Skip to main content

Asian Ancistrocladus Lianas as Creative Producers of Naphthylisoquinoline Alkaloids

  • Chapter
  • First Online:
Ancistrocladus Naphthylisoquinoline Alkaloids

Part of the book series: Progress in the Chemistry of Organic Natural Products ((POGRCHEM,volume 119))

Abstract

This book describes a unique class of secondary metabolites, the mono- and dimeric naphthylisoquinoline alkaloids. They occur in lianas of the paleotropical Ancistrocladaceae and Dioncophyllaceae families, exclusively. Their unprecedented structures include stereogenic centers and rotationally hindered, and thus likewise stereogenic, axes. Extended recent investigations on six Ancistrocladus species from Asia, as reported in this review, shed light on their fascinating phytochemical productivity, with over 100 such intriguing natural products. This high chemodiversity arises from a likewise unique biosynthesis from acetate-malonate units, following a novel polyketidic pathway to plant-derived isoquinoline alkaloids. Some of the compounds show most promising antiparasitic activities. Likewise presented are strategies for the regio- and stereoselective total synthesis of the alkaloids, including the directed construction of the chiral axis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For naphthylisoquinoline alkaloids appearing as two rotational isomers, a numbering system is applied in which the two atropo-diastereomers are denoted as a and b, like, e.g., for ancistrocladine (1a) and hamatine (1b), see Fig. 1.

  2. 2.

    For an easier comparison of naphthylisoquinoline alkaloids with different coupling positions, a 2-methyl-4,5-dioxy substitution pattern is throughout applied in the numbering of the naphthalene moiety, regardless of the coupling site.

References

  1. Govindachari TR, Parthasarathy PC (1970) Ancistrocladine, a novel isoquinoline alkaloid from Ancistrocladus heyneanus Wall. Indian J Chem 8:567

    CAS  Google Scholar 

  2. Govindachari TR, Parthasarathy PC (1971) Ancistrocladine, a new type of isoquinoline alkaloid from Ancistrocladus heyneanus. Tetrahedron 27:1013

    Article  CAS  Google Scholar 

  3. Govindachari TR, Parthasarathy PC, Desai HK (1971) Chemical investigation of Ancistrocladus heyneanus Wall: part III—further studies on ancistrocladine. Indian J Chem 9:931

    CAS  Google Scholar 

  4. Govindachari TR, Nagarajan K, Parthasarathy PC, Rajagopalan TG, Desai HK, Kartha G, Chen SML, Nakanishi K (1974) Absolute stereochemistry of ancistrocladine and ancistrocladinine. J Chem Soc Perkin Trans 1:1413

    Article  Google Scholar 

  5. Govindachari TR, Parthasarathy PC (1977) Alkaloids of Ancistrocladaceae. Heterocycles 7:661

    Article  CAS  Google Scholar 

  6. Bentley KW (1998) The isoquinoline alkaloids. In: Ravindranath B (ed) Chemistry and biochemistry of organic natural products. Harwood Academic Publishers, Amsterdam

    Google Scholar 

  7. Bentley KW (2006) β-Phenylethylamines and the isoquinoline alkaloids. Nat Prod Rep 23:444

    Article  CAS  Google Scholar 

  8. Chrzanowska M, Grajewska A, Rozwadowska MD (2016) Asymmetric synthesis of isoquinoline alkaloids: 2004–2015. Chem Rev 116:12369

    Article  CAS  Google Scholar 

  9. Iranshahy M, Quinn RJ, Iranshahi M (2014) Biologically active isoquinoline alkaloids with drug-like properties from the genus Corydalis. RSC Adv 4:15900

    Article  CAS  Google Scholar 

  10. Weber C, Opatz T (2019) Bisbenzylisoquinoline alkaloids. In: Knölker HJ (ed) The alkaloids, vol 81. Academic Press, New York, p 1

    Google Scholar 

  11. Nguyen VK, Kou KGM (2021) The biology and total syntheses of bisbenzylisoquinoline alkaloids. Org Biomol Chem 19:7535

    Article  CAS  Google Scholar 

  12. Shang XF, Yang CJ, Morris-Natschke SL, Li JC, Yin XD, Liu YQ, Peng JW, Goto M, Zhang JY, Lee KH (2020) Biologically active isoquinoline alkaloids covering 2014–2018. Med Res Rev 40:2212

    Google Scholar 

  13. Bringmann G, Pokorny F (1995) The naphthylisoquinoline alkaloids. In: Cordell GA (ed) The alkaloids: chemistry and pharmacology, vol 46. Academic Press, New York, p 127

    Google Scholar 

  14. Bringmann G, François G, Aké Assi L, Schlauer J (1998) The alkaloids of Triphyophyllum peltatum (Dioncophyllaceae). Chimia 52:18

    Google Scholar 

  15. Bringmann G, Günther C, Ochse M, Schupp O, Tasler S (2001) Biaryls in nature: a multi-facetted class of stereochemically, biosynthetically, and pharmacologically intriguing secondary metabolites. In: Herz W, Falk H, Kirby GW, Moore RE (eds) Progress in the chemistry of organic natural products, vol 82. Springer-Verlag, Wien, New York, p 1

    Google Scholar 

  16. Ibrahim SRM, Mohamed GA (2015) Naphthylisoquinoline alkaloids potential drug leads. Fitoterapia 106:194

    Article  CAS  Google Scholar 

  17. Lombe BK, Feineis D, Bringmann G (2019) Dimeric naphthylisoquinoline alkaloids: polyketide-derived axially chiral bioactive quateraryls. Nat Prod Rep 36:1513

    Article  CAS  Google Scholar 

  18. Tajuddeen N, Bringmann G (2021) N,C-Coupled naphthylisoquinoline alkaloids: a versatile new class of axially chiral natural products. Nat Prod Rep 38:2154

    Article  CAS  Google Scholar 

  19. Gereau RE (1997) Typification of names of Ancistrocladus Wallich (Ancistrocladaceae). Novon 7:242

    Article  Google Scholar 

  20. Cheek M (2000) A synoptic revision of Ancistrocladus (Ancistrocladaceae) in Africa, with a new species from Western Cameroon. Kew Bull 55:871

    Article  Google Scholar 

  21. Taylor CM, Gereau RE, Walters GM (2005) Revision of Ancistrocladus Wall. (Ancistrocladaceae). Ann Missouri Bot Gard 92:360

    Google Scholar 

  22. Airy Shaw HK (1951) On the Dioncophyllaceae, a remarkable new family of flowering plants. Kew Bull 6:327

    Article  Google Scholar 

  23. Govindachari TR, Parthasarathy PC, Rajagopalan TG, Desai HK, Ramachandran KS (1975) Hamatine, a new isoquinoline alkaloid from Ancistrocladus hamatus (Vahl) Gilg. Indian J Chem 13:641

    CAS  Google Scholar 

  24. Govindachari TR, Parthasarathy PC, Desai HK, Saindane MT (1977) On the absolute stereochemistry of hamatine. Indian J Chem 15B:871

    CAS  Google Scholar 

  25. Bringmann G, Teltschik F, Schäffer M, Haller R, Bär S, Robertson SA, Isahakia MA (1998) Ancistrobertsonine A and related naphthylisoquinoline alkaloids from Ancistrocladus robertsoniorum. Phytochemistry 47:31

    Article  Google Scholar 

  26. Govindachari TR, Parthasarathy PC, Desai HK (1972) Chemical investigation of Ancistrocladus heyneanus Wall.: part VI—isolation & structure of ancistrocladisine, a novel alkaloid. Indian J Chem 10:1117

    CAS  Google Scholar 

  27. Govindachari TR, Parthasarathy PC, Rajagopalan TG, Desai HK, Ramachandran KS, Lee E (1975) Absolute configuration of ancistrocladisine and ancistrocladidine. J Chem Soc Perkin Trans 1:2134

    Article  Google Scholar 

  28. Parthasarathy PC, Kartha G (1983) Rigorous structural proof for ancistrocladisine and ancistrocladidine, two minor alkaloids of Ancistrocladus heyneanus Wall. Indian J Chem 22B:590

    CAS  Google Scholar 

  29. Govindachari TR, Parthasarathy PC, Desai HK (1973) Chemical investigation of Ancistrocladus heyneanus Wall.—Ancistrocladidine, a new isoquinoline alkaloid. Indian J Chem 11:1190

    Google Scholar 

  30. Bringmann G, Dreyer M, Rischer H, Wolf K, Hadi HA, Brun R, Meimberg H, Heubl G (2004) Ancistrobenomine A, the first naphthylisoquinoline oxygenated at Me-3, and related 5,1′-coupled alkaloids, from the “new” plant species Ancistrocladus benomensis. J Nat Prod 67:2058

    Article  CAS  Google Scholar 

  31. Xu M, Bruhn T, Hertlein B, Brun R, Stich A, Wu J, Bringmann G (2010) Shuangancistrotectorines A–E, dimeric naphthylisoquinoline alkaloids with three chiral biaryl axes, from the Chinese plant Ancistrocladus tectorius. Chem Eur J 16:4206

    Article  CAS  Google Scholar 

  32. Bringmann G, Kajahn I, Reichert M, Pedersen SEH, Faber JH, Gulder T, Brun R, Christensen SB, Ponte-Sucre A, Moll H, Heubl G, Mudogo V (2006) Ancistrocladinium A and B, the first N,C-coupled naphthyldihydroisoquinoline alkaloids, from a Congolese Ancistrocladus species. J Org Chem 71:9348

    Article  CAS  Google Scholar 

  33. Seupel R, Hemberger Y, Feineis D, Xu M, Seo EJ, Efferth T, Bringmann G (2018) Ancistrocyclinones A and B, unprecedented N,C-coupled naphthylisoquinoline alkaloids, from the Chinese liana Ancistrocladus tectorius. Org Biomol Chem 16:1581

    Article  CAS  Google Scholar 

  34. Rischer H, Heubl G, Meimberg H, Dreyer M, Hadi HA, Bringmann G (2005) Ancistrocladus benomensis (Ancistrocladaceae): a new species from Peninsular Malaysia. Blumea 50:357

    Article  Google Scholar 

  35. van Steenis CGGJ (1948) Ancistrocladaceae. In: van Steenis CGGJ (ed) Flora Malesiana, vol 4. Noordhoff-Kolff N.V., Djakarta, p 8

    Google Scholar 

  36. Meimberg H, Rischer H, Turini FG, Chamchumroon V, Dreyer M, Sommaro M, Bringmann G, Heubl G (2010) Evidence for species differentiation within the Ancistrocladus tectorius complex (Ancistrocladaceae) in Southeast Asia: a molecular approach. Plant Syst Evol 284:77

    Article  Google Scholar 

  37. Govindachari TR, Parthasarathy PC, Desai HK (1971) Ancistrocladinine, a minor alkaloid from Ancistrocladus heyneanus Wall. Indian J Chem 9:1421

    CAS  Google Scholar 

  38. Bringmann G, Kinzinger L, Ortmann T, De Souza NJ (1994) Isoancistrocladine from Ancistrocladus heyneanus: the first naturally occurring N-unsubstituted cis-configurated naphthyltetrahydroisoquinoline alkaloid. Phytochemistry 35:259

    Article  CAS  Google Scholar 

  39. Bringmann G, Koppler D, Wiesen B, François G, Sankara Narayanan AS, Almeida MR, Schneider H, Zimmermann U (1996) Ancistroheynine A, the first 7,8′-coupled naphthylisoquinoline alkaloid from Ancistrocladus heyneanus. Phytochemistry 43:1405

    Google Scholar 

  40. Yang LK, Glover RP, Yoganathan K, Sarnaik JP, Godbole AJ, Soejarto DD, Buss AD, Butler MS (2003) Ancisheynine, a novel naphthylisoquinoline alkaloid from Ancistrocladus heyneanus. Tetrahedron Lett 44:5827

    Article  CAS  Google Scholar 

  41. Bringmann G, Dreyer M, Michel M, Tayman FSK, Brun R (2004) Ancistroheynine B and two further 7,3′-coupled naphthylisoquinoline alkaloids from Ancistrocladus heyneanus Wall. Phytochemistry 65:2903

    Article  CAS  Google Scholar 

  42. Bringmann G, Wohlfarth M, Rischer H, Heubes M, Saeb W, Diem S, Herderich M, Schlauer J (2001) A photometric screening method for dimeric naphthylisoquinoline alkaloids and complete on-line structural elucidation of a dimer in crude plant extracts, by the LC-MS/LC-NMR/LC-CD triad. Anal Chem 73:2571

    Article  CAS  Google Scholar 

  43. Bringmann G, Wohlfarth M, Rischer H, Schlauer J, Brun R (2002) Extract screening by HPLC coupled to MS-MS, NMR, and CD: a dimeric and three monomeric naphthylisoquinoline alkaloids from Ancistrocladus griffithii. Phytochemistry 61:195

    Article  CAS  Google Scholar 

  44. Bringmann G, Dreyer M, Kopff H, Rischer H, Wohlfarth M, Hadi HA, Brun R, Meimberg H, Heubl G (2005) ent-Dioncophylleine A and related dehydrogenated naphthylisoquinoline alkaloids, the first Asian Dioncophyllaceae-type alkaloids, from the “new” plant species Ancistrocladus benomensis. J Nat Prod 68:686

    Article  CAS  Google Scholar 

  45. Anh NH, Porzel A, Ripperger H, Bringmann G, Schäffer M, God R, Sung TV, Adam G (1997) Naphthylisoquinoline alkaloids from Ancistrocladus cochinchinensis. Phytochemistry 45:1287

    Article  Google Scholar 

  46. Sung TV, Anh NH, Ripperger H, Porzel A, Adam G (2000) Chemical study on some endemic plants of Vietnam. ACGC Chem Res Commun 11:121

    Google Scholar 

  47. Bringmann G, Hertlein-Amslinger B, Kajahn I, Dreyer M, Brun R, Moll H, Stich A, Ndjoko Ioset K, Schmitz W, Ngoc LH (2011) Phenolic analogs of the N,C-coupled naphthylisoquinoline alkaloid ancistrocladinium A, from Ancistrocladus cochinchinensis (Ancistrocladaceae), with improved antiprotozoal activities. Phytochemistry 72:89

    Google Scholar 

  48. Lien LQ, Linh TM, Giang VH, Mai NC, Nhiem NX, Tai BH, Cuc NT, Anh LT, Ban NK, Minh CV, Kiem PV (2016) New naphthalene derivatives and isoquinoline alkaloids from Ancistrocladus cochinchinensis with their anti-proliferative activity on human cancer cells. Bioorg Med Chem Lett 26:3913

    Article  CAS  Google Scholar 

  49. Foucher JP, Pousset JL, Cave A, Paris RR (1975) Chimiotaxonomie des Ancistrocladacées II.—sur le alcaloides de l’Ancistrocladus tectorius Loureiro, du Laos. Plantes Méd Phytothér 9:26

    Google Scholar 

  50. Chen Z, Wang B, Qin K, Zhang B, Su Q, Lin Q (1981) Isolation and identification of the alkaloids from Ancistrocladus tectorius. XaoXue XueBao (Acta Pharm Sin) 16:519

    CAS  Google Scholar 

  51. Ruangrungsi N, Wongpanich V, Tantivatana P, Cowe HJ, Cox PJ, Funayama S, Cordell GA (1985) Traditional medicinal plants of Thailand. V. Ancistrotectorine, a new naphthalene-isoquinoline alkaloid from Ancistrocladus tectorius. J Nat Prod 48:529

    Google Scholar 

  52. Meksuriyen D, Ruangrungsi N, Tantivatana P, Cordell GA (1990) NMR spectroscopic analysis of ancistrocladidine. Phytochemistry 29:2750

    Article  CAS  Google Scholar 

  53. Bringmann G, Kinzinger L (1992) (+)-Ancistrocline, a naphthylisoquinoline alkaloid from Ancistrocladus tectorius. Phytochemistry 31:3297

    Article  CAS  Google Scholar 

  54. Montagnac A, Hadi HA, Remy F, Païs M (1995) Isoquinoline alkaloids from Ancistrocladus tectorius. Phytochemistry 39:701

    Article  CAS  Google Scholar 

  55. Manfredi KP, Britton M, Vissieche V, Pannell LL (1996) Three new naphthylisoquinoline alkaloids from Ancistrocladus tectorius. J Nat Prod 59:854

    Article  CAS  Google Scholar 

  56. Tang CP, Yang YP, Zhong Y, Zhong QX, Wu HM, Ye Y (2000) Four new naphthylisoquinoline alkaloids from Ancistrocladus tectorius. J Nat Prod 63:1384

    Article  CAS  Google Scholar 

  57. Su Z, Liu M, Li Z, Kang S, Hua H (2007) Chemical constituents of Ancistrocladus tectorius. Zhongguo Yaowu Huaxue Zazhi (Chin J Med Chem) 17:383

    CAS  Google Scholar 

  58. Liu M, Su Z, Zhang J, Li Z, Hua H (2008) Studies on constituents of the stems and branches of Ancistrocladus tectorius. Zhongguo Yaoxue Zazhi (Chin Pharm J) 43:1060

    CAS  Google Scholar 

  59. Tang CP, Xin ZQ, Li XQ, Ye Y (2010) Two new naphthylisoquinoline alkaloids from stems and leaves of Ancistrocladus tectorius. Nat Prod Res 24:989

    Article  CAS  Google Scholar 

  60. Jiang C, Li ZL, Gong P, Kang SL, Liu MS, Pei YH, Jing YK, Hua HM (2013) Five novel naphthylisoquinoline alkaloids with growth inhibitory activities against human leukemia cells HL-60, K562 and U937 from stems and leaves of Ancistrocladus tectorius. Fitoterapia 91:305

    Article  CAS  Google Scholar 

  61. Bringmann G, Zhang G, Ölschläger T, Stich A, Wu J, Chatterjee M, Brun R (2013) Highly selective antiplasmodial naphthylisoquinoline alkaloids from Ancistrocladus tectorius. Phytochemistry 91:220

    Article  CAS  Google Scholar 

  62. Bringmann G, Seupel R, Feineis D, Zhang G, Xu M, Wu J, Kaiser M, Brun R, Seo EJ, Efferth T (2016) Ancistectorine D, a naphthylisoquinoline alkaloid with antiprotozoal and antileukemic activities, and further 5,8′- and 7,1′-linked metabolites from the Chinese liana Ancistrocladus tectorius. Fitoterapia 115:1

    Article  CAS  Google Scholar 

  63. Bringmann G, Xu M, Seupel R, Feineis D, Wu J (2016) Ancistrotectoquinones A and B, the first quinoid naphthylisoquinoline alkaloids, from the Chinese liana Ancistrocladus tectorius. Nat Prod Commun 11:971

    Google Scholar 

  64. Bringmann G, Seupel R, Feineis D, Xu M, Zhang G, Kaiser M, Brun R, Seo EJ, Efferth T (2017) Antileukemic ancistrobenomine B and related 5,1′-coupled naphthylisoquinoline alkaloids from the Chinese liana Ancistrocladus tectorius. Fitoterapia 121:76

    Article  CAS  Google Scholar 

  65. Cecil A, Rikanović C, Ohlsen K, Liang C, Bernhardt J, Oelschlaeger TA, Gulder T, Bringmann G, Holzgrabe U, Unger M, Dandekar T (2011) Modeling antibiotic and cytotoxic effects of the dimeric isoquinoline IQ-143 on metabolism and its regulation in Staphylococcus aureus, Staphylococcus epidermidis and human cells. Genome Biol 12:R24

    Article  CAS  Google Scholar 

  66. Ponte-Sucre A, Faber JH, Gulder T, Kajahn I, Pedersen SEH, Schultheis M, Bringmann G, Moll H (2007) Activities of naphthylisoquinoline alkaloids and synthetic analogs against Leishmania major. Antimicrob Agents Chemother 51:188

    Article  CAS  Google Scholar 

  67. Ponte-Sucre A, Gulder T, Wegehaupt A, Albert C, Rikanović C, Schaeflein L, Frank A, Schultheis M, Unger M, Holzgrabe U, Bringmann G, Moll H (2009) Structure-activity relationship and studies on the molecular mechanism of leishmanicidal N,C-coupled arylisoquinolinium salts. J Med Chem 52:626

    Article  CAS  Google Scholar 

  68. Ponte-Sucre A, Gulder T, Gulder TAM, Vollmers G, Bringmann G, Moll H (2010) Alterations to the structure of Leishmania major induced by N-arylisoquinolines correlate with compound accumulation and disposition. J Med Microbiol 59:69

    Article  CAS  Google Scholar 

  69. Seupel R, Hertlein-Amslinger B, Gulder T, Stawski P, Kaiser M, Brun R, Bringmann G (2016) Directed synthesis of all four pure stereoisomers of the N,C-coupled naphthylisoquinoline alkaloid ancistrocladinium A. Org Lett 18:6508

    Article  CAS  Google Scholar 

  70. Gulder T (2008) Neuartige Wirkstoffe gegen Infektionskrankheiten: N,C-gekuppelte Naphthylisochinolin-Alkaloide. PhD thesis, University of Würzburg

    Google Scholar 

  71. Amslinger B (2012) Isolierung, Totalsynthese, Stereostruktur und -dynamik neuartiger mono- und dimerer Naphthylisochinoline. PhD thesis, University of Würzburg

    Google Scholar 

  72. Seupel R (2018) Antiinfektive und antitumorale Naphthylisochinolin-Alkaloide: Isolierung und Strukturaufklärung, Totalsynthese und Untersuchungen zum Wirkmechanismus. PhD thesis, University of Würzburg

    Google Scholar 

  73. Bringmann G, Koppler D, Scheutzow D, Porzel A (1997) Determination of configuration at the biaryl axes of naphthylisoquinoline alkaloids by long-range NOE effects. Magn Reson Chem 35:297

    Article  CAS  Google Scholar 

  74. Bringmann G, Rückert M, Messer K, Schupp O, Louis AM (1999) Use of on-line high-performance liquid chromatography—nuclear magenetic resonance spectrometry coupling in phytochemical screening studies: rapid identification of metabolites in Dioncophyllum thollonii. J Chromatogr A 837:267

    Article  CAS  Google Scholar 

  75. Bringmann G, Günther C, Schlauer J, Rückert M (1998) HPLC-NMR online coupling including the ROESY technique: direct characterization of naphthylisoquinoline alkaloids in crude plant extracts. Anal Chem 70:2805

    Article  CAS  Google Scholar 

  76. Bringmann G, Bruhn T, Maksimenka K, Hemberger Y (2009) The assignment of absolute stereostructures through quantum chemical circular dichroism calculations. Eur J Org Chem:2717

    Google Scholar 

  77. Bruhn T, Schaumlöffel A, Hemberger Y, Bringmann G (2013) SpecDis: quantifying the comparison of calculated and experimental electronic circular dichroism spectra. Chirality 25:243

    Article  CAS  Google Scholar 

  78. Bringmann G, Götz D, Bruhn T (2012) The online stereochemical analysis of chiral compounds by HPLC-ECD coupling in combination with quantum chemical calculations. In: Berova N, Polavarapu PL, Nakanishi K, Woody RW (eds) Comprehensive chiroptical spectroscopy—applications in stereochemical analysis of synthetic compounds, natural products, and biomolecules, vol 2. Wiley, Hoboken, NJ, p 353

    Google Scholar 

  79. Bringmann G, Geuder T, Rübenacker M, Zagst R (1991) A facile degradation procedure for determination of absolute configuration in 1,3-dimethyltetra- and dihydroisoquinolines. Phytochemistry 30:2067

    Article  CAS  Google Scholar 

  80. Bringmann G, God R, Schäffer M (1996) An improved degradation procedure for determination of the absolute configuration in chiral isoquinoline and β-carboline derivatives. Phytochemistry 43:1393

    Article  CAS  Google Scholar 

  81. Bringmann G, Messer K, Wohlfarth M, Kraus J, Dumbuya K, Rückert M (1999) HPLC-CD on-line coupling in combination with HPLC-NMR and HPLC-MS/MS for the determination of the full absolute stereostructure of new metabolites in plant extracts. Anal Chem 71:2678

    Article  CAS  Google Scholar 

  82. Bringmann G, Lang G (2003) Full absolute stereostructures of natural products directly from crude extracts: the HPLC-MS/MS-NMR-CD ‘triad.’ In: Müller WEG (ed) Marine molecular biotechnology. Springer Verlag, Berlin, Heidelberg, p 89

    Google Scholar 

  83. Bringmann G, Gulder TAM, Reichert M, Gulder T (2008) The online assignment of the absolute configuration of natural products: HPLC-CD in combination with quantum chemical CD calculations. Chirality 20:628

    Article  CAS  Google Scholar 

  84. Bringmann G, Breuning M, Tasler S (1999) The lactone concept: an efficient pathway to axially chiral natural products and useful reagents. Synthesis 525

    Google Scholar 

  85. Bringmann G, Menche D (2001) Stereoselective total synthesis of axially chiral natural products via biaryl lactones. Acc Chem Res 34:615

    Article  CAS  Google Scholar 

  86. Bringmann G, Tasler S (2001) Oxidative aryl coupling reactions: a biomimetic approach to configurationally unstable or axially chiral biaryl natural products and related bioactive compounds. Tetrahedron 57:331

    Article  CAS  Google Scholar 

  87. Bringmann G, Tasler S, Pfeifer RM, Breuning M (2002) The directed synthesis of axially chiral ligands, reagents, catalysts, and natural products: through the ‘lactone methodology.’ J Organomet Chem 661:49

    Article  CAS  Google Scholar 

  88. Bringmann G, Price Mortimer AJ, Keller PA, Gresser MJ, Breuning M (2005) Atroposelective synthesis of axially chiral biaryl compounds. Angew Chem 117:5518; Angew Chem Int Ed 44:5384

    Google Scholar 

  89. Bringmann G, Gulder T, Gulder TAM (2007) Asymmetric synthesis of biaryls by the ‘lactone method.’ In: Christmann M, Bräse S (eds) Asymmetric synthesis—the essentials. Wiley-VCH Verlag, Weinheim, p 246

    Google Scholar 

  90. Bringmann G, Gulder T, Gulder TAM, Breuning M (2011) Atroposelective total synthesis of axially chiral biaryl natural products. Chem Rev 111:563

    Article  CAS  Google Scholar 

  91. Bringmann G, Jansen JR, Rink HP (1986) Regioselective and atropoisomeric-selective aryl coupling to give naphthylisoquinoline alkaloids: the first total synthesis of (–)-ancistrocladine. Angew Chem 98:917; Angew Chem Int Ed Engl 25:913

    Google Scholar 

  92. Bringmann G, Jansen JR (1989) Chiral economy with respect to rotational isomerism: rational synthesis of hamatine and (optionally) ancistrocladine from joint helical precursors. Heterocycles 28:137

    Article  CAS  Google Scholar 

  93. Bringmann G, Reuscher H (1989) Aryl-coupling via “axially prostereogenic” lactones: first total synthesis of (+)-ancistrocladisine and (optionally) its atropisomer. Tetrahedron Lett 30:5249

    Article  CAS  Google Scholar 

  94. Bringmann G, Reuscher H (1989) Atropodiastereoselective ring opening of bridged, “axial-prostereogenic” biaryls: directed synthesis of (+)-ancistrocladisine. Angew Chem 101:1725; Angew Chem Int Ed Engl 28:1672

    Google Scholar 

  95. Bringmann G, Saeb W, Rübenacker M (1999) Directed joint total synthesis of the three naphthylisoquinoline alkaloids dioncolactone A, dioncopeltine A, and 5′-O-demethyldioncophylline A. Tetrahedron 55:423

    Article  CAS  Google Scholar 

  96. Bringmann G, Götz R, Harmsen S, Holenz J, Walter R (1996) Biomimetic total synthesis of michellamines A–C. Liebigs Ann 2045

    Google Scholar 

  97. Bringmann G, Holenz J, Weirich R, Rübenacker M, Funke C, Boyd MR, Gulakowski RJ, François G (1998) First synthesis of the antimalarial naphthylisoquinoline alkaloid dioncophylline C, and its unnatural anti-HIV dimer, jozimine C. Tetrahedron 54:497

    Article  CAS  Google Scholar 

  98. Bringmann G, Ochse M, Götz R (2000) First atropo-divergent total synthesis of the antimalarial korupensamines A and B by the “lactone method.” J Org Chem 65:2069

    Article  CAS  Google Scholar 

  99. Bringmann G, Manchala N, Büttner T, Hertlein-Amslinger B, Seupel R (2016) First atroposelective total synthesis of enantiomerically pure ancistrocladidine and ancistrotectorine. Chem Eur J 22:9792

    Article  CAS  Google Scholar 

  100. Schies C, Seupel R, Feineis D, Gehrold A, Schraut M, Kaiser M, Brun R, Bringmann G (2018) Biomimetic total synthesis of mbandakamine A and further antiplasmodial naphthylisoquinoline dimers. ChemistrySelect 3:940

    Article  CAS  Google Scholar 

  101. Bringmann G, Gulder T, Hertlein B, Hemberger Y, Meyer F (2010) Total synthesis of the N,C-coupled naphthylisoquinoline alkaloids ancistrocladinium A and B and related analogues. J Am Chem Soc 132:1151

    Article  CAS  Google Scholar 

  102. Rizzacasa MA (1998) Total synthesis of naphthylisoquinoline alkaloids. In: Atta-ur-Rahman (ed) Studies in natural products chemistry, vol 20. Elsevier Science B.V., Amsterdam, p 407

    Google Scholar 

  103. Rizzacasa MA, Sargent MV (1991) Synthetic approaches to the naphthylisoquinoline alkaloids, part 2: the total synthesis of (–)-O-methylancistrocladine and (+)-O-methylhamatine and their enantiomers. J Chem Soc Perkin Trans 1:845

    Article  Google Scholar 

  104. Rizzacasa MA, Sargent MV (1991) Synthetic approaches to the alkaloids of the Ancistrocladaceae. Part 3. The total synthesis of (–)-ancistrocladinine: control of the diastereoisomer excess in the synthesis of axially chiral biaryls. J Chem Soc Perkin Trans 1:2773

    Google Scholar 

  105. Hobbs PD, Upender V, Liu J, Pollart DJ, Thomas DW, Dawson MI (1996) The first stereospecific synthesis of michellamine B. Chem Commun:923

    Google Scholar 

  106. Hobbs PD, Upender V, Dawson MI (1997) Stereospecific syntheses of michellamines A and C. Synlett:965

    Google Scholar 

  107. Bringmann G, Götz R, Keller PA, Walter R, Boyd MR, Lang F, Garcia A, Walsh JJ, Tellitu I, Bhaskar KV, Kelly TR (1998) A convergent total synthesis of the michellamines. J Org Chem 63:1090

    Article  CAS  Google Scholar 

  108. Hoye TR, Chen M, Hoang B, Mi L, Priest OP (1999) Total synthesis of michellamines A–C, korupensamines A–D, and ancistrobrevine B. J Org Chem 64:7184

    Article  CAS  Google Scholar 

  109. Watanabe T, Shakadou M, Uemura M (2000) Stereoselective synthesis of korupensamine A and ent-korupensamine B utilizing an identical planar chiral arene chromium complex. Synlett:1141

    Google Scholar 

  110. Watanabe T, Tanaka Y, Shoda R, Sakamoto R, Kamikawa K, Uemura M (2004) Stereoselective synthesis of atropisomeric korupensamines A and B utilizing planar chiral arene chromium complex. J Org Chem 69:4152

    Article  CAS  Google Scholar 

  111. Lipshutz BH, Keith JM (1999) A stereospecific, intermolecular biaryl-coupling approach to korupensamine A—en route to the michellamines. Angew Chem 111:3743; Angew Chem Int Ed 38:3530

    Google Scholar 

  112. Huang S, Petersen TB, Lipshutz BH (2010) Total synthesis of (+)-korupensamine B via an atropselective intermolecular biaryl coupling. J Am Chem Soc 132:14021

    Article  CAS  Google Scholar 

  113. Slack E, Seupel R, Aue D, Bringmann G, Lipshutz B (2019) Atroposelective total synthesis of the fourfold ortho-substituted naphthyltetrahydroisoquinoline biaryl O,N-dimethylhamatine. Chem Eur J 25:14237

    Article  CAS  Google Scholar 

  114. Xu G, Fu W, Liu G, Senanayake CH, Tang W (2014) Efficient syntheses of korupensamines A, B and michellamine B by asymmetric Suzuki-Miyaura coupling reactions. J Am Chem Soc 136:570

    Article  CAS  Google Scholar 

  115. Bungard CJ, Morris JC (2002) First total synthesis of the 7,3′-linked naphthylisoquinoline alkaloid ancistrocladidine. Org Lett 4:631

    Article  CAS  Google Scholar 

  116. Bungard CJ, Morris JC (2006) Total synthesis of the 7,3′-linked naphthylisoquinoline alkaloid ancistrocladidine. J Org Chem 71:7354

    Article  CAS  Google Scholar 

  117. Toop HD, Brusnahan JS, Morris JC (2017) Concise total synthesis of dioncophylline E through an ortho-arylation strategy. Angew Chem 129:8656; Angew Chem Int Ed 56:8546

    Google Scholar 

  118. Kim KH, Cheon CH (2016) Concise asymmetric total synthesis of ent-ancistrocladinium A. Adv Synth Catal 358:2883

    Article  CAS  Google Scholar 

  119. Kim KH, Cheon CH (2017) Concise catalytic asymmetric total syntheses of ancistrocladinium A and its atropdiastereomer. Org Chem Front 4:1341

    Article  CAS  Google Scholar 

  120. Jo YI, Lee CY, Cheon CH (2020) Asymmetric total syntheses of naphthylisoquinoline alkaloids via atroposelective coupling reaction using central chirality as atroposelectivity-controlling group. Org Lett 22:4653

    Article  CAS  Google Scholar 

  121. Jo YI, Lee CY, Cheon CH (2020) Atroposelective total syntheses of naphthylisoquinoline alkaloids with (P)-configuration. J Org Chem 85:12770

    Article  CAS  Google Scholar 

  122. Bringmann G, Zhang G, Büttner T, Bauckmann G, Kupfer T, Braunschweig H, Brun R, Mudogo V (2013) Jozimine A2: the first dimeric Dioncophyllaceae-type naphthylisoquinoline alkaloid, with three chiral axes and high antiplasmodial activity. Chem Eur J 19:916

    Article  CAS  Google Scholar 

  123. Li J, Seupel R, Bruhn T, Feineis D, Kaiser M, Brun R, Mudogo V, Awale S, Bringmann G (2017) Jozilebomines A and B, naphthylisoquinoline dimers from the Congolese liana Ancistrocladus ileboensis, with antiausterity activities against the PANC-1 human pancreatic cancer cell line. J Nat Prod 80:2807

    Article  CAS  Google Scholar 

  124. Fayez S, Li J, Feineis D, Aké Assi L, Kaiser M, Brun R, Anany MA, Wajant H, Bringmann G (2019) A near-complete series of four atropisomeric jozimine-A2 type naphthylisoquinoline dimers with antiplasmodial and cytotoxic activities and related alkaloids from Ancistrocladus abbreviatus. J Nat Prod 82:3033

    Google Scholar 

  125. Bringmann G (1996) Mono- and dimeric naphthylisoquinoline alkaloids—pharmaceutically and structurally exciting natural heterocycles with axial chirality. Bull Soc Chim Belg 105:601

    CAS  Google Scholar 

  126. Bringmann G, Saeb W, Koppler D, François G (1996) Jozimine A (‘dimeric’ dioncophylline A), a non-natural michellamine analog with high antimalarial activity. Tetrahedron 52:13409

    Article  CAS  Google Scholar 

  127. Bringmann G, Götz R, François G (1996) Synthesis of pindikamine A, a michellamine-related dimer of a non-natural, ‘skew’ naphthylisoquinoline. Tetrahedron 52:13419

    Article  CAS  Google Scholar 

  128. Bringmann G, Saeb W, Mies J, Messer K, Wohlfarth M, Brun R (2000) One-step oxidative dimerization of genuine, unprotected naphthylisoquinoline alkaloids to give michellamines and other bioactive quateraryls. Synthesis 1843

    Google Scholar 

  129. Bringmann G, Saeb W, Wohlfarth M, Messer K, Brun R (2000) Jozipeltine A, a novel, unnatural dimer of the highly hydroxylated naphthylisoquinoline alkaloid dioncopeltine A. Tetrahedron 56:5871

    Article  CAS  Google Scholar 

  130. Hemberger Y, Zhang G, Brun R, Kaiser M, Bringmann G (2015) Highly antiplasmodial non-natural oxidative products of dioncophylline A: synthesis, absolute configuration, and conformational stability. Chem Eur J 21:14507

    Article  CAS  Google Scholar 

  131. Bringmann G, Wohlfarth M, Rischer H, Grüne M, Schlauer J (2000) A new biosynthetic pathway to alkaloids in plants: acetogenic isoquinolines. Angew Chem 112:1523; Angew Chem Int Ed 39:1464

    Google Scholar 

  132. Bringmann G, Mutanyatta-Comar J, Greb M, Rüdenauer S, Noll TF, Irmer A (2007) Biosynthesis of naphthylisoquinoline alkaloids: synthesis and incorporation of an advanced 13C2-labeled isoquinoline precursor. Tetrahedron 63:1755

    Article  CAS  Google Scholar 

  133. Bringmann G, Irmer A, Rüdenauer S, Mutanyatta-Comar J, Seupel R, Feineis D (2016) 5′-O-Methyldioncophylline D, a 7,8′-coupled naphthylisoquinoline alkaloid from callus cultures of Triphyophyllum peltatum, and its biosynthesis from a late-stage tetrahydroisoquinoline precursor. Tetrahedron 72:2906

    Article  CAS  Google Scholar 

  134. Bringmann G, Irmer A, Feineis D, Gulder TAM, Fiedler HP (2009) Convergence in the biosynthesis of acetogenic natural products from plants, fungi, and bacteria. Phytochemistry 70:1776

    Article  CAS  Google Scholar 

  135. Staunton J (1979) Biosynthesis of isoquinoline alkaloids. Planta Med 36:1

    Article  CAS  Google Scholar 

  136. Kutchan TM, Dittrich H, Bracher D, Zenk MH (1991) Enzymology and molecular biology of alkaloid biosynthesis. Tetrahedron 47:5945

    Article  CAS  Google Scholar 

  137. O’Connor SE (2010) Alkaloids. In: Mander EL, Lui HW (eds) Comprehensive natural products II, vol 1. Elsevier, Oxford, p 977

    Chapter  Google Scholar 

  138. O’Connor SE (2012) Alkaloids. In: Civjan N (ed) Natural products in chemical biology. Wiley, Hoboken, NJ, p 209

    Chapter  Google Scholar 

  139. Stöckigt J, Chen Z, Ruppert M (2010) Enzymatic and chemo-enzymatic approaches towards natural and non-natural alkaloids: indoles, isoquinolines, and others. Top Curr Chem 297:67

    Article  Google Scholar 

  140. Hagel JM, Facchini PJ (2013) Benzylisoquinoline alkaloid metabolism: a century of discovery and a brave new world. Plant Cell Physiol 54:647

    Article  CAS  Google Scholar 

  141. Pal T, Pal A (1996) Oxidative phenol-coupling: a key step for the biomimetic synthesis of many important natural products. Curr Sci 71:106

    CAS  Google Scholar 

  142. Tajuddeen N, Van Heerden FR (2019) Antiplasmodial natural products: an update. Malar J 18:404

    Article  Google Scholar 

  143. Simoben CV, Ntie-Kang F, Akone, SH, Sippl W (2018) Compounds from African medicinal plants with activities against selected parasitic diseases: schistosomiasis, trypanosomiasis and leishmaniasis. Nat Prod Bioprospect 8:151

    Google Scholar 

  144. Scotti MT, Scotti L, Ishiki H, Ribeiro FF, Duarte da Cruz RM, de Oliveira MP, Mendonça Jr FJB (2016) Natural products as a source for antileishmanial and antitrypanosomal agents. Comb Chem High Throughput Screen 19:537

    Google Scholar 

  145. Ntie-Kang F, Lifongo LL, Simoben CV, Babiaka SB, Sippl W, Meva’a Mbaze L (2014) The uniqueness and therapeutic value of natural products from West African medicinal plants. Part I: uniqueness and chemotaxonomy. RSC Adv 4:28728

    Google Scholar 

  146. Singh N, Mishra BB, Bajpai S, Singh RK, Tiwari VK (2014) Natural product based leads to fight against leishmaniasis. Bioorg Med Chem 22:18

    Article  CAS  Google Scholar 

  147. Zofou D, Ntie-Kang F, Sippl W, Efange SMN (2013) Bioactive natural products derived from the Central African flora against neglected tropical diseases and HIV. Nat Prod Rep 30:1098

    Google Scholar 

  148. Onguéné PA, Ntie-Kang F, Lifongo LL, Ndom JC, Sippl W, Meva’a Mbaze L (2013) The potential of anti-malarial compounds derived from African medicinal plants. Part I: a pharmacological evaluation of alkaloids and terpenoids. Malar J 12:449

    Google Scholar 

  149. Izumi E, Ueda-Nakamura T, Dias Filho BP, Veiga JVF, Nakamura CV (2011) Natural products and Chagas’ disease: a review of plant compounds studied for activity against Trypanosoma cruzi. Nat Prod Rep 28:809

    Article  CAS  Google Scholar 

  150. Kumar V, Mahajan A, Chibale K (2009) Synthetic medicinal chemistry of selected antimalarial natural products. Bioorg Med Chem 17:2236

    Article  CAS  Google Scholar 

  151. Kingston DGI, Cassera MB (2022) Antimalarial natural products. In: Kinghorn AD, Falk H, Gibbons S, Asakawa Y, Liu JK, Dirsch VM (eds) Progress in the chemistry of organic natural products, vol 117. Springer, Cham, p 40

    Google Scholar 

  152. Bringmann G, Ortmann T, Zagst R, Schöner B, Aké Assi L, Burschka C (1992) (±)-Dioncophyllacine A, a naphthylisoquinoline alkaloid with a 4-methoxy substituent from the leaves of Triphyophyllum peltatum. Phytochemistry 31:4015

    Google Scholar 

  153. Bringmann G, Günther C, Saeb W, Mies J, Brun R, Akè Assi L (2000) 8-O-Methyldioncophyllinol B and revised structures of other 7,6′-coupled naphthylisoquinoline alkaloids from Triphyophyllum peltatum (Dioncophyllaceae). Phytochemistry 54:337

    Google Scholar 

  154. Hallock YF, Cardellina II JH, Schäffer M, Stahl M, Bringmann G, François G, Boyd MR (1997) Yaoundamines A and B, new antimalarial naphthylisoquinoline alkaloids from Ancistrocladus korupensis. Tetrahedron 53:8121

    Google Scholar 

  155. Bringmann G, Dreyer M, Faber JH, Dalsgaard PW, Stærk D, Jarozewski JW, Ndangalasi H, Mbago F, Brun R, Reichert M, Maksimenka K, Christensen SB (2003) Ancistrotanzanine A, the first 5,3′-coupled naphthylisoquinoline alkaloid, and two further, 5,8′-linked related compounds from the newly described species Ancistrocladus tanzaniensis. J Nat Prod 66:1159

    Article  CAS  Google Scholar 

  156. Hallock YF, Manfredi KP, Blunt JW, Cardellina II JH, Schäffer M, Gulden KP, Bringmann G, Lee AY, Clardy J, François G, Boyd MR (1994) Korupensamines A–D, novel antimalarial alkaloids from Ancistrocladus korupensis. J Org Chem 59:6349

    Google Scholar 

  157. Bringmann G, Rübenacker M, Jansen JR, Scheutzow D, Aké Assi L (1990) On the structure of the Dioncophyllaceae alkaloids dioncophylline A (“triphyophylline”) and “O-methyl-triphyophylline”. Tetrahedron Lett 31:639

    Google Scholar 

  158. Bringmann G, Jansen JR, Reuscher H, Rübenacker M, Peters K, von Schnering HG (1990) First total synthesis of (–)-dioncophylline A (“triphyophylline”) and of selected stereoisomers: complete (revised) stereostructure. Tetrahedron Lett 31:643

    Article  CAS  Google Scholar 

  159. Bringmann G, Günther C, Busemann S, Schäffer M, Olowokudejo JD, Alo BI (1998) Ancistroguineines A and B as well as ancistrotectorine—naphthylisoquinoline alkaloids from Ancistrocladus guineënsis. Phytochemistry 47:37

    Article  CAS  Google Scholar 

  160. Tshitenge DT, Bruhn T, Feineis D, Schmidt D, Mudogo V, Kaiser M, Brun R, Würthner F, Awale S, Bringmann G (2019) Ealamines A-H, a series of naphthylisoquinolines with the rare 7,8′-coupling site, from the Congolese liana Ancistrocladus ealaensis, targeting pancreatic cancer cells. J Nat Prod 82:3150

    Article  CAS  Google Scholar 

  161. Kavatsurva SM, Lombe BK, Feineis D, Dibwe DF, Maharaj V, Awale S, Bringmann G (2018) Ancistroyafungines A–D, 5,8′- and 5,1′-coupled naphthylisoquinoline alkaloids from a Congolese Ancistrocladus species, with antiausterity activities against human PANC-1 pancreatic cancer cells. Fitoterapia 130:6

    Article  Google Scholar 

  162. Heubl G, Turini F, Mudogo V, Kajahn I, Bringmann G (2010) Ancistrocladus ileboensis (DR Congo), a new liana with unique alkaloids. Plant Ecol Evol 143:63

    Article  Google Scholar 

  163. Manfredi KP, Blunt JW, Cardellina II JH, McMahon JB, Pannell LL, Cragg GM, Boyd MR (1991) Novel alkaloids from the tropical plant Ancistrocladus abbreviatus inhibit cell killing by HIV-1 and HIV-2. J Med Chem 34:3402

    Google Scholar 

  164. Boyd MR, Hallock YF, Cardellina II JH, Manfredi KP, Blunt JW, McMahon JB, Buckheit Jr RW, Bringmann G, Schäffer M, Cragg GM, Thomas DW, Jato JG (1994) Anti-HIV michellamines from Ancistrocladus korupensis. J Med Chem 37:1740

    Google Scholar 

  165. Hallock YF, Manfredi KP, Dai JR, Cardellina II JH, Gulakowski RJ, McMahon JB, Schäffer M, Stahl M, Gulden KP, Bringmann G, François G, Boyd MR (1997) Michellamines D-F, new HIV inhibitory dimeric naphthylisoquinoline alkaloids, and korupensamine E, a new antimalarial monomer, from Ancistrocladus korupensis. J Nat Prod 60:677

    Google Scholar 

  166. Bringmann G, Günther C, Saeb W, Mies J, Wickramasinghe A, Mudogo V, Brun R (2000) Ancistrolikokines A–C: new 5,8′-coupled naphthylisoquinoline alkaloids from Ancistrocladus likoko. J Nat Prod 63:1333

    Article  CAS  Google Scholar 

  167. Fayez S, Feineis D, Mudogo V, Awale S, Bringmann G (2017) Ancistrolikokines E-H and related 5,8′-coupled naphthylisoquinoline alkaloids from the Congolese liana Ancistrocladus likoko with antiausterity activities against PANC-1 human pancreatic cancer cells. RSC Adv 7:53740

    Article  CAS  Google Scholar 

  168. Fayez S, Feineis D, Mudogo V, Seo EJ, Efferth T, Bringmann G (2018) Ancistrolikokine I and further 5,8′-coupled naphthylisoquinoline alkaloids from the Congolese liana Ancistrocladus likoko and their cytotoxic activities against drug-sensitive and multi-drug resistant human leukemia cells. Fitoterapia 129:114

    Article  CAS  Google Scholar 

  169. Awale S, Dibwe DF, Balachandran C, Fayez S, Feineis D, Lombe BK, Bringmann G (2018) Ancistrolikokine E3, a 5,8′-coupled naphthylisoquinoline alkaloid, eliminates the tolerance of cancer cells to nutrition starvation by inhibition of the Akt/mTOR/autophagy signaling pathway. J Nat Prod 81:2282

    Article  CAS  Google Scholar 

  170. Lombe BK, Feineis D, Mudogo V, Brun R, Awale S, Bringmann G (2018) Michellamines A6 and A7, and further mono- and dimeric naphthylisoquinoline alkaloids from a Congolese Ancistrocladus liana and their antiausterity activities against pancreatic cancer cells. RSC Adv 8:5243

    Article  CAS  Google Scholar 

  171. Bringmann G, Spuziak J, Faber JH, Gulder T, Kajahn I, Dreyer M, Heubl G, Brun R, Mudogo V (2008) Six naphthylisoquinoline alkaloids and a related benzopyranone from a Congolese Ancistrocladus species related to Ancistrocladus congolensis. Phytochemistry 69:1065

    Article  CAS  Google Scholar 

  172. Bringmann G, Messer K, Brun R, Mudogo V (2002) Ancistrocongolines A–D, new naphthylisoquinoline alkaloids from Ancistrocladus congolensis. J Nat Prod 65:1096

    Article  CAS  Google Scholar 

  173. Bringmann G, Steinert C, Feineis D, Mudogo V, Betzin J, Scheller C (2016) HIV-inhibitory michellamine-type dimeric naphthylisoquinoline alkaloids from the Central African liana Ancistrocladus congolensis. Phytochemistry 128:71

    Article  CAS  Google Scholar 

  174. Bringmann G, Hamm A, Günther C, Michel M, Brun R, Mudogo V (2000) Ancistroealaine A and B, two new bioactive naphthylisoquinolines, and related naphthoic acids from Ancistrocladus ealaensis. J Nat Prod 63:1465

    Article  CAS  Google Scholar 

  175. Bringmann G, Lombe BK, Steinert C, Ndjoko Ioset K, Brun R, Turini F, Heubl G, Mudogo V (2013) Mbandakamines A and B, unsymmetrically coupled dimeric naphthylisoquinoline alkaloids, from a Congolese Ancistrocladus species. Org Lett 15:2590

    Google Scholar 

  176. Tshitenge DT, Feineis D, Mudogo V, Kaiser M, Brun R, Seo EJ, Efferth T, Bringmann G (2018) Mbandakamine-type naphthylisoquinoline dimers and related alkaloids from the Central African liana Ancistrocladus ealaensis with antiparasitic and antileukemic activities. J Nat Prod 81:918

    Article  CAS  Google Scholar 

  177. Mufusama JP, Feineis D, Mudogo V, Kaiser M, Brun R, Bringmann G (2019) Antiprotozoal dimeric naphthylisoquinolines, mbandakamines B3 and B4, and related 5,8′-coupled monomeric alkaloids, ikelacongolines A–D, from a Congolese Ancistrocladus liana. RSC Adv 9:12034

    Article  CAS  Google Scholar 

  178. Lombe BK, Bruhn T, Feineis D, Mudogo V, Brun R, Bringmann G (2017) Cyclombandakamines A1 and A2, oxygen-bridged naphthylisoquinoline dimers from a Congolese Ancistrocladus liana. Org Lett 19:1342

    Article  CAS  Google Scholar 

  179. Tshitenge DT, Bruhn T, Feineis D, Mudogo V, Kaiser M, Brun R, Bringmann G (2019) An unusually broad series of seven cyclombandakamines, bridged dimeric naphthylisoquinoline alkaloids from the Congolese liana Ancistrocladus ealaensis. Sci Rep 9:9812

    Article  Google Scholar 

  180. Lombe BK, Bruhn T, Feineis D, Mudogo V, Brun R, Bringmann G (2017) Antiprotozoal spirombandakamines A1 and A2, fused naphthylisoquinoline dimers from a Congolese Ancistrocladus plant. Org Lett 19:6740

    Article  CAS  Google Scholar 

  181. Lombe BK, Feineis D, Mudogo V, Kaiser M, Bringmann G (2021) Spirombandakamine A3 and cyclombandakamines A8 and A9, polycyclic naphthylisoquinoline dimers, with antiprotozoal activity, from a Congolese Ancistrocladus plant. J Nat Prod 84:1335

    Article  CAS  Google Scholar 

  182. Li J, Seupel R, Feineis D, Mudogo V, Kaiser M, Brun R, Brünnert D, Chatterjee M, Seo EJ, Efferth T, Bringmann G (2017) Dioncophyllines C2, D2, and F, and related naphthylisoquinoline alkaloids from the Congolese liana Ancistrocladus ileboensis with potent activities against Plasmodium falciparum and against multiple myeloma and leukemia cell lines. J Nat Prod 80:443

    Article  CAS  Google Scholar 

  183. Hallock YF, Hughes CB, Cardellina II JH, Schäffer M, Gulden KP, Bringmann G, Boyd MR (1995) Dioncophylline A, the principal cytotoxin from Ancistrocladus letestui. Nat Prod Lett 6:315

    Google Scholar 

  184. Bringmann G, Lisch D, Reuscher H, Aké Assi L, Günther K (1991) Atrop-diastereomer separation by racemate resolution techniques: N-methyldioncophylline A and its 7-epimer from Ancistrocladus abbreviatus. Phytochemistry 30:1307

    Google Scholar 

  185. Bringmann G, Pokorny F, Stäblein M, Schäffer M, Aké Assi L (1993) Ancistrobrevine C from Ancistrocladus abbreviatus: the first mixed ‘Ancistro-cladaceae/Dioncophyllaceae-type’ naphthylisoquinoline alkaloid. Phytochemistry 33:1511

    Google Scholar 

  186. Fayez S, Feineis D, Aké Assi L, Seo EJ, Efferth T, Bringmann G (2019) Ancistrobreveines A–D and related dehydrogenated naphthylisoquinoline alkaloids with antiproliferative activities against leukemia cells, from the West African liana Ancistrocladus abbreviatus. RSC Adv 9:15738

    Google Scholar 

  187. Fayez S, Bruhn T, Feineis D, Aké Assi L, Awale S, Bringmann G (2020) Ancistrosecolines A–F, unprecedented seco-naphthylisoquinoline alkaloids from the roots of Ancistrocladus abbreviatus, with apoptosis-inducing potential against HeLa cancer cells. J Nat Prod 83:1139

    Google Scholar 

  188. Tshitenge DT, Feineis D, Mudogo V, Kaiser M, Brun R, Bringmann G (2017) Antiplasmodial ealapasamines A–C, ‘mixed’ naphthylisoquinoline dimers from the Central African liana Ancistrocladus ealaensis. Sci Rep 7:5767

    Article  Google Scholar 

  189. Bringmann G, Dreyer M, Faber JH, Dalsgaard PW, Stærk D, Jaroszewski JW, Ndangalasi H, F, Brun R, Christensen SB (2004) Ancistrotanzanine C and related 5,1′- and 7,3′-coupled naphthylisoquinoline alkaloids from Ancistrocladus tanzaniensis. J Nat Prod 67:743

    Google Scholar 

  190. Bringmann G, Teltschik F, Michel M, Busemann S, Rückert M, Haller R, Bär S, Robertson SA, Kaminsky R (1999) Ancistrobertsonines B, C, and D as well as 1,2-didehydroancistrobertsonine D from Ancistrocladus robertsoniorum. Phytochemistry 52:321

    Article  CAS  Google Scholar 

  191. Fayez S, Feineis D, Aké Assi L, Kaiser M, Brun R, Awale S, Bringmann G (2018) Ancistrobrevines E-J and related naphthylisoquinoline alkaloids from the West African liana Ancistrocladus abbreviatus with inhibitory activities against Plasmodium falciparum and PANC-1 human pancreatic cancer cells. Fitoterapia 131:245

    Google Scholar 

  192. Bringmann G, Zagst R, Reuscher H, Aké Assi L (1992) Ancistrobrevine B, the first naphthylisoquinoline alkaloid with 5,8’-coupling site, and related compounds from Ancistrocladus abbreviatus. Phytochemistry 31:4011

    Google Scholar 

  193. Fayez S, Cacciatore A, Sun S, Kim M, Aké Assi L, Feineis D, Awale S, Bringmann G (2021) Ancistrobrevidines A–C and related naphthylisoquinoline alkaloids with cytotoxic activities against HeLa and pancreatic cancer cells, from the liana Ancistrocladus abbreviatus. Bioorg Med Chem 30:115950

    Google Scholar 

  194. Bringmann G, Schneider C, Möhler U, Pfeifer RM, Götz R, Aké Assi L, Peters EM, Peters K (2003) Two atropisomeric N-methyldioncophyllines A and N-methylphylline, their naphthalene-free heterocyclic moiety, from Ancistrocladus barteri. Z Naturforsch 58b:577

    Google Scholar 

  195. Hallock YF, Cardellina II JH, Schäffer M, Bringmann G, François G, Boyd MR (1998) Korundamine A, a novel HIV-inhibitory and antimalarial “hybrid” naphthylisoquinoline alkaloid from Ancistrocladus korupensis. Bioorg Med Chem Lett 8:1729

    Google Scholar 

  196. Hutchinson J, Dalziel JM (1954) Dioncophyllaceae. In: Hutchinson J, Dalziel JM (eds, revised by Keay RWJ) Flora of West Tropical Africa, 2nd edn. Crown Agents Overseas Governments and Administration, London, p 191

    Google Scholar 

  197. Porembski S, Barthlott W (2002) Dioncophyllaceae. In: Kubitzki K, Bayer C (eds) The families and genera of vascular plants. V. Flowering plants—Dicotyledons, Malvales, Capparales and non-betalain Caryophyllales, vol 5. Springer, Heidelberg, p 178

    Google Scholar 

  198. François G, Bringmann G, Phillipson JD, Aké Assi L, Dochez C, Rübenacker M, Schneider C, Wéry M, Warhurst DC, Kirby GC (1994) Activity of extracts and naphthylisoquinoline alkaloids from Triphyophyllum peltatum, Ancistrocladus abbreviatus and A. barteri against Plasmodium falciparum in vitro. Phytochemistry 35:1461

    Google Scholar 

  199. François G, Bringmann G, Dochez C, Schneider C, Timperman G, Aké Assi L (1995) Activities of extracts and naphthylisoquinoline alkaloids from Triphyophyllum peltatum, Ancistrocladus abbreviatus and Ancistrocladus barteri against Plasmodium berghei (Anka strain) in vitro. J Ethnopharmacol 46:115

    Google Scholar 

  200. François G, Timperman G, Holenz J, Aké Assi L, Geuder T, Maes L, Dubois J, Hanocq M, Bringmann G (1996) Naphthylisoquinoline alkaloids exhibit strong growth-inhibiting activities against Plasmodium falciparum and P. berghei in vitro—structure-activity relationships of dioncophylline C. Ann Trop Med Parasitol 90:115

    Google Scholar 

  201. François G, Timperman G, Steenackers T, Aké Assi L, Holenz J, Bringmann G (1997) In vitro inhibition of liver forms of the rodent malaria parasite Plasmodium berghei by naphthylisoquinoline alkaloids—structure-activity relationships of dioncophyllines A and C and ancistrocladine. Parasitol Res 83:673

    Google Scholar 

  202. François G, Chimanuka B, Timperman G, Holenz J, Plaizier-Vercammen J, Aké Assi L, Bringmann G (1999) Differential sensitivity of erythrocytic stages of the rodent malaria parasite Plasmodium chabaudi chabaudi to dioncophylline B, a highly active naphthylisoquinoline alkaloid. Parasitol Res 85:935

    Google Scholar 

  203. Chimanuka B, François G, Timperman G, Vander Heyden Y, Holenz J, Plaizier-Vercammen J, Bringmann G (2001) A comparison of the stage-specific efficacy of chloroquine, artemether and dioncophylline B against the rodent malaria parasite Plasmodium chabaudi chabaudi in vivo. Parasitol Res 87:795

    Google Scholar 

  204. François G, Timperman G, Eling W, Aké Assi L, Holenz J, Bringmann G (1997) Naphthylisoquinoline alkaloids against malaria: evaluation of the curative potentials of dioncophylline C and dioncopeltine A against Plasmodium berghei in vivo. Antimicrob Agents Chemother 41:2533

    Google Scholar 

  205. Schwedhelm KF, Horstmann M, Faber JH, Reichert Y, Bringmann G, Faber C (2007) The novel antimalarial dioncophylline C forms a complex with heme in solution. ChemMedChem 2:541

    Article  CAS  Google Scholar 

  206. Bringmann G, Bischof SK, Müller S, Gulder T, Winter C, Stich A, Moll H, Kaiser M, Brun R, Dreher J, Baumann K (2010) QSAR guided synthesis of simplified antiplasmodial analogs of naphthylisoquinoline alkaloids. Eur J Med Chem 45:5370

    Article  CAS  Google Scholar 

  207. Moyo P, Shamburger W, van der Watt ME, Reader J, de Sousa ACC, Egan TJ, Maharaj VJ, Bringmann G, Birkholtz LM (2020) Naphthylisoquinoline alkaloids, validated as hit multistage antiplasmodial natural products. Int J Parasitol Drugs Drug Resist 13:51

    Article  Google Scholar 

  208. Green S, Green TL, Heslop-Harrison Y (1979) Seasonal heterophylly and leaf gland features in Triphyophyllum (Dioncophyllaceae), a new carnivorous plant genus. Bot J Linn Soc 78:99

    Article  Google Scholar 

  209. Marburger JE (1979) Glandular leaf structure of Triphyophyllum peltatum (Dioncophyllaceae): a “fly-paper” insect trapper. Am J Bot 66:404

    Article  Google Scholar 

  210. Menninger EA (1965) An African vine with three kinds of leaves for three different jobs. J New York Bot Gard 15:30

    Google Scholar 

  211. Bringmann G, Schlauer J, Wolf K, Rischer H, Buschbom U, Kreiner A, Thiele F, Duschek M, Aké Assi L (1999) Cultivation of Triphyophyllum peltatum (Dioncophyllaceae), the part-time carnivorous plant. Carniv Pl Newslett 28:7

    Google Scholar 

  212. Bringmann G, Wenzel M, Bringmann HP, Schlauer J, Aké Assi L, Haas F (2001) Uptake of the amino acid alanine by digestive leaves: proof of carnivory in the tropical liana Triphyophyllum peltatum (Dioncophyllaceae). Carniv Pl Newslett 30:15

    Google Scholar 

  213. Bringmann G, Rischer H, Schlauer J, Wolf K, Kreiner A, Duschek M, Aké Assi L (2002) The tropical liana Triphyophyllum peltatum (Dioncophyllaceae): formation of carnivorous organs is only a prerequisite for shoot elongation. Carniv Pl Newslett 31:44

    Google Scholar 

  214. Rembold K, Irmer A, Poppinga S, Rischer H, Bringmann G (2010) Propagation of Triphyophyllum peltatum (Dioncophyllaceae) and observations on its carnivory. Carniv Pl Newslett 39:71

    Article  Google Scholar 

  215. Bringmann G, Rischer H (2001) In vitro propagation of the alkaloid-producing rare African liana Triphyophyllum peltatum (Dioncophyllaceae). Plant Cell Rep 20:591

    Article  CAS  Google Scholar 

  216. Bringmann G, Irmer A, Büttner T, Schaumlöffel A, Zhang G, Seupel R, Feineis D, Fester K (2016) Axially chiral dimeric naphthalene and naphthoquinone metabolites, from root cultures of the West African liana Triphyophyllum peltatum. J Nat Prod 79:2094

    Article  CAS  Google Scholar 

  217. Bringmann G, Rüdenauer S, Irmer A, Bruhn T, Brun R, Heimberger T, Stühmer T, Bargou R, Chatterjee M (2008) Antitumoral and antileishmanial dioncoquinones and ancistroquinones from cell cultures of Triphyophyllum peltatum (Dioncophyllaceae) and Ancistrocladus abbreviatus (Ancistrocladaceae). Phytochemistry 69:2501

    Article  CAS  Google Scholar 

  218. Bringmann G, Zhang G, Hager A, Moos M, Irmer A, Bargou R, Chatterjee M (2011) Antitumoral activities of dioncoquinones B and C and related naphthoquinones gained from total synthesis or isolation from plants. Eur J Med Chem 46:5778

    Article  CAS  Google Scholar 

  219. Bringmann G, Rübenacker M, Geuder T, Aké Assi L (1991) Dioncophylline B, a naphthylisoquinoline alkaloid with a new coupling type from Triphyophyllum peltatum. Phytochemistry 30:3845

    Google Scholar 

  220. Bringmann G, Rübenacker M, Weirich R, Aké Assi L (1992) Dioncophylline C from the roots of Triphyophyllum peltatum, the first 5,1′-coupled Dioncophyllaceae alkaloid. Phytochemistry 41:4019

    Google Scholar 

  221. Bringmann G, Rübenacker M, Vogt P, Busse H, Aké Assi L, Peters K, von Schnering HG (1991) Dioncopeltine A and dioncolactone A: alkaloids from Triphyophyllum peltatum. Phytochemistry 30:1691

    Google Scholar 

  222. Bringmann G, Messer K, Schwöbel B, Brun R, Aké Assi L (2003) Habropetaline A, an antimalarial naphthylisoquinoline alkaloid from Triphyophyllum peltatum. Phytochemistry 62:345

    Google Scholar 

  223. Bringmann G, Saeb W, God R, Schäffer M, François G, Peters K, Peters EM, Proksch P, Hostettmann K, Akè Assi L (1998) 5’-O-Demethyldioncophylline A, a new antimalarial alkaloid from Triphyophyllum peltatum. Phytochemistry 49:1667

    Google Scholar 

  224. Bringmann G, Rübenacker M, Koch W, Koppler D, Ortmann T, Schäffer M, Aké Assi L (1994) 5′-O-Demethyl-8-O-methyl-7-epi-dioncophylline A and its ‘regularly’ configured atropisomer from Triphyophyllum peltatum. Phytochemistry 36:1057

    Google Scholar 

  225. Bringmann G, Messer K, Wolf K, Mühlbacher J, Grüne M, Louis AM (2002) Dioncophylline E from Dioncophyllum thollonii, the first 7,3′-coupled dioncophyllaceous naphthylisoquinoline alkaloid. Phytochemistry 60:389

    Article  CAS  Google Scholar 

  226. Bringmann G, Rischer H, Wohlfarth M, Schlauer J, Aké Assi L (2000) Droserone from cell cultures of Triphyophyllum peltatum (Dioncophyllaceae) and its biosynthetic origin. Phytochemistry 53:339

    Google Scholar 

  227. Padhye S, Dandawate P, Yusufi M, Ahmad A, Sarkar FH (2012) Perspectives on medicinal properties of plumbagin and its analogs. Med Res Rev 32:1131

    Article  CAS  Google Scholar 

  228. Yin Z, Zhang J, Chen L, Guo Q, Yang B, Zhang W, Kang W (2020) Anticancer effects and mechanisms of action of plumbagin: review of research advances. BioMed Res I:6940953

    Google Scholar 

  229. Badwaik HR, Kumari L, Nakhate K, Verma VS, Sakure K (2019) Phytoconstituent plumbagin: chemical, biotechnological and pharmaceutical aspects. In: Atta-ur-Rahman (ed) Studies in natural products chemistry, vol 63. Elsevier Science BV, Amsterdam, p 415

    Google Scholar 

  230. Lu JJ, Bao JL, Wu GS, Xu WS, Huang MQ, Chen XP, Wang YT (2013) Quinones derived from plant secondary metabolites as anti-cancer agents. Anti-Cancer Agents Med Chem 13:456

    CAS  Google Scholar 

  231. Roy A (2021) Plumbagin: a potential anti-cancer compound. Mini Rev Med Chem 21:731

    Article  CAS  Google Scholar 

  232. Liu Y, Cai Y, He C, Chen M, Li H (2017) Anticancer properties and pharmaceutical applications of plumbagin: a review. Am J Chin Med 45:423

    Article  Google Scholar 

  233. Kapoor N, Kandwal P, Sharma G, Gambhir L (2021) Redox ticklers and beyond: naphthoquinone repository in the spotlight against inflammation and associated maladies. Pharmacol Res 174:105968

    Article  CAS  Google Scholar 

  234. Maruyama D, Iida S, Ogawa G, Fukuhara N, Seo S, Miyazaki K, Yoshimitsu M, Kuroda J, Tsukamoto N, Tsujimura H, Hangaishi A, Yamauchi T, Utsumi T, Mizuno I, Takamatsu Y, Nagata Y, Minauchi K, Ohtsuka E, Hanamura I, Yoshida S, Yamasaki S, Suehiro Y, Kamiyama Y, Tsukasaki K, Nagai H (2021) Randomised phase II study to optimise melphalan, prednisolone, and bortezomib in untreated multiple myeloma (JCOG1105). Br J Haematol 192:531

    Article  CAS  Google Scholar 

  235. Yue J, Lin Z, Wang D, Feng Y, Sun H (1994) Plumbasides A–C, three naphthoquinones derivatives from Ceratostigma minus. Phytochemistry 35:1023

    Article  CAS  Google Scholar 

  236. Kreher B, Neszmélyi A, Wagner H (1990) Naphthoquinones from Dionaea muscipula. Phytochemistry 29:605

    Article  CAS  Google Scholar 

  237. Serrilli AM, Sanfilippo V, Ballero M, Sanna C, Poli F, Scartezzini P, Serafini M, Bianco A (2010) Polar and antioxidant fraction of Plumbago europaea L., a spontaneous plant of Sardinia. Nat Prod Res 24:633

    Google Scholar 

  238. Nwaka S, Ramirez B, Brun R, Maes L, Douglas F, Ridley R (2009) Advancing drug innovation for neglected diseases—criteria for lead progression. PLoS Negl Trop Dis 3:e440

    Article  Google Scholar 

  239. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648

    Google Scholar 

  240. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785

    Article  CAS  Google Scholar 

  241. Hariharan PC, Pople JA (1973) The influence of polarization functions on molecular orbital hydrogenation energies. Theor Chim Acta 28:213

    Article  CAS  Google Scholar 

  242. Bringmann G, Weirich R, Reuscher H, Jansen JR, Kinzinger L, Ortmann T (1993) The synthesis of all possible isomeric 6,8-dioxygenated 1,3-dimethyl-1,2,3,4-tetrahydroisoquinoline methyl ethers—useful chiral building blocks for naphthylisoquinoline alkaloids. Liebigs Ann Chem:877

    Google Scholar 

  243. Bringmann G (1986) The naphthylisoquinoline alkaloids. In: Brossi A (ed) The alkaloids: chemistry and pharmacology, vol 29. Academic Press, New York, p 141

    Google Scholar 

  244. Shamma M (1972) The isoquinoline alkaloids—chemistry and pharmacology. Academic Press, New York, p 501

    Google Scholar 

  245. Labanca F, Ovesna J, Milella L (2018) Papaver somniferum L. taxonomy, uses and new insight in poppy alkaloid pathways. Phytochem Rev 17:853

    Google Scholar 

  246. Wicks C, Hudlicky T, Rinner U (2021) Morphine alkaloids: history, biology, and synthesis. In: Knölker HJ (ed) The alkaloids, vol 86. Academic Press, New York, p 145

    Google Scholar 

  247. Bringmann G, Münchbach M, Messer K, Koppler D, Michel M, Schupp O, Wenzel M, Louis AM (1999) Cis- and trans-isoshinanolone from Dioncophyllum thollonii: absolute configuration of two ‘known’, wide-spread natural products. Phytochemistry 51:693

    Article  CAS  Google Scholar 

  248. Hanson SW, Crawford M, Thanasingh DPJ (1981) (+)-Isoshinanolone and 2-methylbenzofuran-4-carbaldehyde from the fish-stunning plant Habropetalum dawei. Phytochemistry 20:1162

    Article  CAS  Google Scholar 

  249. Bringmann G, Wohlfarth M, Rischer H, Rückert M, Schlauer J (1998) The polyketide folding mode in the biogenesis of isoshinanolone and plumbagin from Ancistrocladus heyneanus (Ancistrocladaceae). Tetrahedron Lett 39:8445

    Article  CAS  Google Scholar 

  250. Bringmann G, Schlauer J, Rückert M, Wiesen B, Ehrenfeld K, Proksch P, Czygan FC (1999) Host-derived acetogenins involved in the incompatible parasitic relationship between Cuscuta reflexa (Convolvulaceae) and Ancistrocladus heyneanus (Ancistrocladaceae). Plant Biol 1:581

    Article  CAS  Google Scholar 

  251. Bringmann G, Kehr C, Dauer U, Guldern KP, Haller RD, Bär S, Isahakia MA, Robertson SA, Peters K (1993) Ancistrocladus robertsoniorum “produces” pure crystalline droserone when wounded. Planta Med 93:A622

    Article  Google Scholar 

  252. Peters K, Peters EM, von Schnering HG, Bringmann G, Kehr C, Haller RD, Bär S, Isahakia MA, Robertson SA (1995) Crystal structure of droserone in “biogenic crystals” found under the stem bark of Ancistrocladus robertsoniorum. Z Kristallogr 210:290

    Article  CAS  Google Scholar 

  253. Thomson RH (1997) Naturally occurring quinones IV. Chapman and Hall, London

    Google Scholar 

  254. Babula P, Adam V, Havel L, Kizek R (2009) Noteworthy secondary metabolites naphthoquinones—their occurrence, pharmacological properties and analysis. Curr Pharm Anal 5:47

    Article  CAS  Google Scholar 

  255. Hook I, Mills C, Sheridan H (2014) Bioactive naphthoquinones from higher plants. In: Atta-ur-Rahman (ed) Studies in natural products chemistry, vol 41. Elsevier Science BV, Amsterdam, p 119

    Google Scholar 

  256. Bringmann G, Gulder T, Reichert M, Meyer F (2006) Ancisheynine, the first N,C-coupled naphthylisoquinoline alkaloid: total synthesis and stereochemical analysis. Org Lett 8:1037

    Article  CAS  Google Scholar 

  257. Bringmann G, Rückert M, Schlauer J, Herderich M (1998) Separation and identification of dimeric naphthylisoquinoline alkaloids by liquid chromatography coupled to electrospray ionization mass spectrometry. J Chromatogr A 810:231

    Article  CAS  Google Scholar 

  258. Bringmann G, Saeb W, Peters K, Peters EM (1997) The absolute stereostructure of dioncophylline A by anomalous X-ray dispersion of a 5-bromo derivative. Phytochemistry 45:1283

    Article  CAS  Google Scholar 

  259. Cheek M, Frimodt-Møller C, Hørlyck V (2000) A new submontane species of Ancistrocladus from Tanzania. Kew Bull 55:207

    Article  Google Scholar 

  260. Gilg E (1895) Ancistrocladaceae. In: Engler A (ed) Die natürlichen Pflanzenfamilien nebst ihren Gattungen und wichtigeren Arten insbesondere den Nutzpflanzen, Teil 3, Abteilung 6. Verlag Wilhelm Engelmann, Leipzig, p 274

    Google Scholar 

  261. Gilg E (1925) Ancistrocladaceae. In: Engler A (ed) Die natürlichen Pflanzenfamilien nebst ihren Gattungen und wichtigeren Arten insbesondere den Nutzpflanzen, 2nd edn, vol 21. Duncker & Humblot, Berlin, p 589

    Google Scholar 

  262. Hutchinson J, Dalziel JM (1954) Ancistrocladaceae. In: Hutchinson J, Dalziel JM (eds, revised by Keay RWJ) Flora of West Tropical Africa, 2nd edn. Crown Agents Overseas Governments and Administration, London, p 233

    Google Scholar 

  263. Porembski S (2002) Ancistrocladaceae. In: Kubitzki K, Bayer C (eds) The families and genera of vascular plants. V. Flowering plants—Dicotyledons, Malvales, Capparales and Non-betalain Caryophyllales, vol 5. Springer, Heidelberg, p 25

    Google Scholar 

  264. Meimberg H, Dittrich P, Bringmann G, Schlauer J, Heubl G (2000) Molecular phylogeny of Caryophyllidae s.I. based on matK sequences with special emphasis on carnivorous taxa. Plant Biol 2:218

    Google Scholar 

  265. Cuénoud P, Savolainen V, Chatrou LW, Powell M, Grayer RJ, Chase MW (2002) Molecular phylogenetics of Caryophyllales based on nuclear 18S rDNA and plastid rbcL, atpB, and matK DNA sequences. Am J Bot 89:132

    Article  Google Scholar 

  266. Heubl G, Bringmann G, Meimberg H (2006) Molecular phylogeny and character evolution of carnivorous plant families in Caryophyllales—revisited. Plant Biol 8:821

    Article  CAS  Google Scholar 

  267. Cameron KM, Chase MW, Swensen SM (1995) Molecular evidence for the relationships of Triphyophyllum (Dioncophyllaceae) and Ancistrocladus (Ancistrocladaceae). Am J Bot 82:117

    Google Scholar 

  268. de Loureiro (1790) Genus XXVII. Bembix. In: Flora Cochinchinensis, vol 1. Typis, Et Expensis Academics, Ulyssipone, p 282

    Google Scholar 

  269. Wallich N (1829) A numerical list of dried specimens of plants, in the East India Company’s Museum collected under the superintendence of Dr. Wallich of the Company’s botanic garden at Calcutta, nos. 1–2153. Lithographed manuscript, London

    Google Scholar 

  270. Planchon MJE (1849) Essai monographique d’une nouvelle famille de plantes propose sous le nom d’Ancistrocladacées. Ann Sci Nat Bot 3 Ser Bot 13:316

    Google Scholar 

  271. van Tieghem MP (1903) Sur les Ancistrocladacées. J Bot 17:151

    Google Scholar 

  272. Pham DP, Tran H (2009) Cytological activities and cytotoxicities of the alkaloidal components and naphthoquinones from three Vietnamese Ancistrocladus species. Tap Chi Duoc Hoc 49:23

    Google Scholar 

  273. Massart J (1896) Sur la morphologie du bourgeon. Ann Jard Bot Buitenzorg 13:121

    Google Scholar 

  274. Hallé N (1973) Crochets de lianes du Gabon: Ancistrocladus et Anacolosa (Ancistrocladacées et Olacacées). Adansonia 13:299

    Google Scholar 

  275. Graham J (1839) 206. Ancistrocladus heyneanus. In: Graham J (ed) A catalogue of the plants growing in Bombay and its vicinity. Government Press, Bombay, p 28

    Google Scholar 

  276. Van Rhede tot Draekestein H (1686) Ancistrocladus heyneanus Wallich ex J. Graham (as Modira valli). In: Hortus indicus malabaricus, vol 7. Van Someren & Dyck, Amstelodami, p 87, tab 46

    Google Scholar 

  277. Wight R (1853) Ancistrocladus heyneanus Wallich ex J. Graham. In: Icones plantarum Indiae orientalis (or figures of Indian plants), vol 6. American Mission Press, Madras, p 12, including plate no. 1987–88

    Google Scholar 

  278. De Candolle A (1864) Ancistrocladaceae. In: De Candolle A (ed) Prodromus systematis naturalis regni vegetabilis, vol 16. Victoris Masson et Filii, Paris, p 601

    Google Scholar 

  279. Thiselton Dyer WT (1874) XXV. Dipterocarpaceae. In: Hooker JD (ed) Flora of British India, vol 1. Lovell Reeve & Co. Ltd., Ashford, Kent, p 299

    Google Scholar 

  280. Brandis D (1906) Order XVIII. Ancistrocladaceae. In: Brandis D (ed) Indian trees—an account of trees, shrubs, woody climbers, bamboos and palms indigenous or commonly cultivated in the British Indian Empire. Bishen Singh Mahendra Pal Singh, Dehradun, p 73

    Google Scholar 

  281. Hutchinson J (1973) 149. Ancistrocladaceae. In: Hutchinson J (ed) The families of flowering plants—arranged according to a new system based on their probable phylogeny, vol 1, 3rd edn. Clarendon Press, Oxford, p 351

    Google Scholar 

  282. Santapau H (1967) The flora of Khandala on the Western Ghats of India. In: The manager of publication, civil lines, Calcutta (ed) Records of the botanical survey of India, vol 16, 3rd edn. Loyal Art Press Private Limited, Calcutta, p 15

    Google Scholar 

  283. Rao VS (1969) The floral anatomy of Ancistrocladus. Proc Indian Acad Sci Sect B 70:215

    Article  Google Scholar 

  284. Ramamoorthy TP (1976) Ancistrocladaceae. In: Saldanha CJ, Nicolson DH (eds) Flora of Hassan District, Karnataka. Amerind Publishing, New Dehli, p 171

    Google Scholar 

  285. Das S (1993) Ancistrocladaceae. In: Sharma BD, Sanjappa M (eds) Flora of India, Portulacaceae-Ixonanthaceae, vol 5. Botanical Survey of India, Calcutta, p 252

    Google Scholar 

  286. Kundu SR (2005) A synopsis of Ancistrocladaceae in Indian subcontinent: its distribution and endemism. Geobios 32:221

    Google Scholar 

  287. Panday S, Roy DK, Odyuo N, Sinha BK (2012) Notes on a little known genus Ancistrocladus Wallich ex Wight & Arnott [Ancistrocladaceae] from Northeast India. Pleione 6:336

    Google Scholar 

  288. Datar MN, Lakshminarasimhan P (2013) Check list of wild angiosperms of Bhagwan Mahavir (Molem) National Park, Goa, India. Check List 9:186

    Article  Google Scholar 

  289. Bringmann G, Pokorny F, Zinsmeister HD (1991) Ancistrocladus, eine botanisch und chemisch bemerkenswerte Gattung. Der Palmengarten 55(3):13

    Google Scholar 

  290. Bringmann G, Schneider C, Pokorny F, Lorenz HJ, Fleischmann H, Sankaranarayanan TR, Aké Assi L (1993) The cultivation of the genus Ancistrocladus. Planta Med 59:A623

    Google Scholar 

  291. Vahl M (1810) Beskrivelse over nye Planteslaegter—Wormia. Skr Naturhist Selsk 6:104

    Google Scholar 

  292. Walker-Arnott G (1836) Malphigiaceae. Nova Acta Acad Caes Leop-Carol German Nat Cur 18:325

    Google Scholar 

  293. Thwaites GHK (1849) Note on the genus Ancistrocladus Wallich. Trans Linn Soc Lond 21:225, Figs. 1–18

    Google Scholar 

  294. Trimen H (1893) Ancistrocladaceae. In: A handbook to the flora of Ceylon (containing descriptions of all the species of flowering plants indigenous to the island, and notes on their history, distribution, and uses), with an atlas of plates (illustrating some of the more interesting species), part 1. Dulau & Co., London, p 138, plate XVI

    Google Scholar 

  295. Boorsma WG (1899) Ancistrocladaceae. In: Onderzoek naar de Plantenstoffen van Nederlandsch-Indie. Mededeelingen uit ‘S Lands Plantentuin, vol 31. G. Kolff & Co., Batavia, p 4

    Google Scholar 

  296. Abeywickrama BA (1959) A provisional check list of the flowering plants of Ceylon. Ceylon J Sci (Bio Sci) 2:119

    Google Scholar 

  297. Harriman NA (1987) Ancistrocladaceae. In: Dassanayake MD (ed) A revised handbook to the flora of Ceylon, vol 6. Amerind Publishing, New Dehli, p 1

    Google Scholar 

  298. Craib WG (1931) Ancistrocladaceae. In: Florae Siamensis enumeration—a list of plants known from Siam with records of their occurrence, vol 1. Siam Society, Bangkok, p 148

    Google Scholar 

  299. Parkinson CE (1972) Ancistrocladaceae. In: A forest flora of the Andaman Islands. Bishen Singh Mahendra Pal Singh, New Connaught Place, Dehradun, p 94

    Google Scholar 

  300. Dagar JC, Singh T (1999) Ancistrocladaceae. In: Plant resources of the Andaman & Nicobar Islands (enumeration and utilisation of vascular plants), vol 2. Bishen Singh Mahendra Pal Singh, New Connaught Place, Dehradun, p 308

    Google Scholar 

  301. Hajra PK, Rao PSN, Mudgal (1999) Ancistrocladaceae. In: Flora of Andaman and Nicobar Islands, vol 1. Botanical Survey of India, Calcutta, p 153

    Google Scholar 

  302. Pandey RP, Dilwakar PC (2008) An integrated check-list flora of Andaman and Nicobar Islands. J Econ Taxon Bot 32:403

    Google Scholar 

  303. Moore S, Tandy G (1927) Notes on two species of Loureiro’s Flora Cochinchinensis. J Bot 65:279

    Google Scholar 

  304. Keng H (1967) Observations on Ancistrocladus tectorius. Gard Bull Singapore 22:113

    Google Scholar 

  305. Keng H (1970) Further observations on Ancistrocladus tectorius (Ancistrocladaceae). Gard Bull Singapore 25:235

    Google Scholar 

  306. Merrill ED (1928) A second supplementary list of Hainan plants. Lingnan Sci J 6:323

    Google Scholar 

  307. Mo SL, Zhong YC (1987) Plantae novae guangxiensis. Guihaia 7:287

    Google Scholar 

  308. Ku T (1999) Ancistrocladaceae. In: Flora Republicae Popularis Sinicae. Science Press, Beijing, p 267

    Google Scholar 

  309. Chayamarit K, Balslav H (2020) Ancistrocladaceae. In: Flora of Thailand, vol 14, part 4. The Forest Herbarium, National Park, Wildlife and Plant Conservation Department, Bangkok, p 511

    Google Scholar 

  310. Yunoh SMM (2007) Ancistrocladus tectorius (Lour.) Merill. In: Flora of Malaysia. MyCHM i-Newsletter Part 3. Forest Research Institute Malaysia (FRIM), p 46

    Google Scholar 

  311. Harada N, Nakanishi K (1972) The Exciton Chirality method and its application to configurational and conformational studies of natural products. Acc Chem Res 5:257

    Article  CAS  Google Scholar 

  312. Harada N, Nakanishi K (1983) Circular dichroic spectroscopy—excition coupling in organic stereochemistry. University Science Books, Mill Valley, CA

    Google Scholar 

  313. Berova N, Nakanishi K (2000) Exciton Chirality method: principles and application. In: Nakanishi K, Berova N, Woody RW (eds) Circular dichroism: principles and application, 2nd edn. Wiley-VCH, New York, p 337

    Google Scholar 

  314. Harada N, Nakanishi K, Berova N (2012) Electronic CD Exciton Chirality method: principles and application. In: Berova N, Polavarapu PL, Nakanishi K, Woody RW (eds) Comprehensive chiroptical spectroscopy—applications in stereochemical analysis of synthetic compounds, natural products, and biomolecules, vol 2. Wiley, Hoboken, NJ, p 115

    Chapter  Google Scholar 

  315. Govindachari TR, Parthasarathy PC, Modi JD (1971) Chemical investigation of Ancistrocladus heyneanus Wall.: part IV—structure & synthesis of ancistroquinone. Indian J Chem 9:1042

    Google Scholar 

  316. Desai HK, Gawad DH, Govindachari TR, Joshi BS, Parthasarathy PC, Ramachandran KS, Ravindranath KR, Sidhaye AR, Viswanathan N (1976) Chemical investigation of some Indian plants: part IX. Indian J Chem 14B:473

    CAS  Google Scholar 

  317. Rizzacasa MA, Sargent MV (1989) Synthetic approaches to the alkaloids of the Ancistrocladaceae: dehydroancistrocladisine. J Chem Soc Chem Commun:301

    Google Scholar 

  318. Rizzacasa MA, Sargent MV (1991) Synthetic approaches to the naphthylisoquinoline alkaloids. Part 1. Dehydroancistrocladisine. J Chem Soc Perkin Trans 1:841

    Google Scholar 

  319. Rizzacasa MA, Sargent MV (1990) Synthetic approaches to the alkaloids of the Ancistrocladaceae: (–)-O-methylancistrocladine and (+)-O-methylhamatine. J Chem Soc Chem Commun:894

    Google Scholar 

  320. Rizzacasa MA, Sargent MV (1991) Synthetic approaches to the alkaloids of the Ancistrocladaceae: control of the diastereoisomer excess in the synthesis of axially chiral biaryls: a synthesis of (–)-ancistrocladinine. J Chem Soc Chem Commun:278

    Google Scholar 

  321. Leighton BN, Rizzacasa MA (1995) Formal synthesis of (–)-O-methylancistrocladine. J Org Chem 60:5702

    Article  CAS  Google Scholar 

  322. Chau P, Czuba IR, Rizzacasa MA, Bringmann G, Gulden KP, Schäffer M (1996) Convergent synthesis of naphthylisoquinoline alkaloids: total synthesis of (+)-O-methylancistrocline. J Org Chem 61:7101

    Article  CAS  Google Scholar 

  323. Meyers AI, Knaus G, Kamata K, Ford ME (1976) Asymmetric synthesis of R and S α-alkylalkanoic acids from metalation and alkylation of chiral 2-oxazolines. J Am Chem Soc 98:567

    Article  CAS  Google Scholar 

  324. Gant TG, Meyers AI (1994) The chemistry of 2-oxazolines (1985–present). Tetrahedron 50:2297

    Article  CAS  Google Scholar 

  325. Wolfe JP (2005) Meyers oxazoline method. In: Li JJ, Corey EJ (eds) Name reactions in heterocyclic chemistry. Wiley, Hoboken, NJ, p 237

    Google Scholar 

  326. Li JJ (2009) Meyers oxazoline method. In: Li JJ (ed) Name reactions: a collection of detailed mechanisms and synthetic applications, 4th edn. Springer Verlag, Berlin, Heidelberg, p 351

    Chapter  Google Scholar 

  327. Bringmann G, Pabst T, Henschel P, Kraus J, Peters K, Peters EM, Rycroft DS, Connolly JD (2000) Nondynamic and dynamic kinetic resolution of lactones with stereogenic centers and axes: stereoselective total synthesis of herbertenediol and mastigophorenes A and B. J Am Chem Soc 122:9127

    Article  CAS  Google Scholar 

  328. Bringmann G, Menche D (2001) First, atropo-enantioselective total synthesis of the axially chiral phenylanthraquinone natural products knipholone and 6′-O-methylknipholone. Angew Chem 113:1733; Angew Chem Int Ed 40:1687

    Google Scholar 

  329. Bringmann G, Menche D, Kraus J, Mühlbacher J, Peters K, Peters EM, Brun R, Bezabih M, Abegaz BM (2002) Atropo-enantioselective total synthesis of knipholone and related antiplasmodial phenylanthraquinones. J Org Chem 67:5595

    Article  CAS  Google Scholar 

  330. Bringmann G, Menche D, Mühlbacher J, Reichert M, Saito N, Pfeiffer SS, Lipshutz BH (2002) On the verge of axial chirality: atroposelective synthesis of the AB-biaryl fragment of vancomycin. Org Lett 4:2833

    Article  CAS  Google Scholar 

  331. Bringmann G, Hinrichs J, Henschel P, Kraus J, Peters K, Peters EM (2002) Atropo-enantioselective synthesis of the natural bicoumarin (+)-isokotanin A via a configurationally stable biaryl lactone. Eur J Org Chem:1096

    Google Scholar 

  332. Kitamura M, Ohmori K, Kawase T, Suzuki K (1999) Total synthesis of pradimicinone, the common aglycon of the pradimicin-benanomicin antibiotics. Angew Chem 111:1308; Angew Chem Int Ed 38:1229

    Google Scholar 

  333. Ohmori K, Tamiya M, Kitamura M, Kato H, Oorui M, Suzuki K (2005) Regio- and stereocontrolled total synthesis of benanomicin B. Angew Chem 117:3939; Angew Chem Int Ed 44:3871

    Google Scholar 

  334. Tamiya M, Ohmori K, Kitamura M, Kato H, Arai T, Oorui M, Suzuki K (2007) General synthesis route to benanomicin-pradimicin antibiotics. Chem Eur J 13:9791

    Article  CAS  Google Scholar 

  335. Bringmann G, Breuning M (1998) Enantioselective addition of diethylzinc to aldehydes using novel axially chiral 2-aminomethyl-1-(2′-hydroxy–phenyl)naphthalene catalysts. Tetrahedron Asymmetry 9:667

    Google Scholar 

  336. Bringmann G, Pfeifer RM, Rummey C, Hartner K, Breuning M (2003) Synthesis of enantiopure axially chiral C3-symmetric tripodal ligands and their application as catalysts in the asymmetric addition of dialkylzinc to aldehydes. J Org Chem 68:6859

    Article  CAS  Google Scholar 

  337. Bringmann G, Pfeifer RM, Schreiber P, Hartner K, Schraut M, Breuning M (2004) The ‘lactone method’: enantioselective preparation of novel P,N-biaryl ligands and their use in the synthesis of the biarylic alkaloids, ancistrotanzanine B and ancistroealaine A. Tetrahedron 60:4349

    Article  CAS  Google Scholar 

  338. Mori K, Itakura T, Akiyama T (2016) Enantiodivergent atroposelective of chiral biaryls by asymmetric transfer hydrogenation: chiral phosphoric acid catalysed dynamic kinetic resolution. Angew Chem 128:11814; Angew Chem Int Ed 55:11642

    Google Scholar 

  339. Yu C, Huang H, Li X, Zhang Y, Wang W (2016) Dynamic kinetic resolution of biaryl lactones via a chiral bifunctional amine thiourea-catalyzed highly atropo-enantioselective transesterification. J Am Chem Soc 138:6956

    Article  CAS  Google Scholar 

  340. Bringmann G, Hartung T, Göbel L, Schupp O, Ewers CLJ, Schöner B, Zagst R, Peters K, von Schnering HG, Burschka C (1992) Synthesis and structure of benzonaphthopyranones, useful bridged model precursors for stereoselective biaryl synthesis. Liebigs Ann Chem:225

    Google Scholar 

  341. Bringmann G, Hinrichs J, Kraus J, Wuzik A, Schulz T (2000) Nondynamic kinetic resolution of configurationally stable biaryl lactones by reduction with oxazaborolidine-activated borane: AM1 studies and experimental verification. J Org Chem 65:2517

    Article  CAS  Google Scholar 

  342. Bringmann G, Breuning M, Pfeifer RM, Schenk WA, Kamikawa K, Uemura M (2002) The lactone concept—a novel approach to the metal-assisted atroposelective construction of axially chiral biaryl systems. J Organomet Chem 661:31

    Article  CAS  Google Scholar 

  343. Bringmann G, Schneider C (1983) Improved methods for dehydration and hydroxy/halogen exchange using novel combinations of triphenylphosphine and halogenated ethanes. Synthesis:139

    Google Scholar 

  344. Johansson Seechurn CCC, Kitching MO, Colacot TJ, Snieckus V (2012) Palladium-catalyzed cross-coupling: a historical contextual perspective to the 2010 Nobel prize. Angew Chem 124:5150; Angew Chem Int Ed 51:5062

    Google Scholar 

  345. Meijere A, Bräse S, Oestreich M (2013) Metal-catalyzed cross-coupling reactions and more. Part 1–3. Wiley-VCH Verlag, Weinheim

    Google Scholar 

  346. Nicolaou KC, Bulger PG, Sarlah D (2005) Palladium-catalyzed cross-coupling reactions in total synthesis. Angew Chem 117:4516; Angew Chem Int Ed 44:4442

    Google Scholar 

  347. Barder TE, Walker SD, Martinelli JR, Buchwald SL (2005) Catalysts for Suzuki-Miyaura coupling processes: scope and studies of the effect of ligand structure. J Am Chem Soc 127:4685

    Article  CAS  Google Scholar 

  348. Watanabe M, Hisamatsu S, Hotokezaka H, Furukawa S (1986) Reaction of lithiated senecioamide and related compounds with benzynes: efficient synthesis of naphthols and naphthoquinones. Chem Pharm Bull 34:2810

    Article  CAS  Google Scholar 

  349. Urlaub E, Popp J, Kiefer W, Bringmann G, Koppler D, Schneider H, Zimmermann U, Schrader B (1998) FT-Raman investigation of alkaloids in the liana Ancistrocladus heyneanus. Biospectroscopy 4:113

    Article  CAS  Google Scholar 

  350. Thomas R (2001) A biosynthetic classification of fungal and streptomycete fused-ring aromatic polyketides. ChemBioChem 2:612

    Article  CAS  Google Scholar 

  351. Burza S, Croft SL, Boelaert M (2018) Leishmaniasis. Lancet 392:951

    Article  Google Scholar 

  352. Hotez PJ (2018) The rise of leishmaniasis in the twenty-first century. Trans R Soc Trop Med Hyg 112:421

    Article  Google Scholar 

  353. Kevric I, Cappel MA, Keeling JH (2015) New world and old world Leishmania infections—a practical review. Dermatol Clin 33:579

    Article  CAS  Google Scholar 

  354. Den Boer M, Argaw JJ, Jannin J, Alvar J (2011) Leishmaniasis impact and treatment access. Clin Microbiol Infect 17:1471

    Article  Google Scholar 

  355. Wheeler RJ, Gluenz E, Gull K (2011) The cell cycle of Leishmania: morphogenetic events and their implications for parasite biology. Mol Microbiol 79:647

    Article  CAS  Google Scholar 

  356. Gantt KR, Schultz-Cherry S, Rodriguez N, Jeronimo SM, Nascimento ET, Goldman TL, Recker TJ, Miller MA, Wilson ME (2003) Activation of TGF-β by Leishmania chagasi: importance for parasite survival in macrophages. J Immunol 170:2613

    Article  CAS  Google Scholar 

  357. Awasthi A, Marthur RK, Saha B (2004) Immune response to Leishmania infection. Indian J Med Res 119:238

    CAS  Google Scholar 

  358. Murphy MLL, Wille U, Villegas EN, Hunter CA, Farrell JP (2001) IL-10 mediates susceptibility to Leishmania donovani infection. Eur J Immunol 31:2848

    Google Scholar 

  359. Büscher P, Cecchi G, Jamonneau V, Priotto G (2017) Human African trypanosomiasis. Lancet 390:2397

    Article  Google Scholar 

  360. Kennedy PGE, Rodgers J (2019) Clinical and neuropathogenetic aspects of human African trypanosomiasis. Front Immunol 10:39

    Article  CAS  Google Scholar 

  361. Holanda-Freitas IT, do Carmo Cupertino M, dos Santos EC, Oliveira L, Geller M, Siqueira-Batista R (2020) Human African trypanosomiasis: current standing and challenges. J Trop Pathol 49:133

    Google Scholar 

  362. Aksoy S, Buscher P, Lehane M, Solano P, Van Den Abbeele J (2017) Human African trypanosomiasis control: achievements and challenges. PLoS Negl Trop Dis 11:e0005454

    Article  Google Scholar 

  363. Sutherland CS, Yukich J, Goeree R, Tediosi F (2015) A literature review of economic evaluations for a neglected tropical disease: human African trypanosomiasis (“sleeping sickness”). PLoS Negl Trop Dis 9:e0003397

    Article  Google Scholar 

  364. Alsford S, Eckert S, Baker N, Glover L, Sanchez-Flores A, Leung KF, Turner DJ, Field MC, Berriman M, Horn D (2012) High-throughput decoding of antitrypanosomal drug efficacy and resistance. Nature 482:232

    Article  CAS  Google Scholar 

  365. Kumar A, Das S, Purkait B, Sardar AH, Ghosh AK, Dikhit MR, Abishek K, Das P (2014) Ascorbate peroxidase, a key molecule regulating amphotericin B resistance in clinical isolates of Leishmania donovani. Antimicrob Agents Chemother 58:6172

    Article  Google Scholar 

  366. Shadab M, Jha B, Asad M, Deepthi M, Kamran M, Ali N (2017) Apoptosis-like cell death in Leishmania donovani treated with KalsomeTM10, a new liposomal amphotericin B. PLoS One 12:e0171306

    Article  Google Scholar 

  367. Phillips MA, Burrows JN, Manyando C, van Huijsduijnen RH, van Voorhis WC, Wells NC (2017) Malaria. Nat Rev Dis Primers 3:17050

    Article  Google Scholar 

  368. Cowman AF, Healer J, Marapana D, Marsh K (2016) Malaria: biology and disease. Cell 167:610

    Article  CAS  Google Scholar 

  369. Moxon CA, Gibbins MP, McGuinness D, Milner Jr DA, Marti M (2020) New insights into malaria pathogenesis. Annu Rev Pathol Mech Dis 15:315

    Google Scholar 

  370. World Malaria Report 2020 (2020) 20 years of global progress and challenges. World Health Organization, Geneva

    Google Scholar 

  371. Kokwaro G (2009) Ongoing challenges in the management of malaria. Malar J 8:S2

    Article  Google Scholar 

  372. Guyant P, Corbel V, Guérin PJ, Lautissier A, Nosten F, Boyer S, Coosemans M, Dondorp AM, Sinou V, Yeung S, White N (2015) Past and new challenges for malaria control and elimination: the role of operational research for innovation in designing interventions. Malar J 14:279

    Article  Google Scholar 

  373. Blasco B, Leroy D, Fidock DA (2017) Antimalarial drug resistance: linking Plasmodium falciparum parasite biology to the clinic. Nat Med 23:917

    Article  CAS  Google Scholar 

  374. Wicht KJ, Mok S, Fidock DA (2020) Molecular mechanisms of drug resistance in Plasmodium falciparum malaria. Annu Rev Microbiol 74:431

    Article  CAS  Google Scholar 

  375. Duffey M, Blasco B, Burrows JN, Wells TNC, Fidock DA, Leroy D (2021) Assessing risks of Plasmodium falciparum resistance to select next-generation antimalarials. Trends Parasitol 37:709

    Article  CAS  Google Scholar 

  376. Goldberg DE, Slater AFG (1992) The pathway to haemoglobin degradation in malaria parasites. Parasitol Today 8:280

    Article  CAS  Google Scholar 

  377. Olliaro PL, Goldberg DE (1995) The Plasmodium digestive vacuole: metabolic headquarters and choice drug target. Parasitol Today 11:294

    Article  CAS  Google Scholar 

  378. Sullivan DJ, Gluzman IY, Goldberg DE (1996) Plasmodium hemozoin formation mediated by histidine-rich proteins. Science 271:219

    Article  CAS  Google Scholar 

  379. Dorn A, Vippagunta SR, Matile H, Jaquet C, Vennerstrom JL, Ridley RG (1998) An assessment of drug-haematin binding as a mechanism for inhibition of haematin polymerisation by quinolone antimalarials. Biochem Pharmacol 55:727

    Article  CAS  Google Scholar 

  380. Pagola S, Stephens PW, Bohle DS, Kosar AD, Madsen SK (2000) The structure of malaria pigment β-haematin. Nature 404:307

    Article  CAS  Google Scholar 

  381. de Villiers KA, Gildenhuys J, le Roex T (2012) Iron(III)protoporphyrin IX complexes of the antimalarial Cinchona alkaloids quinine and quinidine. ACS Chem Biol 7:666

    Article  Google Scholar 

  382. Heller LE, Roepe PD (2018) Quantification of free ferriportoporphyrin IX heme and hemozoin for artimisinin sensitive versus delayed clearance phenotype Plasmodium falciparum malarial parasites. Biochemistry 57:6927

    Article  CAS  Google Scholar 

  383. Blair JMA, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJV (2015) Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol 13:42

    Article  CAS  Google Scholar 

  384. Peterson E, Kaur P (2018) Antibiotic resistance mechanisms in bacteria: relationships between resistance determinants of antiobiotic producers, environmental bacteria, and clinical pathogens. Front Microbiol 9:2928

    Article  Google Scholar 

  385. Otto M (2009) Staphylococcus epidermidis—the ‘accidental’ pathogen. Nat Rev Microbiol 7:555

    Article  CAS  Google Scholar 

  386. Brescó MS, Harris LG, Thompson K, Stanic B, Morgenstern M, O’Mahony LO, Richards RG, Moriarty TF (2017) Pathogenic mechanisms and host interactions in Staphylococcus epidermidis device-related infection. Front Microbiol 8:1401

    Article  Google Scholar 

  387. Chambers HF, DeLeo FR (2009) Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat Rev Microbiol 7:629

    Article  CAS  Google Scholar 

  388. Turner NA, Sharma-Kuinkel BK, Maskarinec SA, Eichenberger EM, Shah PP, Carugati M, Holland TL, Fowler Jr VG (2019) Methicillin-resistant Staphylococcus aureus: an overview of basic and clinical research. Nat Rev Microbiol 17:203

    Google Scholar 

  389. De Oliveira GC, Vasconcelos CC, Lopes AJO, de Sousa Cartágenes MS, Filho AKDB, do Nascimento FRF, Ramos RM, Pires ERRB, de Andrade MS, Rocha FMG, de Andrade Monteiro C (2018) Candida infections and therapeutic strategies: mechanisms of action for traditional and alternative agents. Front Microbiol 9:1351

    Google Scholar 

  390. Pappas PC, Lionakis MS, Arendrup MC, Ostrosky-Zeichner L, Kullberg BJ (2018) Invasive candidiasis. Nat Rev Dis Primers 4:18026

    Article  Google Scholar 

  391. Atriwal T, Azeem K, Husain FM, Hussain A, Khan MN, Alajmi MF, Abid M (2021) Mechanistic understanding of Candida albicans biofilm formation and approaches for its inhibition. Front Microbiol 12:638

    Article  Google Scholar 

  392. Lohse MB, Gulati M, Johnson AD, Nobile CJ (2018) Development and regulation of single- and multi-species Candida albicans biofilms. Nat Rev Microbiol 16:19

    Article  CAS  Google Scholar 

  393. Smallcombe SH, Patt SL, Keifer PA (1995) WET solvent suppression and its application to LC-NMR and high-resolution NMR spectroscopy. J Magn Reson Ser A 117:295

    Article  CAS  Google Scholar 

  394. Nicholson JK, Foxall PJD, Spraul M, Farrant RD, Lindon JC (1995) 750 MHz 1H and 13C NMR spectroscopy of human blood plasma. Anal Chem 67:793

    Article  CAS  Google Scholar 

  395. Berova N, Nakanishi K, Woody RW (2000) Circular dichroism: principles and applications, 2nd edn. Wiley-VCH, New York

    Google Scholar 

  396. Berova N, Di Bari L, Pescitelli G (2007) Application of electronic circular dichroism in configurational and conformational analysis of organic compounds. Chem Soc Rev 36:914

    Article  CAS  Google Scholar 

  397. Di Bari L, Pescitelli G (2010) Electronic circular dichroism. In: Grunenberg J (ed) Computational spectroscopy—methods, experiments and applications. Wiley-VCH, Weinheim, p 241

    Google Scholar 

  398. Berova N, Woody RW, Polavarapu P, Nakanishi K (2012) Comprehensive chiroptical spectroscopy. Wiley-VCH, New York

    Book  Google Scholar 

  399. Li XC, Ferreira D, Ding Y (2010) Determination of absolute configuration of natural products: theoretical calculation of electronic circular dichroism as a tool. Curr Org Chem 14:1678

    Article  CAS  Google Scholar 

  400. Nugroho AE, Morita H (2014) Circular dichroism calculation for natural products. J Nat Med 68:1

    Article  CAS  Google Scholar 

  401. Superchi S, Scafato P, Górecki GP (2018) Absolute configuration determination by quantum mechanical calculation of chiroptical spectra: basics and applications to fungal metabolites. Curr Med Chem 25:287

    Article  CAS  Google Scholar 

  402. Liu L, Bruhn T, Guo L, Götz DCG, Brun R, Stich A, Che Y, Bringmann G (2011) Chloropupukeanolides C-E: cytotoxic pupukeanane chlorides with a spiroketal skeleton from Pestalotiopsis fici. Chem Eur J 17:2604

    Article  CAS  Google Scholar 

  403. Li J, Li MY, Bruhn T, Götz DCG, Xiao Q, Satyanandamurty T, Wu J, Bringmann G (2012) Andraxylocarpins A–E: structurally intriguing limonoids from the true mangroves Xylocarpus granatum and Xylocarpus moluccensis. Chem Eur J 18:14342

    Article  CAS  Google Scholar 

  404. Almeida C, Hemberger Y, Schmitt SM, Bouhired S, Natesan L, Kehraus S, Dimas K, Gütschow M, Bringmann G, König GM (2012) Marilines A–C: novel phthalimidines from the sponge-derived fungus Stachylidium sp. Chem Eur J 18:8827

    Article  CAS  Google Scholar 

  405. Hemberger Y, Xu J, Wray V, Proksch P, Wu J, Bringmann G (2013) Pestalotiopens A and B: stereochemically challenging flexible sesquiterpene-cyclopaldic acid hybrids from Pestalotiopsis sp. Chem Eur J 19:15556

    Article  CAS  Google Scholar 

  406. Tatsis EC, Schaumlöffel A, Warskulat AC, Massiot G, Schneider B, Bringmann G (2013) Nudicaulins, yellow flower pigments of Papaver nudicaule: revised constitution and assignment of absolute configuration. Org Lett 15:156

    Article  CAS  Google Scholar 

  407. Blusch LK, Hemberger Y, Pröpper K, Dittrich B, Witterauf F, John M, Bringmann G, Brückner C, Meyer F (2013) Siamese-twin porphyrin: a pyrazole-based expanded porphyrin of persistent helical conformation. Chem Eur J 19:5868

    Article  CAS  Google Scholar 

  408. Goel A, Kumar V, Hemberger Y, Singh FV, Nag P, Knauer M, Kant R, Raghunandan R, Maulik PR, Bringmann G (2016) Rotationally hindered biphenyls and terphenyls: synthesis, molecular dynamics, and configurational assignment. J Org Chem 81:10721

    Article  CAS  Google Scholar 

  409. Gehrold AC, Bruhn T, Bringmann G (2016) Axial, helical, and planar chirality in directly linked basket-handle porphyrin arrays. J Org Chem 81:1075

    Article  CAS  Google Scholar 

  410. Schies C, Alemayehu AB, Vazquez-Lima H, Thomas BK, Bruhn T, Bringmann G, Ghosh A (2017) Metallocorroles as inherently chiral chromophores: resolution and electronic circular dichroism spectroscopy of a tungsten biscorrole. Chem Commun 53:6121

    Article  CAS  Google Scholar 

  411. Bringmann G, Günther C (1999) First total synthesis of dioncophylline B, a 7,6′-coupled naphthylisoquinoline alkaloid. Synlett 216

    Google Scholar 

  412. Bringmann G, Günther C, Peters EM, Peters K (2001) First total synthesis of 7,6′-coupled antifungal naphthylisoquinoline alkaloid dioncophylline B. Tetrahedron 57:1253

    Article  CAS  Google Scholar 

  413. Bringmann G, Harmsen S, Holenz J, Geuder T, Götz R, Keller PA, Walter R, Hallock YF, Cardellina II JH, Boyd MR (1994) ‘Biomimetic’ oxidative dimerization of korupensamine A: completion of the first total synthesis of michellamines A, B, and C. Tetrahedron 50:9643

    Google Scholar 

  414. Fleischhauer J, Koslowski A, Kramer B, Zobel E, Bringmann G, Gulden KP, Ortmann T, Peter B (1993) Detection and calculation of the CD spectra from the biaryl alkaloids ancistrocladeine and dioncophylleine A. Z Naturforsch 48b:140

    Google Scholar 

  415. Gagnepain F (1909) Plantes nouvelles d’Indo-Chine. In: Lecomte H (ed) Notulae Systematicae, vol 4. J. Dumoulin, Paris, p 114

    Google Scholar 

  416. Pham-Hoang H (1991) Dipterocarpaceae. In: Câycỏ Việtnam—an illustrated flora of Vietnam, vol 1. Mekong Printing, Santa Ana, Canada, p 555

    Google Scholar 

  417. Savajol N, Toun V, Sam J (2011) Ancistrocladus cochinchinensis. In: Savajol N, Toun V, Sam J (eds) Traditional therapeutic knowledge of the Bunong people in Southeastern Cambodia. Nomad RSI Cambodia Edition, Phnom Penh, Cambodia, p 58

    Google Scholar 

  418. Anh NH, Sung TV, Ripperger H, Adam G (1996) Some results from chemical study on Vietnamese Ancistrocladus cochinchinensis. Tap Chi Hoa Hoc 34:89

    Google Scholar 

  419. Anh NH, Ripperger H, Porzel A, Sung TV, Adam G (1997) Tetralones from Ancistrocladus cochinchinensis. Phytochemistry 44:549

    Article  CAS  Google Scholar 

  420. Bringmann G, Weirich R, Lisch D, Aké Assi L (1992) Ancistrobrevine D: an unusual alkaloid from Ancistrocladus abbreviatus. Planta Med 58:A703

    Google Scholar 

  421. Schäfer A, Horn H, Ahlrichs R (1992) Fully optimized contracted Gaussian basis sets for atoms Li to Kr. J Chem Phys 97:2571

    Article  Google Scholar 

  422. Schäfer A, Huber C, Ahlrichs R (1994) Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr. J Chem Phys 100:5829

    Article  Google Scholar 

  423. Sidhu GS, Sankaram AVB (1971) A new biplumbagin and 3-chloroplumbagin from Plumbago zeylanica. Tetrahedron Lett 26:2385

    Article  Google Scholar 

  424. Gunaherath GMKB, Gunatilaka AAL, Sultanbawa MUS, Balasubramaniam S (1983) 1,2(3)-Tetrahydro-3,3′-biplumbagin: a naphthalenone and other constituents from Plumbago zeylanica. Phytochemistry 22:1245

    Article  CAS  Google Scholar 

  425. Kumar V, Meepagala KM, Balasubramaniam S (1985) Quinoid and other constituents of Aristea ecklonii. Phytochemistry 24:1118

    Article  CAS  Google Scholar 

  426. Higa M, Noha N, Yokaryo H, Ogihara K, Yogi S (2002) Three new naphthoquinone derivatives from Diospyros maritima Blume. Chem Pharm Bull 50:590

    Article  CAS  Google Scholar 

  427. Higa M, Takashima Y, Yokaryo H, Harie Y, Suzuka T, Ogihara K (2017) Naphthoquinone derivatives from Diospyros maritima. Chem Pharm Bull 65:739

    Article  CAS  Google Scholar 

  428. Tezuka M, Takahashi C, Kuroyanagi M, Satake M, Yoshihira K, Natori S (1973) New naphthoquinones from Diospyros. Phytochemistry 12:175

    Article  CAS  Google Scholar 

  429. Uc-Cachón AH, Molina-Salinas GM, Said-Fernández S, Méndez-Gonzáles M, Cáceres-Farfán M, Borges-Argáez R (2013) A new dimeric naphthoquinone from Diospyros anisandra. Nat Prod Res 27:1174

    Google Scholar 

  430. Gunaherath GMKB, Gunatilaka AAL, Thomson RH (1988) Studies on medicinal and related plants of Sri Lanka. Part 18. Structure of a new naphthoquinone from Plumbago zeylanica. J Chem Soc Perkin Trans 1:407

    Google Scholar 

  431. Gu JQ, Graf TN, Lee D, Chai HB, Mi Q, Kardono LBS, Setyowati FM, Ismail R, Riswan S, Farnsworth NR, Cordell GA, Pezzuto JM, Swanson SM, Kroll DJ, Falkinham JO III, Wall ME, Wani MC, Kinghorn AD, Oberlies NH (2004) Cytotoxic and antimicrobial constituents of the bark of Diospyros maritima collected in two geographical locations in Indonesia. J Nat Prod 67:1156

    Article  CAS  Google Scholar 

  432. Porras G, Chassagne F, Lyles JT, Marquez L, Dettweiler M, Salam AM, Samarakoon T, Shabih S, Farrokhi R, Quave CL (2021) Ethnobotany and the role of plant natural products in antibiotic drug discovery. Chem Rev 121:3495

    Google Scholar 

  433. Uc-Cachón AH, Borges-Argáez R, Said-Fernández S, Vargas-Villarreal J, González-Salazar F, Méndez-Gonzáles M, Cáceres-Farfán M, Molina-Salinas GM (2014) Naphthoquinones from Diospyros anisandra exhibit potent activity against pan-resistant first-line drugs Mycobacterium tuberculosis strains. Pulm Pharmacol Ther 27:114

    Google Scholar 

  434. Nair SV, Baranwal G, Chatterjee M, Sachu A, Vasudevan AK, Bose C, Banerji A, Biswas R (2016) Antimicrobial activity of plumbagin, a naturally occurring naphthoquinone from Plumbago rosea, against Staphylococcus aureus and Candida albicans. Int J Med Microbiol 306:237

    Article  CAS  Google Scholar 

  435. Periasamy H, Iswarya S, Pavithra N, Senthilnathan S, Gnanamani A (2019) In vitro antibacterial activity of plumbagin isolated from Plumbago zeylanica L. against methicillin-resistant Staphylococcus aureus. Lett Appl Microbiol 69:41

    Google Scholar 

  436. Adusei EBA, Adosraku RK, Oppong-Kyekyeku J, Amengor CDK, Jibira Y (2019) Resistance modulation action, time-kill kinetics assay, and inhibition of biofilm formation effects of plumbagin from Plumbago zeylanica Linn. J Trop Med:1250645

    Google Scholar 

  437. Sharma N, Shukla AK, Das M, Dubey VK (2012) Evaluation of plumbagin and its derivative as potential modulators of redox thiol metabolism of Leishmania parasite. Parasitol Res 110:341

    Article  Google Scholar 

  438. Awasthi BP, Kathuria M, Pant G, Kumari N, Mitra K (2016) Plumbagin, a plant-derived naphthoquinone metabolite induces mitochondria mediated apoptosis-like cell death in Leishmania donovani: an ultrastructural and physiological study. Apoptosis 21:941

    Article  CAS  Google Scholar 

  439. Salomão K, De Santana NA, Molina MT, De Castro SL, Menna-Barreto RFS (2013) Trypanosoma cruzi mitochondrial swelling and membrane potential collapse as primary evidence of the mode of action of naphthoquinone analogues. BMC Microbiol 13:196

    Google Scholar 

  440. Sumsakul W, Plengsuriyakarn T, Chaijaroenkul W, Viyanant V, Karbwang J, Na-Bangchang K (2014) Antimalarial activity of plumbagin in vitro and in animal models. BMC Complement Altern Med 14:15

    Google Scholar 

  441. Jangra A, Chadha V, Kumar D, Kumar V, Arora MK (2021) Neuroprotective and acetylcholinesterase inhibitory activity of plumbagin in ICV-LPS-induced behavioural deficits in rats. Curr Res Behav Sci 2:100060

    Article  Google Scholar 

  442. Checker R, Sharma D, Sandur SK, Khanam S, Poduval TB (2009) Anti-inflammatory effects of plumbagin are mediated by inhibition of NF-kappaB activation in lymphocytes. Int Immunopharmacol 9:949

    Article  CAS  Google Scholar 

  443. Nakhate KT, Bharne AP, Verma VS, Aru DN, Kokare DM (2018) Plumbagin ameliorates memory dysfunction in streptozotocin induced Alzheimer’s disease via activation of Nrf2/ARE pathway and inhibition of β-secretase. Biomed Pharmacother 101:379

    Article  CAS  Google Scholar 

  444. Messeha SS, Zarnouh NO, Mendonca P, Kolta MG, Soliman KFA (2017) The attenuating effects of plumbagin on pro-inflammatory cytokine expression in LPS-activated BV-2 microglial cells. J Neuroimmunol 313:129

    Article  CAS  Google Scholar 

  445. Hallock YF, Cardellina II JH, Kornek T, Gulden KP, Bringmann G, Boyd MR (1995) Gentrymine B, the first quaternary isoquinoline alkaloid from Ancistrocladus korupensis. Tetrahedron Lett 36:4753

    Google Scholar 

  446. Vargas DF, Romero BS, Larghi EL, Kaufman TS (2020) Rhodium(III)-catalyzed C–H activation-based first total synthesis of 6-O-methylanciscochine, an alkaloid isolated from Ancistrocladus tectorius. Synthesis 52:119

    Article  CAS  Google Scholar 

  447. Lien LQ, Mai NC, Linh TM, Giang VH, Trung LQ, Van NT, Ban NK, Anh LDN, Kien PV, Min CV (2017) Phylogenetic analysis of Ancistrocladus species (Ancistrocladaceae) from Vietnam. Int J Agric Biol 19:1125

    Article  CAS  Google Scholar 

  448. Turini FG, Steinert C, Heubl G, Bringmann G, Lombe BK, Mudogo V, Meimberg H (2014) Microsatellites facilitate species delimitation in Congolese Ancistrocladus (Ancistrocladaceae), a genus with pharmacologically potent naphthylisoquinoline alkaloids. Taxon 63:329

    Article  Google Scholar 

  449. Hayata B (1913) Dipterocarpaceae. Ic Pl Formos 3:46

    Google Scholar 

  450. Craib WG (1925) Contributions to the flora of Siam—Additamentum XV. Bull Misc Inform Kew 7

    Google Scholar 

  451. Cortés I, Borini Etichetti CM, Girardini JE, Kaufman TS, Bracca ABJ (2019) Total synthesis and cytotoxic activity of 6,8-dimethoxy-1,3-dimethylisoquinoline isolated from Ancistrocladus tectorius: a 6-π-azaelectrocyclization approach. Synthesis 51:433

    Google Scholar 

  452. Fonzo S, Vargas DF, Kaufman TS (2019) A ruthenium-catalyzed C–H activation strategy as an efficient shortcut in the total synthesis of 6,8-dimethoxy-1,3-dimethylisoquinoline. Synthesis 51:3908

    Article  CAS  Google Scholar 

  453. Hirota T, Koyama T, Nanba T, Yamato M, Matsumura T (1978) Polycyclic N-hetero compounds. XVI. Reactions of benzyl ketones with formamide or acetamide. Chem Pharm Bull 26:245

    Google Scholar 

  454. Rizzacasa MA, Sargent MV, Skelton BW, White AH (1990) The stereoisomers of 5-bromo-6,8-dimethoxy-1,2,3-trimethyl-1,2,3,4-tetrahydroisoquinoline: X-ray crystal structure of the trans-isomer. Aust J Chem 43:79

    Article  CAS  Google Scholar 

  455. Mantell MA, Kampf JW, Sanford M (2018) Improved synthesis of [CpRRhCl2]2 complexes. Organometallics 37:3240

    Article  CAS  Google Scholar 

  456. Zheng XI, Xing FW (2009) Ethnobotanical study on medicinal plants around Mt. Yinggeling, Hainan Island, China. J Ethnopharmacol 124:197

    Google Scholar 

  457. Zheng XI, Wei JH, Sun W, Li RT, Sb L, Dai HF (2013) Ethnobotanical study on medicinal plants around Limu Mountains of Hainan Island, China. J Ethnopharmacol 148:964

    Article  Google Scholar 

  458. Unger M, Dreyer M, Specker S, Laug S, Pelzing M, Neusüß C, Holzgrabe U, Bringmann G (2004) Analytical characterization of crude extracts from an African Ancistrocladus species using high-performance liquid chromatography and capillary electrophoresis coupled to ion trap mass spectrometry. Phytochem Anal 15:21

    Article  CAS  Google Scholar 

  459. Bringmann G, Fayez S, Shamburger W, Feineis D, Winiarczyk S, Janecki R, Adaszek Ł (2020) Naphthylisoquinoline alkaloids and their synthetic analogs as potent novel inhibitors against Babesia canis in vitro. Vet Parasitol 283:109177

    Article  CAS  Google Scholar 

  460. Thorn CF, Oshiro C, Marsh S, Hernandez-Boussard T, McLeod H, Klein TE, Altman RB (2011) Doxorubicin pathways: pharmacodynamics and adverse effects. Pharmacogenet Genom 21:440

    Google Scholar 

  461. Sritharan S, Sivalingam N (2021) A comprehensive review on time-tested anticancer drug doxorubicin. Life Sci 278:119527

    Article  CAS  Google Scholar 

  462. Bringmann G, Hamm A, Schraut M (2003) Atroposelective biaryl coupling with chiral catalysts: total synthesis of the antileishmanial naphthylisoquinoline alkaloids ancistrotanzanine B and ancistroealaine A. Org Lett 5:2805

    Article  CAS  Google Scholar 

  463. Martin R, Buchwald SL (2008) Palladium-catalyzed Suzuki-Miyaura cross-coupling reactions employing dialkylbiaryl phosphine ligands. Acc Chem Res 41:1461

    Article  CAS  Google Scholar 

  464. Surry DS, Buchwald SL (2008) Biaryl phosphane ligands in palladium-catalzyed amination. Angew Chem 120:6438; Angew Chem Int Ed 47:6338

    Google Scholar 

  465. Zhang G (2012) Phytochemical research on two Ancistrocladus species, semi-synthesis of dimeric naphthylisoquinoline alkaloids, and structure optimization of antitumoral naphthoquinones. PhD thesis, University of Würzburg

    Google Scholar 

  466. Nichols DE, Barfknecht CF, Rusterholz DB, Benington F, Morin RD (1973) Asymmetric synthesis of psychotomimetic phenylisopropylamines. J Med Chem 16:480

    Article  CAS  Google Scholar 

  467. Hoye TR, Chen M (1996) Total synthesis of (ent)-korupensamine D. Tetrahedron Lett 37:3099

    Article  CAS  Google Scholar 

  468. Hasegawa T, Yamamoto H (2003) Development of a new chiral auxiliary derived from (S)-phenylethylamine for a synthesis of enantiopure (R)-2-propyloctanoic acid. Synthesis 1181

    Google Scholar 

  469. Snieckus V (1990) Directed ortho metalation. Tertiary amide and O-carbamate directors in synthetic strategies for polysubstituted aromatics. Chem Rev 90:879

    Google Scholar 

  470. Snieckus V (1990) The directed ortho metalation reaction. Methodology, applications, synthetic links, and a non-aromatic ramification. Pure Appl Chem 62:2047

    Google Scholar 

  471. Pederson BF, Pederson B (1965) The stable conformation of N-methylacetanilide. Tetrahedron Lett 6:2995

    Article  Google Scholar 

  472. Chupp JP, Olin JF (1967) Chemical and physical properties of some rotational isomers of α-haloacetanilides. A novel unreactive halogen system. J Org Chem 32:2297

    Google Scholar 

  473. Itai A, Toriumi Y, Tomioka N, Kagechika H, Azumaya I, Shudo K (1989) Stereochemistry of N-methylbenzanilide and benzanilide. Tetrahedron Lett 30:6177

    Article  CAS  Google Scholar 

  474. Itai A, Toriumi Y, Saito S, Kagechika H, Shudo K (1992) Preference for cis-amide structure in N-acyl-N-methylanilines. J Am Chem Soc 114:10649

    Article  CAS  Google Scholar 

  475. Saito S, Toriumi Y, Tomioka N, Itai A (1995) Theoretical studies on cis-amide preference in N-methylanilides. J Org Chem 60:4715

    Article  CAS  Google Scholar 

  476. Kitagawa O, Yoshikawa M, Tanabe H, Morita T, Takahashi M, Dobashi Y, Taguchi T (2006) Highly enantioselective synthesis of atropisomeric anilide derivatives through catalytic asymmetric N-arylation: conformational analysis and application to asymmetric enolate chemistry. J Am Chem Soc 128:12923

    Article  CAS  Google Scholar 

  477. Plasser F, Lischka H (2021) Multi-reference configuration interaction. In: Gonzáles L, Lindh R (eds) Quantum chemistry and dynamics of excited states: methods and applications. Wiley, Hoboken, NJ, p 277

    Google Scholar 

  478. Domingo MP, Pardo J, Cebolia V, Galvez EM (2010) Berberine: a fluorescent alkaloid with a variety of applications from medicine to chemistry. Mini-Rev Org Chem 7:335

    Article  CAS  Google Scholar 

  479. Neag MA, Mocan A, Echeverria J, Pop RM, Bocsan CI, Crişan G, Buzoianu AD (2018) Berberine: botanical occurrence, traditional uses, extraction methods, and relevance in cardiovascular, metabolic, hepatic, and renal disorders. Front Pharmacol 9:557

    Article  Google Scholar 

  480. Ai X, Yu P, Peng L, Luo L, Liu J, Li S, Lai X, Luan F, Meng X (2021) Berberine: a review of its pharmacokinetics properties and therapeutic potentials in diverse vascular diseases. Front Pharmacol 12:762654

    Article  CAS  Google Scholar 

  481. Rauf A, Abu-Izneid T, Khalik AA, Imran M, Shah ZA, Bin Emran T, Mitra S, Khan Z, Alhumaydhi FA, Aljohani ASM, Khan I, Rahman MM, Jeandet P, Gondal TA (2021) Berberine as a potential anticancer agent: a comprehensive review. Molecules 26:7368

    Google Scholar 

  482. Becke AD (1993) A new mixing of Hartree-Fock and local density-functional theories. J Chem Phys 98:1372

    Article  CAS  Google Scholar 

  483. Francl MM, Pietro WJ, Hehre WJ, Binkley JS, Gordon MS, DeFrees DJ, Pople JA (1982) Self-consistent molecular orbital methods. XXIII. A polarization-type basis set for second-row elements. J Chem Phys 77:3654

    Google Scholar 

  484. Bruhn T, Pescitelli G, Jurinovich S, Schaumlöffel A, Witterauf F, Ahrens J, Bröring M, Bringmann G (2014) Axially chiral BODIPY DYEmers: an apparent exception to the Exciton Chirality rule. Angew Chem Int Ed 53:14592

    Article  CAS  Google Scholar 

  485. Gunatilaka AAL (1978) Alkaloids of some plants of Sri Lanka—chemistry and pharmacology. Natn Sci Coun Sri Lanka 6:39

    CAS  Google Scholar 

  486. Desai HK, Gawad DH, Govindachari TR, Joshi BS, Kamat VN, Modi JD, Parthasarathy PC, Radhakrishnan J, Shanbhag MN, Sidhaye AR, Viswanathan N (1973) Chemical investigations of Indian plants: part VII. Indian J Chem 11:840

    CAS  Google Scholar 

  487. Sharma SC, Shukla YN, Tandon JS (1975) Alkaloids and terpenoids of Ancistrocladus heyneanus, Sagittaria sagitifolia, Lyonia formosa and Hedychium spicatum. Phytochemistry 14:578

    Article  CAS  Google Scholar 

  488. Bringmann G, Saeb W, Kraus J, Brun R, François G (2000) Jozimine B, a constitutionally unsymmetric, antiplasmodial ‘dimer’ of the naphthylisoquinoline alkaloid ancistrocladine. Tetrahedron 56:3523

    Article  CAS  Google Scholar 

  489. Cai CH, Mei WL, Zuo WJ, Guo ZK, Wang H, Gu HG, Dai HF (2013) Antibacterial components from the branches of Ancistrocladus tectorius (Lour.) Merr. Redai Yaredi Zhiwu Xuebao (J Trop Subtrop Bot) 31:184

    Google Scholar 

  490. Bringmann G, Gulden KP, Busse H, Fleischhauer J, Kramer B, Zobel E (1993) Circular dichroism of naphthylisoquinoline alkaloids: calculation of CD spectra by semiempirical methods. Tetrahedron 49:3305

    Article  CAS  Google Scholar 

  491. Giorgio E, Viglione RG, Rosini C (2004) Assignment of the absolute configuration of large molecules by ab initio calculation of the rotatory power within a small basis set scheme: the case of some biologically active natural products. Tetrahedron Asymmetry 15:1979

    Google Scholar 

  492. Fleischhauer J, Koslowski A, Repges C, Gulden KP, Bringmann G (1998) The absolute configuration of isoancistrocladine and ‘isohamatine’ by quantum chemical CD calculations. Z Naturforsch 53a:993

    Google Scholar 

  493. Bringmann G, Kinzinger L, Busse H, Zhao C (1992) Isolation, structure elucidation, and total synthesis of ancistrocline, an alkaloid of Ancistrocladus tectorius. Planta Med 58:A704

    Article  Google Scholar 

  494. Kawami M, Yumoto R, Nagai J, Junyaprasert VB, Soonthornchareonnon N, Patanasethanont D, Sripandkulchai B, Takano M (2010) Effect of Thai plant extracts on P-glycoprotein function and viability in paclitaxel-resistant HepG2 cells. Drug Metab Pharmacokinet 25:155

    Article  CAS  Google Scholar 

  495. Bringmann G, Rückert M, Saeb W, Mudogo V (1999) Characterization of metabolites in plant extracts of Ancistrocladus likoko by high-performance liquid chromatography coupled on-line with 1H NMR spectroscopy. Magn Reson Chem 37:98

    Article  CAS  Google Scholar 

  496. Bringmann G, Gramatzki S, Müller C, Proksch P (1993) Structure-activity relationships of naphthylisoquinoline alkaloids: feeding experiments with the herbivorous insect Spodoptera littoralis. Planta Med 59:A624

    Article  Google Scholar 

  497. Lavault M, Bruneton J (1978) Sur trois alcaloïdes isolés de Dionchophyllacées. C R Séances Acad Sci Ser C 287:129

    Google Scholar 

  498. Aswathanarayan JB, Vittal RR (2013) In vitro evaluation of antioxidant and antibacterial activities of Rotula aquatica and Ancistrocladus heyneanus. J Pharm Res 6:31

    Google Scholar 

  499. Meininger M, Stowasser R, Jakob PM, Schneider H, Koppler D, Bringmann G, Zimmermann U, Haase A (1997) Nuclear magnetic microscopy of Ancistrocladus heyneanus. Protoplasma 198:210

    Article  CAS  Google Scholar 

  500. Meininger M, Jakob PM, von Kienlin M, Koppler D, Bringmann G, Haase A (1997) Radial spectroscopic imaging. J Magn Reson 125:325

    Article  CAS  Google Scholar 

  501. Fournet A, Angelo A, Muñoz V, Roblot F, Hocquemiller R, Cavé A (1992) Biological and chemical studies of Pera benensis, a Bolivian plant used in folk medicine as a treatment of cutaneous leishmaniasis. J Ethnopharmacol 37:159

    Article  CAS  Google Scholar 

  502. Bringmann G, Schneider C, Aké Assi L (1991) Direct and modified bicyclic moieties of naphthylisoquinoline alkaloids from Ancistrocladus barteri: first biosynthetic indicators? Planta Med 57:A10

    Google Scholar 

  503. Bruneton J, Bouquet A, Fournet A, Cavé A (1976) La triphyophylline, nouvel alcaloïde isolé du Triphyophyllum peltatum. Phytochemistry 15:817

    Article  CAS  Google Scholar 

  504. Bringmann G, Feineis D (2001) Stress-related polyketide metabolism of Dioncophyllaceae and Ancistrocladaceae. J Exp Bot 52:2015

    Article  CAS  Google Scholar 

  505. Durand R, Zenk MH (1971) Biosynthesis of plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone) via the acetate pathway in higher plants. Tetrahedron Lett 32:3009

    Article  Google Scholar 

  506. Chauhan R, Ruby K, Shori A, Dwivedi J (2012) Plumbago zeylanica, a potent herb for various ailments: a review. Int J Pharm Sci Rev Res 15:72

    CAS  Google Scholar 

  507. Budzianowski J, Budzianowska A, Kromer K (2002) Naphthalene glucoside and other phenolics from the shoot and callus cultures of Drosophyllum lusitanicum. Phytochemistry 61:421

    Article  CAS  Google Scholar 

  508. Budzianowski J (1996) Naphthohydroquinone glucosides of Drosera rotundifolia and D. intermedia from in vitro cultures. Phytochemistry 42:1145

    Google Scholar 

  509. Tokunaga T, Dohmura A, Takada N, Ueda M (2004) Cytotoxic antifeedant from Dionaea muscipula Ellis: a defensive mechanism of carnivorous plants against predators. Bull Chem Soc Jpn 77:537

    Article  CAS  Google Scholar 

  510. Timmers MA, Dias DA, Urban S (2013) HPLC-NMR chemical profiling of the Australian carnivorous plant, Drosera erythrohiza subspecies magna. Nat Prod J 3:35

    CAS  Google Scholar 

  511. Rischer H, Hamm A, Bringmann G (2002) Nepenthes insignis uses a C2-portion of the carbon skeleton of l-alanine acquired via its carnivorous organs, to build up the allelochemical plumbagin. Phytochemistry 59:603

    Article  CAS  Google Scholar 

  512. Cannon JR, Lojanapiwatna V, Raston CL, Sinchai W, White AH (1980) The quinones of Nepenthes rafflesiana. The crystal structure of 2,5-dihydroxy-3,8-dimethoxy-7-methylnaphtho-1,4-quinone (nepenthone E) and a synthesis of 2,5-dihydroxy-3-methoxy-7-methylnaphtho-1,4-quinone (nepenthone C). Aust J Chem 33:1073

    Google Scholar 

  513. Higa M, Ogihara K, Yogi S (1998) Bioactive naphthoquinone derivatives from Diospyros maritima BLUME. Chem Pharm Bull 46:1189

    Google Scholar 

  514. Bringmann G, Holzgrabe U, Hoerr V, Stich A (2003) Antitrypanosomal naphthylisoquinoline alkaloids and related compounds. Pharmazie 58:343

    CAS  Google Scholar 

  515. Kayser O, Kiderlen AF, Laatsch H, Croft SL (2000) In vitro leishmanicidal activity of monomeric and dimeric naphthoquinones. Acta Trop 77:307

    Article  CAS  Google Scholar 

  516. Ali A, Assimopoulou AN, Papageorgiou VP, Kolodziej H (2011) Structure/antileishmanial activity relationship study of naphthoquinones and dependency of the mode of action on the substitution patterns. Planta Med 77:2003

    Article  CAS  Google Scholar 

  517. Fournet A, Barrios AA, Muñoz V, Hocquemiller R, Cavé A (1992) Effect of natural naphthoquinones in BALB7c mice infected with Leishmania amazonensis and Leishmania venezuelensis. Trop Med Parasitol 43:219

    CAS  Google Scholar 

  518. Budzianowski J (2000) Naphthoquinone glucosides of Drosera gigantea from in vitro cultures. Planta Med 66:667

    Article  CAS  Google Scholar 

  519. Lieberherr C, Zhang G, Grafen A, Singethan K, Kendl S, Vogt V, Maier J, Bringmann G, Schneider-Schaulies J (2017) The plant-derived naphthoquinone droserone inhibits in vitro measles virus infection. Planta Med 83:232

    Google Scholar 

  520. Likhitwitayawuid K, Kaewamatawong R, Ruangrungsi N, Krungkrai J (1998) Antimalarial naphthoquinones from Nepenthes thorelii. Planta Med 64:237

    Article  CAS  Google Scholar 

  521. Lavault M, Bruneton J (1980) Alcaloïdes du Dionocophyllum thollonii: isolement de deux nouveaux alcaloïdes, triphyopeltine et O-méthyl-5′-triphyopeltine. Planta Med 40 (Suppl 1):17

    Article  Google Scholar 

  522. Bringmann G, Messer K, Saeb W, Peters EM, Peters K (2001) The absolute configuration of (+)-isoshinanolone and in situ LC-CD analysis of its stereoisomers from crude extracts. Phytochemistry 56:387

    Article  CAS  Google Scholar 

  523. Sreelatha T, Hymavathi A, Madhusudhana Murthy J, Rani PU, Madhusudhana Rao J, Suresh Babu K (2010) Bioactivity-guided isolation of mosquitocidal constituents from the rhizomes of Plumbago capensis Thunb. Bioorg Med Chem Lett 20:2974

    Google Scholar 

  524. Bhattacharya J, De Carvalho VR (1986) Epi-Isoshinanolone from Plumbago scandens. Phytochemistry 255:764

    Article  Google Scholar 

  525. Aung HH, Chia LS, Goh NK, Chia TF, Ahmed AA, Pare PW, Mabry TJ (2002) Phenolic constituents from the leaves of the carnivorous plant Nepenthes gracilis. Fitoterapia 73:445

    Article  CAS  Google Scholar 

  526. Zhong SM, Waterman PG, Jeffreys JAD (1984) Naphthoquinones and triterpenes from African Diospyros species. Phytochemistry 23:1067

    Article  CAS  Google Scholar 

  527. Bin Zakaria M, Jeffreys JAD, Waterman PG, Zhong SM (1984) Naphthoquinones and triterpenes from some Asian Diospyros species. Phytochemistry 23:1481

    Article  CAS  Google Scholar 

  528. Richomme P, Papillon B, Cabalion P, Bruneton J (1991) Naphthoquinones de Diospyros samoensis. Pharm Acta Helv 66:88

    CAS  Google Scholar 

  529. Chang CI, Chen CR, Chiu HL, Kuo CL, Kuo YH (2009) Chemical constituents from the stems of Diospyros maritima. Molecules 14:5281

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank those numerous skillful and highly committed students and coworkers of our group who contributed with great enthusiasm to the manifold developments during the past decades regarding the knowledge about naphthylisoquinoline alkaloids from Asian Ancistrocladus plants. We are in particular grateful (names given in an alphabetical order) to Dr. Stefan Busemann, Dr. Michael Dreyer, Dr. Torsten Geuder, Prof. Dr. Ralf God, Dr. Klaus-Peter Gulden, Prof. Dr. Tanja Gulder, Prof. Dr. Tobias A. M. Gulder, Dr. Christian Günther, Yasmin Hemberger, Dr. Barbara Hertlein-Amslinger, Dr. Jörg Holenz, Dr. Andreas Irmer, Dr. Johannes R. Jansen, Dr. Inga Kajahn, Dr. Dagmar Koppler, Dr. Katja Maksimenka, Dr. Kim Messer, Dr. Jörg Mühlbacher, Dr. Narasimhulu Manchala, Dr. Frank Pokorny, Dr. Matthias Reichert, Dr. Helmut Reuscher, Dr. Heiko Rischer, Dr. Markus Rückert, Dr. Raina Seupel, Dr. Anu Schaumlöffel, PD Dr. Jan Schlauer, Dr. Ralf Weirich, Barbara Wiesen, Dr. Michael Wohlfarth, Dr. Kristina Wolf, Dr. Minjuan Xu, Dr. Guoliang Zhang, and, in particular, Dr. Torsten Bruhn—the names of all involved coworkers can also be seen from the literature cited. Furthermore, we are indebted to Mrs. Lioba Kinzinger, Mr. Frank Meyer, Mrs. Manuela Michel, Mrs. Stefanie Schmitt, and Mrs. Michaela Schraut for their valuable technical assistance. We are grateful to Prof. Dr. Ulrich Zimmermann (Germany) for light and fluorescence microscopy investigations on Ancistrocladus heyneanus, Prof. Dr. Wolfgang Kiefer and Prof. Dr. Jürgen Popp (Germany) for FT-Raman investigations, and Prof. Dr. Axel Haase and Prof. Dr. Peter M. Jakob (Germany) for nuclear magnetic resonance microscopy studies. Moreover, we wish to thank Prof. Dr. Reto Brun, Dr. Marcel Kaiser (Switzerland), Prof. Dr. Thomas Dandekar, Prof. Dr. Thomas Efferth, Prof. Dr. August Stich, Prof. Dr. Heidrun Moll, Prof. Dr. Joachim Morschhäuser, PD Dr. Knut Ohlsen (Germany), Prof. Dr. Alicia Ponte-Sucre (Venezuela), Dr. Łukasz Adaszek (Poland), Prof. Dr. Michael R. Boyd (USA), and Prof. Dr. Suresh Awale (Japan) for intense, stimulating, and fruitful cooperations evaluating the bioactivities of genuine naphthylisoquinoline alkaloids and related, synthetic analogues.

We would further like to express our sincere compliments to the pioneer of naphthylisoquinoline alkaloids, late Prof. Dr. Tuticorin R. Govindachari, for his brilliant early work in the field, and to all of our Asian partners who have given us all sorts of support and cooperative reliability regarding botanical and ethnobotanical work, particularly Prof. Dr. A. S. Sankara Narayanan, Prof. Dr. M. R. Almeida, Prof. Dr. N. J. De Souza (India), Prof. Dr. Hamid A. Hadi (Malaysia), Prof. Dr. Luu Hoang Ngoc (Vietnam), and Prof. Dr. Jun Wu (PR China). Our particular thank goes to Prof. Dr. Günther Heubl (Germany) and Prof. Dr. Harald Meimberg (Austria) for their long-term cooperation focusing on the molecular phylogeny, chemotaxonomy, and botanical classification of the Asian Ancistrocladus species presented in this review. Moreover, we are grateful to Prof. Dr. Markus Riederer und Dr. Gerd Vogg (Germany) for their generous hospitality and competent support permitting us to cultivate and study more closely various Ancistrocladus plants from Asia in the Botanical Garden of the University of Würzburg, with an emphasis on the Indian liana Ancistrocladus heyneanus and the newly discovered taxon Ancistrocladus benomensis from Malaysia. We gratefully acknowledge the horticultural expertise and continuous support and commitment of all involved gardeners (in particular Andreas Kreiner and Friedrich Thiele) regarding the cultivation of these fascinating lianas from seeds to adult plants.

For generous financial support of this work, the authors would like to thank the Deutsche Forschungsgemeinschaft (projects Br 699/14-1 and 14-2; “Molecular Phylogeny and Chemotaxonomy of the Ancistrocladaceae Plant Family”, Collaborative Research Center SFB 630 “Recognition, Preparation, and Functional Analysis of Agents against Infectious Diseases”, Collaborative Research Center SFB 251 “Ecology, Physiology, and Biochemistry of Plants and Animals under Stress”, Clinical Research Unit KFO 216 “Characterization of the Oncogenic Signaling Network in Multiple Myeloma: Development of Targeted Therapies”, Priority Program SPP 1152 “Evolution of Metabolic Diversity”, and Research Training Group “NMR in vivo and in vitro for Biological Basic Research”). This work was also funded by grants from the Bundesministerium für Bildung und Forschung (BMBF), project no. 0310722, the BASF AG, the Fonds der Chemischen Industrie (FCI), the Max Buchner Research Foundation, the German Academic Exchange Service (Deutscher Akademischer Austauschdienst, DAAD), and the Alexander von Humboldt Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Bringmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Feineis, D., Bringmann, G. (2023). Asian Ancistrocladus Lianas as Creative Producers of Naphthylisoquinoline Alkaloids. In: Kinghorn, A.D., Falk, H., Gibbons, S., Asakawa, Y., Liu, JK., Dirsch, V.M. (eds) Ancistrocladus Naphthylisoquinoline Alkaloids. Progress in the Chemistry of Organic Natural Products, vol 119. Springer, Cham. https://doi.org/10.1007/978-3-031-10457-2_1

Download citation

Publish with us

Policies and ethics