Skip to main content

Impact of Plant Health on Global Food Security: A Holistic View

  • Chapter
  • First Online:
Agriculture, Environment and Sustainable Development

Abstract

Plant pests and diseases are responsible for 20–40% of losses in the global food sector (FAO, http://www.fao.org/news/story/en/item/1187738/icode/, 2019). Pests and diseases possess a major threat to plant health affecting crop growth, productivity and increase in production cost. They also indirectly affect the quality and nutritional status of foods in the form of post-harvest losses. Insect pests and diseases are able to rapidly adapt to changing climatic conditions, host plants and pesticides and pose a major risk to the current pest management approaches. In recent years, plant health is often considered as a single disease term with a one step solution, but it has to be addressed in a more integrated-holistic way for a sustainable healthy environment. Plant health includes yield-related components, food quantity and biodiversity, and it integrates plant protection with plant hygiene, trade, food quality and ecology. The changing climatic conditions and global trading are thwarting the goals of plant health, thereby threatening the global food security agenda. Integrated Plant Health Management (IPHM) approach aims to grow healthy plants with a most appropriate monitoring and evaluation system. The advancement in agricultural research including technological innovations, molecular biology tools, bio-control agents, and nano-based sensors has a great potential to contribute to the significance of plant health management in developing more specific and targeted products with minimal reliance on chemical pesticides. The present chapter is an effort to provide information relevant to the impact of plant health on crop productivity, challenges associated with plant health, advancement in diagnostic techniques and the role of integrated plant health system to achieve the goals of food security.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal, A., Prajapati, R., Singh, O. P., Raza, S. K., & Thakur, L. K. (2015). Pesticide residue in water – A challenging task in India. Environmental Monitoring and Assessment, 187(54), 1–15.

    CAS  Google Scholar 

  • Altangerel, N., Ariunbold, G. O., Gorman, C., Alkahtani, M. H., Borrego, E. J., Bohlmeyer, D., & Scully, M. O. (2017). In vivo diagnostics of early abiotic plant stress response via Raman spectroscopy. Proceedings of the National Academy of Sciences, 114(13), 3393–3396.

    CAS  Google Scholar 

  • Anderson, P. K., et al. (2004). Emerging infectious diseases of plants: Pathogen pollution, climate change and agrotechnology drivers. Trends in Ecology & Evolution, 19(10), 535–544.

    Google Scholar 

  • Bock, C., Poole, G., Parker, P., & Gottwald, T. (2010). Plant disease severity estimated visually, by digital photography and image analysis, and by hyperspectral imaging. Critical Reviews in Plant Sciences, 29(2), 59–107.

    Google Scholar 

  • Bolhar-Nordenkampf, H., Long, S., Baker, N., Oquist, G., Schreiber, U., & Lechner, E. (1989). Chlorophyll fluorescence as a probe of the photosynthetic competence of leaves in the field: A review of current instrumentation. Functional Ecology, 497–514.

    Google Scholar 

  • Boss, R., Pradhan, M. 2020. Post-harvest management and farm outcomes. https://www.epw.in/journal/2020/16/commentary/post-harvest-management-and-farm-outcomes.html. Accessed 30 July 2021.

  • Bottrell, D. G., & Schoenly, K. G. (2012). Resurrecting the ghost of green revolutions past: The brown planthopper as a recurring threat to high-yielding rice production in tropical Asia. Journal of Asia Pacific Entomology, 15(1), 122–140.

    Google Scholar 

  • Boubourakas, I. N., Fukuta, S., & Kyriakopoulou, P. E. (2009). Sensitive and rapid detection of peach latent mosaic viroid by the reverse transcription loop-mediated isothermal amplification. Journal of Virological Methods, 160, 63–68.

    CAS  Google Scholar 

  • Brassier, C. M. (2008). The biosecurity threat to the UK and global environment from international trade in plants. Plant Pathology, 57, 792–808.

    Google Scholar 

  • CGIAR. (2021). https://www.cgiar.org/iyoph-2020-webinar-series/. Accessed 3 Sept 2021.

  • Chakraborty, S., & Newton, A. C. (2011). Climate change, plant diseases and food security: An overview. Plant Pathology. https://doi.org/10.1111/j.1365-3059.2010.02411.x

  • Crawford, B. M., Strobbia, P., Wang, H.-N., Zentella, R., Boyanov, M. I., Pei, Z.-M., & Vo-Dinh, T. (2019). Plasmonic nanoprobes for in vivo multimodal sensing and bioimaging of microRNA within plants. ACS Applied Materials & Interfaces, 11(8), 7743–7754.

    CAS  Google Scholar 

  • Directorate of Rice Research, Progress Report. (2015). Crop protection (entomology, plant pathology) (Vol. 2, pp. 15–16). All India Coordinated Rice Improvement Programme.

    Google Scholar 

  • Ellis, S. D., & Boehm, M. J. (2008). An overview of integrated plant health management. The Ohio State University. https://ohioline.osu.edu/factsheet/plpath-gen-4

  • FAO. (2011). Global food losses and food waste- Extent, causes and prevention. The Food and Agriculture Organization of the United Nations. Available on: www.fao.org/economic/esa

  • FAO. (2019). http://www.fao.org/news/story/en/item/1187738/icode/. Accessed 5 July 2021.

  • Farber, C., Mahnke, M., Sanchez, L., & Kurouski, D. (2019). Advanced spectroscopic techniques for plant disease diagnostics. A review. TrAC Trends in Analytical Chemistry, 118, 43–49.

    CAS  Google Scholar 

  • Feng, W., Ishiguro, Y., Hotta, K., Watanabe, H., Suga, H., & Kageyama, K. (2015). Simple detection of Pythium irregulare using loop-mediated isothermal amplification assay. FEMS Microbiology Letters, 362, 21.

    Google Scholar 

  • Feng, W., Nukaya, A., Satou, M., Fukuta, N., Ishiguro, Y., Suga, H., & Kageyama, K. (2018). Use of LAMP detection to identify potential contamination sources of plant-pathogenic Pythium species in hydroponic culture systems of tomato and eustoma. Plant Disease, 102, 1357–1364.

    CAS  Google Scholar 

  • Fethe, M. H., Liu, W., Burris, J. N., Millwood, R. J., Mazarei, M., Rudis, M. R., … Stewart, C. N., Jr. (2014). The performance of pathogenic bacterial phytosensing transgenic tobacco in the field. Plant Biotechnology Journal, 12(6), 755–764.

    CAS  Google Scholar 

  • Flood, J. (2010). The importance of plant health to food security. Food Security, 2, 215–231. https://doi.org/10.1007/s12571-010-0072-5

    Article  Google Scholar 

  • Food and Agriculture Organization of the United Nations (FAO). (2020). International year of plant health – Protecting plants, protecting life. http://www.fao.org/plant-health-2020

  • Fukuta, S., Takeyama, K., Suzuki, M., Shichi, A., Ichikawa, K., & Nakanishi, H. (2012). Detection of Kyuri green mottle mosaic virus from soil by theimmunocapturereverse transcription loop-mediated isothermal amplification reaction. Plant Pathology Journal, 11, 51–59.

    CAS  Google Scholar 

  • Goto, M., Honda, E., Ogura, A., Nomoto, A., & Hanaki, K. I. (2009). Colorimetric detection of loop-mediated isothermal amplification reaction by using hydroxynaphthol blue. BioTechniques, 46, 167–172.

    CAS  Google Scholar 

  • Gupta, S., Huang, C. H., Singh, G. P., Park, B. S., Chua, N.-H., & Ram, R. J. (2020). Portable Raman leaf-clip sensor for rapid detection of plant stress. Scientific Reports, 10(1), 1–10.

    Google Scholar 

  • Hodgetts, J., Hall, J., Karamura, G., Grant, M., Studholme, D. J., Boonham, N., Karamura, E., & Smith, J. J. (2015). Rapid, specific, simple, in-field detection of Xanthomonascampestrispathovarmusacearum by loop- mediated isothermal amplification. Journal of Applied Microbiology, 119, 1651–1658.

    CAS  Google Scholar 

  • Horgan, F. (2017). Integrated pest management for sustainable rice cultivation: A holistic approach. In T. Sasaki (Ed.), Achieving sustainable cultivation of rice (Vol. 2). https://doi.org/10.19103/AS.2016.0003.23

    Chapter  Google Scholar 

  • Horgan, F. G. (2018). Integrating gene deployment and crop management for improved rice resistance to Asian planthoppers. Crop Protection. https://doi.org/10.1016/j.cropro.2018.03.013

  • Horgan, F. G., Crisol-Martínez, E., Almazan, M. L. P., Romena, A., Ramal, A. F., Ferrater, J., & Bernal, C. C. (2016a). Susceptibility and tolerance in hybrid and pure-line rice varieties to herbivore attack: Biomass partitioning and resource-based compensation in response to damage. Annals of Applied Biology. https://doi.org/10.1111/aab.12296

  • Horgan, F. G., Ramal, A. F., Bernal, C. C., Villegas, J. M., Stuart, A. M., & Almazan, M. L. P. (2016b). Applying ecological engineering for sustainable and resilient rice production systems. Procedia Food Science, 6, 7–15.

    Google Scholar 

  • Horgan, F. G., Arida, A., Ardestani, G., & Almazan, M. L. P. (2020). Temperature-dependent oviposition and nymph performance reveal distinct thermal niches of coexisting planthoppers with similar thresholds for development. PLoS One. https://doi.org/10.1371/journal.pone.0235506

  • IPCC. (2020). Climate Change and Land. An IPCC Special Report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. https://www.ipcc.ch/site/assets/uploads/sites/4/2020/02/SPM_Updated-Jan20.pdf. Accessed 4 Sept 2021.

  • Iwamoto, T., Sonobe, T., & Hayashi, K. (2003). Loop-mediated isothermal amplification for direct detection of mycobacterium tuberculosis complex, M. avium, and M. intracellulare in sputum samples. Journal of Clinical Microbiology, 41, 2616–2622.

    CAS  Google Scholar 

  • James, D. (1999). A simple and reliable protocol for the detection of apple stem grooving virus by RT-PCR and in a multiplex PCR assay. Journal of Virological Methods, 83, 1–9.

    CAS  Google Scholar 

  • Kasso, M., & Bekele, A. (2016). Post-harvest loss and quality deterioration of horticultural crops in Dire Dawa region, Ethiopia. Journal of the Saudi Society of Agricultural Sciences. https://doi.org/10.1016/j.jssas.2016.01.005

  • Kiaya, V. (2014). Post-harvest losses and strategies to reduce them. Technical paper on post-harvest losses. ACF 1–25. Accessed 4 Aug 2021.

    Google Scholar 

  • Kitamura, M., Aragane, M., Nakamura, K., Watanabe, K., & Sasaki, Y. (2016). Development of loop-mediated isothermal amplification (LAMP) assay for rapid detection of Cannabis sativa. Biological & Pharmaceutical Bulletin, 39, 1144–1149.

    CAS  Google Scholar 

  • Krejci, L., Altmannova, V., Spirek, M., & Zhao, X. (2012). Homologous recombination and its regulation. Nucleic Acids Research, 40, 5795–5818.

    CAS  Google Scholar 

  • Lau, H. Y., & Botella, J. R. (2017). Advanced DNA-based point-of-care diagnostic methods for plant diseases detection. Frontiers in Plant Science, 8, 2016.

    Google Scholar 

  • Lenthe, J. H., Oerke, E. C., & Dehne, H. W. (2007). Digital infrared thermography for monitoring canopy health of wheat. Precision Agriculture, 8(1–2), 15–26. https://doi.org/10.1007/s11119-006-9025-6

  • Liu, W., & Stewart, C. N., Jr. (2015). Plant synthetic biology. Trends in Plant Science, 20(5), 309–317.

    CAS  Google Scholar 

  • Liu, N., Li, Y., & Zhang, R. (2012). Invasion of Colorado potato beetle, Leptinotarsa decemlineata, in China: Dispersal, occurrence, and economic impact. Entomologia Experimentalis et Applicata, 143, 207–217.

    Google Scholar 

  • López, M. M., Bertolini, E., Olmos, A., Caruso, P., Gorris, M. T., Llop, P., … Cambra, M. (2003). Innovative tools for detection of plant pathogenic viruses and bacteria. International Microbiology, 6(4), 233–243.

    Google Scholar 

  • López, M. M., Llop, P., Olmos, A., Marco-Noales, E., Cambra, M., & Bertolini, E. (2009). Are molecular tools solving the challenges posed by detection of plant pathogenic bacteria and viruses? Current Issues in Molecular Biology, 11, 13–46.

    Google Scholar 

  • Mahlein, A.-K. (2016). Plant disease detection by imaging sensors–Parallels and specific demands for precision agriculture and plant phenotyping. Plant Disease, 100(2), 241–251.

    Google Scholar 

  • Martinelli, F., Scalenghe, R., Davino, S., Panno, S., Scuderi, G., Ruisi, P., … Dandekar, A. M. (2015). Advanced methods of plant disease detection. A review. Agronomy for Sustainable Development, 35(1), 1–25.

    Google Scholar 

  • Martínez-Jarquín, S., Herrera-Ubaldo, H., de Folter, S., & Winkler, R. (2018). In vivo monitoring of nicotine biosynthesis in tobacco leaves by low-temperature plasma mass spectrometry. Talanta, 185, 324–327.

    Google Scholar 

  • Mazarei, M., Teplova, I., Hajimorad, M. R., & Stewart, C. N. (2008). Pathogen phytosensing: Plants to report plant pathogens. Sensors, 8(4), 2628–2641.

    Google Scholar 

  • Mesterházy, A., Oláh, J., & Popp, J. (2020). Losses in the grain supply chain: Causes and solutions. Sustainability, 12, 2342. https://doi.org/10.3390/su12062342

    Article  Google Scholar 

  • Miller, S. A., Beed, F. D., & Harmon, C. L. (2009). Plant disease diagnostic capabilities and networks. Annual Review of Phytopathology, 47, 15–38.

    CAS  Google Scholar 

  • Miyake, N., Nagai, H., Kato, S., Matsusaki, M., Fukuta, S., Takahashi, R., Suzuki, R., & Ishiguro, Y. (2017). Practical method combining loop-mediated isothermal amplification and bait trap to detect Pythium helicoides from hydroponic culture solutions. Journal of General Plant Pathology, 83, 1–6.

    CAS  Google Scholar 

  • Mohammed, G. H., Colombo, R., Middleton, E. M., Rascher, U., van der Tol, C., Nedbal, L., & Meroni, M. (2019). Remote sensing of solar-induced chlorophyll fluorescence (SIF) in vegetation: 50 years of progress. Remote Sensing of Environment, 231, 111177.

    Google Scholar 

  • Montanha, G. S., Rodrigues, E. S., Marques, J. P. R., De Almeida, E., Dos Reis, A. R., & Pereira de Carvalho, H. W. (2020). X-ray fluorescence spectroscopy (XRF) applied to plant science: Challenges towards in vivo analysis of plants. Metallomics, 12(2), 183–192.

    CAS  Google Scholar 

  • Mori, Y., Nagamine, K., Tomita, N., & Notomi, T. (2001). Detection of loop- mediated isothermal amplification reaction by turbidity derived from magnesium pyrophosphate formation. Biochemical and Biophysical Research Communications, 289, 150–154.

    CAS  Google Scholar 

  • Mori, Y., Kitao, M., Tomita, N., & Notomi, T. (2004). Real-time turbidimetry of LAMP reaction for quantifying template DNA. Journal of Biochemical and Biophysical Methods, 59, 145–157.

    CAS  Google Scholar 

  • Nassuth, A., Pollari, E., Helmeczy, K., Stewart, S., & Kofalvi, S. A. (2000). Improved RNA extraction and one-tube RT-PCR assay for simultaneous detection of control plant RNA plus several viruses in plant extracts. Journal of Virological Methods, 90, 37–49.

    CAS  Google Scholar 

  • Notomi, T., Okayama, H., Masubuchi, H., Yonekawa, T., Watanabe, K., Amino, N., & Hase, T. (2000). Loop-mediated isothermal amplification of DNA. Nucleic Acids Research, 28, e63.

    CAS  Google Scholar 

  • Oerke, E.-C., Fröhling, P., & Steiner, U. (2011). Thermographic assessment of scab disease on apple leaves. Precision Agriculture, 12(5), 699–715.

    Google Scholar 

  • Pang, S., Yang, T., & He, L. (2016). Review of surface enhanced Raman spectroscopic (SERS) detection of synthetic chemical pesticides. TrAC Trends in Analytical Chemistry, 85, 73–82.

    CAS  Google Scholar 

  • Pawlak, K., & Kołodziejczak, M. (2020). The role of agriculture in ensuring food security in developing countries: Considerations in the context of the problem of sustainable food production. Sustainability, 12(5488). https://doi.org/10.3390/su12135488

  • Piepenburg, O., Williams, C. H., Stemple, D. L., & Armes, N. A. (2006). DNA detection using recombination proteins. PLoS Biology, 4, e204. https://doi.org/10.1371/journal.pbio.0040204

    Article  CAS  Google Scholar 

  • Piepenburg O., Williams C. H., Armes N. A. (2011). Methods for multiplexing recombinase polymerase amplification.

    Google Scholar 

  • Radhika, M., Saugata, M., Murali, H. S., & Batra, H. V. (2014). A novel multiplex PCR for the simultaneous detection of Salmonella enterica and Shigella species. Brazilian Journal of Microbiology, 45(2), 667–676.

    CAS  Google Scholar 

  • Rigano, L. A., Marano, M. R., Castagnaro, A. P., Do Amaral, A. M., & Vojnov, A. A. (2010). Rapid and sensitive detection of citrus bacterial canker by loop- mediated isothermal amplification combined with simple visual evaluation methods. BMC Microbiology, 10, 176.

    Google Scholar 

  • Rizzo, D. M., Lichtveld, M., Mazet, J. A. K., Togami, E., & Miller, S. A. (2021). Plant health and its effects on food safety and security in a one health framework: Four case studies. One Health Outlook, 3, 6. https://doi.org/10.1186/s42522-021-00038-7

    Article  Google Scholar 

  • Rodrigo Staggemeier, M. B., da Silva Heck, T. M., Spilki, F. R., & de Matos Almeida, S. E. (2015). Quantitative vs. conventional PCR for detection of human adenoviruses in water and sediment samples. Revista do Instituto de Medicina Tropical de São Paulo, 57(4), 299–303.

    Google Scholar 

  • Rojas, J. A., Miles, T. D., Coffey, M. D., Martin, F. N., & Chilvers, M. I. (2017). Development and application of qPCR and RPA genus-and species-specific detection of Phytophthorasojae and P. sansomeana root rot pathogens of soybean. Plant Disease, 101, 1171–1181.

    CAS  Google Scholar 

  • Sankaran, S., Mishra, A., Ehsani, R., & Davis, C. (2010). A review of advanced techniques for detecting plant diseases. Computers and Electronics in Agriculture, 72(1), 1–13.

    Google Scholar 

  • Schwenkbier, L., Pollok, S., Konig, S., Urban, M., Werres, S., Cialla-May, D., Weber, K., & Popp, J. (2015). Towards on-site testing of Phytophthora species. Analytical Methods, 7, 211–217.

    CAS  Google Scholar 

  • Seo, M., Park, D.-H., Lee, C. W., Jaworski, J., & Kim, J.-M. (2016). Fluorometric measurement of individual stomata activity and transpiration via a “brush-on”, water-responsive polymer. Scientific Reports, 6(1), 1–10.

    Google Scholar 

  • Shen, D., Li, Q., Yu, J., Zhao, Y., Zhu, Y., Xu, H., & Dou, D. (2017). Development of a loop-mediated isothermal amplification method for the rapid detection of Pythium ultimum. Australasian Plant Pathology, 46, 571–576.

    CAS  Google Scholar 

  • Srinivasan, T. S., Almazan, M. L. P., Fujita, D., Ramal, A. F., Yasui, H., Subbarayalu, M. K., & Horgan, F. G. (2015). Current utility of the BPH25 and BPH26 genes and possibilities for further resistance against plant- and leafhoppers from the donor cultivar ADR52. Applied Entomology and Zoology, 50, 533–543. https://doi.org/10.1007/s13355-015-0364-5

    Article  CAS  Google Scholar 

  • Srinivasan, T. S., Almanaz, M. L., Bernal, C. C., Ramal, A. F., Subbarayalu, M. K., & Horgan, F. (2016). Interactions between nymphs of Nilaparvata lugens and Sogatella furcifera (Hemiptera: Delphacidae) on resistant and susceptible rice varieties. Applied Entomology and Zoology, 51, 81–90. https://doi.org/10.1007/s13355-015-0373-4

    Article  CAS  Google Scholar 

  • Stephane Swillens, J.-C. G., Marechal, Y., de Kerchoved’Exaerde, A., & El Housni, H. (2004). Instant evaluation of the absolute initial number of cDNA copies from a single real-time PCR curve. Nucleic Acids Research, 32(6).

    Google Scholar 

  • Strange, R. N., & Scott, P. R. (2005). Plant disease: A threat to global food security. Annual Review of Phytopathology, 43, 83–116.

    CAS  Google Scholar 

  • Tomlinson, J. A., Dickinson, M. J., & Boonham, N. (2010). Detection of Botrytiscinerea by loop-mediated isothermal amplification. Letters in Applied Microbiology, 51, 650–657.

    CAS  Google Scholar 

  • Upadhyay, R. P., & Palanivel, C. (2011). Challenges in achieving food security in India. Iranian Journal of Public Health, 40(4), 31–36.

    Google Scholar 

  • Van der Wolf, J., van Bechhoven, J. R. C. M., Bonants, P. J. M., & Schoen, C. D. (2001). New technologies for sensitive and specific routine detection of plant pathogenic bacteria. In Plant pathogenic bacteria (pp. 75–77). Springer.

    Google Scholar 

  • Vincelli, P., & Tisserat, N. (2008). Nucleic acid–based pathogen detection in applied plant pathology. Plant Disease, 82, 660–669.

    Google Scholar 

  • Vincent, M., Xu, Y., & Kong, H. M. (2004). Helicase-dependent isothermal DNA amplification. EMBO Reports, 5, 795–800. https://doi.org/10.1038/sj.embor.7400200

    Article  CAS  Google Scholar 

  • Wang, L., Poque, S., & Valkonen, J. P. (2019). Phenotyping viral infection in sweetpotato using a high-throughput chlorophyll fluorescence and thermal imaging platform. Plant Methods, 15(1), 1–14.

    Google Scholar 

  • West, S. C. (2003). Molecular views of recombination proteins and their control. Nature Reviews. Molecular Cell Biology, 4, 435–445.

    CAS  Google Scholar 

  • Wu, H., Wiesner-Hanks, T., Stewart, E. L., DeChant, C., Kaczmar, N., Gore, M. A., Nelson, R. J., & Lipson, H. (2019). Autonomous detection of plant disease symptoms directly from aerial imagery. The Plant Phenome Journal, 2, 1–9. 190006. https://doi.org/10.2135/tppj2019.03.0006.

  • Wu, H., Nißler, R., Morris, V., Herrmann, N., Hu, P., Jeon, S.-J., & Giraldo, J. P. (2020). Monitoring plant health with near-infrared fluorescent H2O2 nanosensors. Nano Letters, 20(4), 2432–2442.

    CAS  Google Scholar 

  • Zhang, J., Pu, R., Huang, W., Yuan, L., Luo, J., & Wang, J. (2012). Using in-situ hyperspectral data for detecting and discriminating yellow rust disease from nutrient stresses. Field Crops Research, 134, 165–174.

    Google Scholar 

Download references

Acknowledgement

The corresponding author is thankful for the support of the Science and Engineering Research Board (SERB), DST, (Grant No. ECR/2017/001081) and Sathyabama Institute of Science and Technology, Chennai.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thanga Suja Srinivasan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Srinivasan, T.S., Thankappan, S., Madhumitha Balasubramaniam, Bhaskar, V. (2022). Impact of Plant Health on Global Food Security: A Holistic View. In: Rukhsana, Alam, A. (eds) Agriculture, Environment and Sustainable Development. Springer, Cham. https://doi.org/10.1007/978-3-031-10406-0_4

Download citation

Publish with us

Policies and ethics