sleep. 1992;15(5):396–9. PMID: 1455121.

    Article  PubMed  Google Scholar 

  20. Durmer JS, Dinges DF. Neurocognitive consequences of sleep deprivation. Semin Neurol. 2005;25(1):117–29. PMID: 15798944.

    Article  PubMed  Google Scholar 

  21. Akerstedt T. Sleep/wake disturbances in working life. Electroencephalogr Clin Neurophysiol Suppl. 1987;39:360–3. PMID: 3308417.

    PubMed  Google Scholar 

  22. Bonnet MH, Arand DL. 24-Hour metabolic rate in insomniacs and matched normal sleepers. Sleep. 1995;18(7):581–8. PMID: 8552929.

    Article  PubMed  Google Scholar 

  23. Bonnet MH, Arand DL. The consequences of a week of insomnia. Sleep. 1996;19(6):453–61. PMID: 8865501.

    Article  PubMed  Google Scholar 

  24. Pittendrigh CS, Daan S. Circadian oscillations in rodents: a systematic increase of their frequency with age. Science. 1974;186(4163):548–50. PMID: 4469680.

    Article  PubMed  Google Scholar 

  25. Kronauer R. A quantitative model for the effects of light on the amplitude and phase of the deep circadian pacemaker, based on human data. In: Horne J, editor. Sleep. Bochum: Pontenagel Press; 1990. p. 306–9.

    Google Scholar 

  26. Beersma D. Generation of activity-rest patterns by dual circadian pacemaker systems: a model. J Sleep Res. 1992;1(2):84–7. PMID: 10607030.

    Article  PubMed  Google Scholar 

  27. Stephan FK, Zucker I. Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc Natl Acad Sci U S A. 1972;69(6):1583–6. PMID: 4556464.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Moore RY. Retinohypothalamic projection in mammals: a comparative study. Brain Res. 1973;49(2):403–9. PMID: 4124397.

    Article  PubMed  Google Scholar 

  29. Duffy JF, Czeisler CA. Effect of light on human circadian physiology. Sleep Med Clin. 2009;4(2):165–77. PMID: 20161220.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Rajaraman S, Gribok AV, Wesensten NJ, Balkin TJ, Reifman J. An improved methodology for individualized performance prediction of sleep-deprived individuals with the two-process model. Sleep. 2009;32(10):1377–92. PMID: 19848366.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Fagard RH, Thijs L, Staessen JA, Clement DL, De Buyzere ML, De Bacquer DA. Night-day blood pressure ratio and dipping pattern as predictors of death and cardiovascular events in hypertension. J Hum Hypertens. 2009;23(10):645–53. https://doi.org/10.1038/jhh.2009.9. Epub 2009 Feb 19. PMID: 19225527.

    Article  PubMed  Google Scholar 

  32. Grunstein RR, Handelsman DJ, Lawrence SJ, Blackwell C, Caterson ID, Sullivan CE. Neuroendocrine dysfunction in sleep apnea: reversal by continuous positive airways pressure therapy. J Clin Endocrinol Metab. 1989;68:352–8. PMID: 2493027.

    Article  PubMed  Google Scholar 

  33. Van Cauter E, Caufriez A, Kerkhofs M, van Onderbergen A, Thorner MO, Copinschi G. Sleep, awakenings, and insulin-like growth factor-I modulate the growth hormone (GH) secretory response to GH-releasing hormone. J Clin Endocrinol Metab. 1992;74:1451–9. PMID: 1592893.

    PubMed  Google Scholar 

  34. Van Cauter E, Kerkhofs M, Caufriez A, van Onderbergen A, Thorner MO, Copinschi G. A quantitative estimation of growth hormone secretion in normal man: reproducibility and relation to sleep and time of day. J Clin Endocrinol Metab. 1992;74:1441–50. PMID: 1592892.

    PubMed  Google Scholar 

  35. Veldhuis JD, Iranmanesh A, Ho KK, Waters MJ, Johnson ML, Lizarralde G. Dual effects in pulsatile growth hormone secretion and clearance subserve the hyposomatotropism of obesity in man. J Clin Endocrinol Metab. 1991;72:51–9. PMID: 1986027.

    Article  PubMed  Google Scholar 

  36. Gianotti L, Pivetti S, Lanfranco F, et al. Concomitant impairment of growth hormone secretion and peripheral sensitivity in obese patients with obstructive sleep apnea syndrome. J Clin Endocrinol Metab. 2002;87:5052–7. PMID: 12414871.

    Article  PubMed  Google Scholar 

  37. Scacchi M, Pincelli AI, Cavagnini F. Growth hormone in obesity. Int J Obes Relat Metab Disord. 1999;23:260–71. PMID: 10193871.

    Article  PubMed  Google Scholar 

  38. Issa FG, Sullivan CE. The immediate effects of nasal continuous positive airway pressure treatment on sleep pattern in patients with obstructive sleep apnea syndrome. Electroencephalogr Clin Neurophysiol. 1986;63:10–7. PMID: 2416530.

    Article  PubMed  Google Scholar 

  39. Veldhuis JD, Iranmanesh A. Physiological regulation of the human growth hormone (GH)-insulin-like growth factor type I (IGF-I) axis: predominant impact of age, obesity, gonadal function, and sleep. Sleep. 1996;19:S221–4. PMID: 9085516.

    Article  PubMed  Google Scholar 

  40. Conceicao FL, Bojensen A, Jorgensen JOL, Christiansen JS. Growth hormone therapy in adults. Front Neuroendocrinol. 2001;22:213–46. PMID: 11456469.

    Article  PubMed  Google Scholar 

  41. Saaresanta T, Polo O. Sleep-disordered breathing and hormones. Eur Respir J. 2003;22:161–72. https://doi.org/10.1183/09031936.03.00062403. PMID: 12882467.

    Article  Google Scholar 

  42. Lena I, Parrot S, Deschaux O, Muffat-Joly S, Sauvinet V, Renaud B, Suaud Chagny MF, Gottesmann C. Variations in extracellular levels of dopamine, noradrenaline, glutamate, and aspartate across the sleep-wake cycle in the medial prefrontal cortex and nucleus accumbens of freely moving rats. J Neurosci Res. 2005;81:891–9. PMID: 16041801.

    Article  PubMed  Google Scholar 

  43. Feenstra MG, Botterblom MH, Mastenbroek S. Dopamine and noradrenaline efflux in the prefrontal cortex in the light and dark period: effects of novelty and handling and comparison to the nucleus accumbens. Neuroscience. 2000;100:741–8. PMID: 11036208.

    Article  PubMed  Google Scholar 

  44. Diana M, Quílez J, Rafecas M. Gamma-aminobutyric acid as a bioactive compound in foods: a review. J Funct Foods. 2014;10:407–20.

    Article  Google Scholar 

  45. Rashmi D, Zanan R, John S, Khandagale K, Nadaf A. Chapter 13—γ-aminobutyric acid (GABA): biosynthesis, role, commercial production, and applications. Stud Nat Products Chem. 2018;57:413–52.

    Article  Google Scholar 

  46. Jie F, Yin G, Yang W, Yang M, Gao S, Lv J, Li B. Stress in regulation of GABA amygdala system and relevance to neuropsychiatric diseases. Front Neurosci. 2018;12:562. PMID: 30154693.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Nemeroff CB. The role of GABA in the pathophysiology and treatment of anxiety disorders. Psychopharmacol Bull. 2003;37:133–46. PMID: 15131523.

    PubMed  Google Scholar 

  48. Gottesmann C. GABA mechanisms and sleep. Neuroscience. 2002;111:231–9. PMID: 11983310.

    Article  PubMed  Google Scholar 

  49. Nuss P. Anxiety disorders and GABA neurotransmission: a disturbance of modulation. Neuropsychiatr Dis Treat. 2015;11:165–75. PMID: 25653526.

    PubMed  PubMed Central  Google Scholar 

  50. Luppi PH, Peyron C, Fort P. Not a single but multiple populations of GABAergic neurons control sleep. Sleep Med Rev. 2017;32:85–94. PMID: 27083772.

    Article  PubMed  Google Scholar 

  51. DeWoskin D, Myung J, Belle MD, Piggins HD, Takumi T, Forger DB. Distinct roles for GABA across multiple timescales in mammalian circadian timekeeping. Proc Natl Acad Sci U S A. 2015;112:E3911–9. PMID: 26130805.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Riemann D, Nissen C, Palagini L, Otte A, Perlis ML, Spiegelhalder K. The neurobiology, investigation, and treatment of chronic insomnia. Lancet Neurol. 2015;14:547–58. PMID: 25895933.

    Article  PubMed  Google Scholar 

  53. Basheer R, Strecker RE, Thakkar MM, McCarley RW. Adenosine and sleep-wake regulation. Prog Neurobiol. 2004;73:379–96. PMID: 15313333.

    Article  PubMed  Google Scholar 

  54. Landolt HP. Sleep homeostasis: a role for adenosine in humans? Biochem Pharmacol. 2008;75:2070–9. PMID: 18384754.

    Article  PubMed  Google Scholar 

  55. Porkka-Heiskanen T, Strecker RE, Thakkar M, Bjorkum AA, Greene RW, McCarley RW. Adenosine: a mediator of the sleep-inducing effects of prolonged wakefulness. Science. 1997;276:1265–8. PMID: 9157887.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Bjorness TE, Kelly CL, Gao T, Poffenberger V, Greene RW. Control and function of the homeostatic sleep response by adenosine A1 receptors. J Neurosci. 2009;29:1267–76. PMID: 19193874.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Urade Y, Eguchi N, Qu WM, Sakata M, Huang ZL, Chen JF, Schwarzschild MA, Fink JS, Hayaishi O. Sleep regulation in adenosine A2A receptor-deficient mice. Neurology. 2003;61:S94–6. PMID: 14663019.

    Article  PubMed  Google Scholar 

  58. Amstrup AK, Sikjaer T, Mosekilde L, Rejnmark L. Melatonin and the skeleton. Osteoporos Int. 2013;24:2919–27. PMID: 23716040.

    Article  PubMed  Google Scholar 

  59. Amstrup AK, Sikjaer T, Heickendorff L, Mosekilde L, Rejnmark L. Melatonin improves bone mineral density at the femoral neck in postmenopausal women with osteopenia: a randomized controlled trial. J Pineal Res. 2015;59:221–9. PMID: 26036434.

    Article  PubMed  Google Scholar 

  60. Zirlik S, Hildner KM, Targosz A, et al. Melatonin and omentin: influence factors in the obstructive sleep apnoea syndrome? J Physiol Pharmacol. 2013;64:353–60. PMID: 23959732.

    PubMed  Google Scholar 

  61. Phipps PR, Starritt E, Caterson I, Grunstein RR. Association of serum leptin with hypoventilation in human obesity. Thorax. 2002;57:75–6. PMID: 11809994.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Wallace AM, McMahon AD, Packard CJ, Kelly A, Shepherd J, Gaw A, Sattar N. Plasma leptin and risk of cardiovascular disease in the West of Scotland Coronary Prevention Study (WOSCOPS). Circulation. 2001;104:3052–6. PMID: 11748099.

    Article  PubMed  Google Scholar 

  63. Segal KR, Landt M, Klein S. Relationship between insulin sensitivity and plasma leptin concentration in lean and obese men. Diabetes. 1996;45:988–91. PMID: 8666154.

    Article  PubMed  Google Scholar 

  64. Söderberg S, Olsson T, Eliasson M, Johnson O, Ahren B. Plasma leptin levels are associated with abnormal fibrinolysis in men and postmenopausal women. J Intern Med. 1999;245:533–43. PMID: 10363755.

    Article  PubMed  Google Scholar 

  65. Chessler SD, Fujimoto WY, Shofer JB, Boyko EJ, Weigle DS. Increased plasma leptin levels are associated with fat accumulation in Japanese Americans. Diabetes. 1998;47:239–43. PMID: 9519719.

    Article  PubMed  Google Scholar 

  66. McNeely MJ, Boyko EJ, Weigle DS, et al. Association between baseline plasma leptin levels and subsequent development of diabetes in Japanese Americans. Diabetes Care. 1999;22:65–70. PMID: 10333905.

    Article  PubMed  Google Scholar 

  67. Mrug S, Tyson A, Turan B, Granger DA. Sleep problems predict cortisol reactivity to stress in urban adolescents. Physiol Behav. 2016;155:95–101. PMID: 26679739.

    Article  PubMed  Google Scholar 

  68. Wright CE, Valdimarsdottir HB, Erblich J, Bovbjerg DH. Poor sleep the night before an experimental stress task is associated with reduced cortisol reactivity in healthy women. Biol Psychol. 2007;74:319–27. PMID: 17011693.

    Article  PubMed  Google Scholar 

  69. Berry RB, Budhiraja R, Gottlieb DJ, Gozal D, Iber C, Kapur VK, Marcus CL, Mehra R, Parthasarathy S, Quan SF, Redline S, Strohl KP, Davidson Ward SL, Tangredi MM. Rules for scoring respiratory events in sleep: update of the 2007 AASM manual for the scoring of sleep and associated events. Deliberations of the sleep apnea definitions task force of the American Academy of Sleep Medicine. J Clin Sleep Med. 2012;8(5):597–619. PMID: 23066376.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Kushida CA, Littner MR, Morgenthaler T, Alessi CA, Bailey D, Coleman J, Friedman L, Hirshkowitz M, Kapen S, Kramer M, Lee-Chiong T, Loube DL, Owens J, Pancer JP, Wise M. Practice parameters for the indications for polysomnography and related procedures: an update for 2005. Sleep. 2005;28(4):499–521. PMID: 16171294.

    Article  PubMed  Google Scholar 

  71. American Academy of Sleep Medicine, editors. The AASM manual for the scoring of sleep and associated events: rules, terminology and technical specification. Westchester, IL; 2007. p. 45.

    Google Scholar 

  72. Series F, Marc I. Nasal pressure recording in the diagnosis of sleep apnoea hypopnoea syndrome. Thorax. 1999;54:506–10. PMID: 10335004.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Vaughn CM, Clemmons P. Piezoelectric belts as a method for measuring chest and abdominal movement for obstructive sleep apnea diagnosis. Neurodiagn J. 2012;52(3):275–80. PMID: 23019764.

    PubMed  Google Scholar 

  74. AAST. Sleep technology: technical guideline. Standard polysomnography—updated July 2012.

    Google Scholar 

  75. American Academy of Sleep Medicine. Diagnostic and coding manual. 2nd ed. Westchester, IL: American Academy of Sleep Medicine; 2005. International classification of sleep disorders.

    Google Scholar 

  76. Collop NA, Anderson WT, Boehlecke B, Claman D, Goldberg R, Gottlieb DJ, Hudgel D, Sateia M, Schwab R. Clinical guidelines for the use of unattended portable monitors in the diagnosis of obstructive sleep apnea in adult patients. J Clin Sleep Med. 2007;3(7):737–47. PMID: 18198809.

    Article  PubMed  Google Scholar 

  77. Singh TD, Shrivastava D. Sleep technology review. A complete guide for RPSGT and CPSGT exam. Evincepub Publishing; 2021. ISBN: 978-93-5446-062-3.

    Google Scholar 

  78. Pressman MR. Primer of polysomnogram interpretation. Boston: Butterworth Heinemann; 2002.

    Google Scholar 

  79. Iber C, Ancoli-Israel S, Chesson A, Quan SF. The AASM manual for the scoring of sleep and associated events: rules, terminology and technical specifications. Westchester: American Academy of Sleep Medicine; 2007.

    Google Scholar 

  80. Lee-Chiong TL, editor. Sleep: a comprehensive handbook. Hoboken, NJ: Wiley; 2006.

    Google Scholar 

  81. Ratnavadivel R, Chau N, Stadler D, Yeo A, McEvoy RD, Catcheside PG. Marked reduction in obstructive sleep apnea severity in slow wave sleep. J Clin Sleep Med. 2009;5(6):519–24. PMID: 20465017.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Sasai T, Inoue Y, Matsuura M. Clinical significance of periodic leg movements during sleep in rapid eye movement sleep behavior disorder. J Neurol. 2011;258(11):1971–8. PMID: 21509428.

    Article  PubMed  Google Scholar 

  83. Tamaki M, Nittono H, Hayashi M, Hori T. Examination of the first night effect during the sleep-onset period. Sleep. 2005;28(2):195–202. PMID: 16171243.

    Article  PubMed  Google Scholar 

  84. Lorenzo JL, Barbanoj MJ. Variability of sleep parameters across multiple laboratory sessions in healthy young subjects: the “very first night effect”. Psychophysiology. 2002;39(4):409–13. PMID: 12212632.

    Article  PubMed  Google Scholar 

  85. Meyer TJ, Eveloff SE, Kline LR, Millman RP. One negative polysomnogram does not exclude obstructive sleep apnea. Chest. 1993;103:756–60. PMID: 8449064.

    Article  PubMed  Google Scholar 

  86. Ohayon M, Guilleminault C, Priest RG. Night terrors, sleepwalking, and confusional arousal in the general population: their frequency and relationship to other sleep and mental disorders. J Clin Psychiatry. 1999;60:268–76. PMID: 10221293.

    Article  PubMed  Google Scholar 

  87. Morgenthaler TI, Silber MH. Amnestic sleep-related eating disorder associated with zolpidem. Sleep Med. 2002;3:323–7. PMID: 14592194.

    Article  PubMed  Google Scholar 

  88. Crisp AH. The sleepwalking/night terrors syndrome in adults. Postgrad Med J. 1996;72:599–604. PMID: 8977941.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Mahowald MW, Schenck CH, Goldner M, Bachelder V, Cramer-Bornemann M. Parasomnia pseudo-suicide. J Forensic Sci. 2003;48:1158–62. PMID: 14535686.

    Article  PubMed  Google Scholar 

  90. Rosenthal MS. Physiology and neurochemistry of sleep. Am J Pharm Educ. 1998;62:204–8.

    Google Scholar 

  91. Mendelson WB. Clinical neuropharmacology of sleep. Neurol Clin. 1990;8(1):153–60. PMID: 2181264.

    Article  PubMed  Google Scholar 

  92. Watson CJ, Baghdoyan HA, Lydic R. Neuropharmacology of sleep and wakefulness. Sleep Med Clin. 2010;5(4):513–28. PMID: 21278831.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Boutrel B, Koob GF. What keeps us awake: the neuropharmacology of stimulants and wakefulness-promoting medications. Sleep. 2004;27(6):1181–94. PMID: 15532213.

    Article  PubMed  Google Scholar 

  94. Andrew Winokur MD. The effects of antidepressants on sleep. Psychiatric Times. 2012;29:6.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shrivastava, D., Demerjian, G.G., Patel, M. (2022). Physiology of Sleep and Diagnosis: Basic Information for Dentists. In: Demerjian, G.G., Patel, M., Chiappelli, F., Barkhordarian, A. (eds) Dental Sleep Medicine. Springer, Cham. https://doi.org/10.1007/978-3-031-10646-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-10646-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-10645-3

  • Online ISBN: 978-3-031-10646-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics