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In 2010, an estimated 4.8–12.7 million tonnes of 
plastic entered the world’s oceans from land (Jambeck 
et al. 2015; Vince and Stoett 2018). Not surprisingly, 
plastics make up about 80% of all marine debris (de-
fined as any persistent manufactured or processed solid 
material discarded, disposed of or abandoned in the 
marine environment and coastal environment) (UNEP 
2016). Abundance estimates have predicted that tens 
of  millions of metric tonnes of  plastic debris is float-
ing on global ocean surfaces (Lebreton et al. 2018), 
with microplastic estimates ranging between 15 and 51 
trillion items (van Sebille et al. 2015), making plastic 
pollution internationally recognised (Rochman et al. 
2013).

The longevity of plastic, large inputs into the ocean, 
and natural movement of the material via winds and 
currents have made plastic a persistent and ubiquitous 
pollutant throughout global coastal and marine envi-
ronments, including in remote areas, such as the Arctic 
Ocean (Eriksen et al. 2020). Decades worth of evidence 
shows plastic pollution harms marine wildlife and habi-
tats (Laist 1987; Gregory 2009; Baulch and Perry 2014; 
Beaumont et al. 2019) and human health (Thompson 
et al. 2009; Waring et al. 2018), with an associated eco-
nomic loss and decline in ecosystem services (benefits 
people obtain from nature). This chapter explores the 
global issue of marine plastic pollution. In it we discuss 
topics such as plastic types and characteristics, sources 
of marine plastic pollution, transport and accumula-
tion, impacts, challenges in governance, and initiatives 
aimed at reducing the use of plastics.

9.2  � Plastic Types and Characteristics

The term plastic covers a wide range of synthetic or 
semi-synthetic materials that we use to help make life 
cleaner, easier, and safer (Andrady and Neal 2009; 
Plastics Europe 2020). They are produced from syn-
thetic polymers, which are long, chain-like molecules 

9.1  � Introduction

Plastic production has grown exponentially, from 1.5 
million tonnes in the 1950s (Plastics Europe 2012) to 
359 million tonnes in 2018 (Plastics Europe 2019). 
Valued for being versatile, durable, lightweight and in-
expensive to produce, plastic is used in all aspects of 
our daily life. Plastic has shaped the development of 
modern society and has benefited many sectors, in-
cluding healthcare, science and technology, agricul-
ture, packaging, transportation, and construction 
(Napper and Thompson 2020; Plastics Europe 2017). 
The largest market demand of  plastic is for single-use 
disposable packaging materials, with approximately 
50% of  all plastic production going towards single-use 
purposes (Hopewell et al. 2009; Xanthos and Walker 
2017).

Plastic is extremely durable and non-biodegradable. 
Although plastic can break into pieces that are invisible 
to the naked eye, plastic longevity is estimated to range 
from hundreds to thousands of years (Barnes et al. 
2009), making plastic waste management a global chal-
lenge. Plastic waste management is considered inade-
quate or non-existent in many parts of the world, de-
spite high levels of plastic production and consumption 
(Bucci et al. 2020). Although most developed countries 
have invested in recycling technologies, there are many 
factors that impact recycling success, including the lack 
of technology to recycle all plastic types, lack of collec-
tion points, recycling feedstock contamination (which 
occurs when plastic food containers are not properly 
cleaned) and consumer apathy (Law 2017). Many de-
veloping countries lack the waste management prac-
tices, services, systems or infrastructure for garbage, 
let alone recycling. From 1950 to 2015, the cumula-
tive waste generation of primary and recycled plas-
tic amounted to 6300 million tonnes (6300 Mt), with 
only 9% recycled and 12% incinerated, while at least 
60% persists in landfills or in the natural environment 
(Geyer et al. 2017).

Acronyms and Abbreviations

BPA	� Bisphenol A
EDCs	� endocrine-disrupting chemicals
EU	� European Union
FTIR	� Fourier-transform infrared spectroscopy
GPGP	� Great Pacific Garbage Patch
MARPOL	� International Convention for the Prevention of Pollution from Ships
MOOC	� Massive Open Online Course
POP	� Persistent Organic Pollutant
PVC	� polyvinyl chloride
SPI	� Society of the Plastics Industry
UV	� ultraviolet
USA	� United States of America
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with further categorisations such as megaplastic 
(>1000 mm), mesoplastic (5–20 mm), and nanoplastic 
(<1000 nm) (7 Box 9.2) (Barnes et al. 2009; Ivar do Sul 
and Costa 2014; Thompson et al. 2009). Plastic debris 
from all size categories are found throughout the ma-
rine environment, at beaches, on the water surface, in 
the water column, and on the seafloor (. Figure 9.1).

In addition to polymer type, plastic debris is described 
using numerous characteristics including size, shape 
(e.g. beads, pellets, foams, fibres, fragments), col-
our, and original usage (e.g. fishing gear, food pack-
aging) (Andrady 1994, 2017; Napper et al. 2015). 
The two most common size categories are macroplas-
tic (>20 mm diameter) and microplastic (<5 mm), 

in the medical industry). To create durable plastic prod-
ucts, plastic polymers are combined with chemical ad-
ditives such as fillers, plasticisers, flame retardants, and 
stabilisers (ultraviolet (UV) and thermal) (Andrady and 
Neal 2009). The coding of different types of plastics 
was developed by the Society of the Plastics Industry 
(SPI) and is used as the global standard (Wong 2010). 
Plastic polymers can be identified using laboratory 
techniques such as Fourier-transform infrared spectros-
copy (FTIR) and Raman spectroscopy.

of repeating chemical units (Napper and Thompson 
2020). These units consist of hydrocarbons, usually 
sourced from fossil fuels such as coal, natural gas, and 
crude oil, but also from materials such as cellulose or 
salt (ACC 2020; Höfer and Selig 2012). Different plas-
tic polymers are used for various product types (7 Box 
9.1), including polyethylene (clear food wrap, plastic 
bags, detergent bottles), polystyrene (Styrofoam pack-
aging), polypropylene (packaging, industrial parts, tex-
tiles), and polyvinyl chloride (PVC, used for pipes and 

Box 9.1: Plastic Polymers: Recycling Numbers and Examples of Common Uses

Polymer 
name

Polyethylene 
terephthalate 
(PET or PETE)

High-density 
polyethylene 
(HDPE)

Polyvinyl 
chloride 
(PVC)

Low-density 
polyethylene 
(LDPE)

Polypropylene 
(PP)

Polystyrene 
(PS)

Other

Recycling 
Symbol

 
1

 

22
 

33

 

44
 

55
 

66
 

77

Common 
Uses

Soda bottles, 
water bottles, 
rope

Milk jugs, 
toys, snack 
food boxes

Plumb-
ing pipes, 
credit 
cards, 
floor cov-
ering

Plastic 
wrap, bub-
ble wrap, 
plastic gro-
cery bags

Prescrip-
tion bottles, 
most bottle 
tops, potato 
chip bags

Dispos-
able foam 
cups, take-
out food 
containers, 
plastic cut-
lery

Baby bot-
tles, med-
ical stor-
age con-
tainers, 
eyeglasses

Adapted from Wong (2010)

Box 9.2: Marine Plastic Debris: Examples of Debris in Different Size Categories

Nano (<1 µm) Micro (<5 mm) Meso (5–20 mm) Macro (>20 mm) Mega (>1000 mm)

• Fibres from clothing
• �Nano items in per-

sonal care products 
and pharmaceuticals

• �Microbeads from per-
sonal care products

• �Fragments from larger 
existing plastic debris

• �Polystyrene balls from 
packaging

• Bottle caps
• �Cigarette filters and 

butts
• Lighters
• Candy wrappers

• Beverage bottles
• Plastic bags
• Cutlery
• Beer-ties
• Balloons
• �Fishing lines, 

floats, and buoys

• �Abandoned 
fishing nets

• �Rope and rope 
conglomerates

Adapted from UNEP (2017)
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bres that are shed from synthetic and semi-synthetic 
fabrics during washing (. Figure 9.2c, d).

9.3  � Sources

Plastic enters the marine environment from land and 
maritime sources, with a larger proportion (70–80%) en-
tering from land (. Figure 9.3) (UNEP 2005, 2009). 
Land-based sources consist of mismanaged waste (e.g. 
uncovered garbage dumps or littered plastic, . Fi-
gure 9.4), spillage of virgin plastic pellets, litter flowing 
into storm drains and rivers, treated and untreated sew-
age effluent, as well as aerial deposition (items or fibres 
that are emitted into the air from industrial facilities that 
are then deposited on the ocean) (Critchell et al. 2019). 
Maritime sources include shipping vessels, fishing and 
recreational boats, aquaculture facilities, offshore oil in-
dustry and tourism (Boucher and Friot 2017). Despite 
international regulations (see also 7 Chapter 16) forbid-
ding the discharge of waste at sea (International Conven-
tion for the Prevention of Pollution from Ships (MAR-
POL) 73/78), cargo loss during storms and intentional 
disposal of waste from ships does occur. Lost and aban-
doned fishing gear is also a major contributor to marine 
plastic pollution worldwide (Richardson et al. 2017). For 
example, fishing gear used for catching octopus accounts 
for 94% of larger plastic debris found in the Moroccan 
Southern Atlantic Ocean (Loulad et al. 2017).

9.2.1  � Macroplastics

Macroplastic (>20 mm) debris commonly observed 
in the marine environment can include floating plas-
tic bags and bottles and plastic beach debris (. Fi-
gure 9.2a). Significant levels of macroplastic debris can 
become a navigational hazard for both marine wild-
life and vessels. Further significant impacts to the ma-
rine environment and organisms are numerous, for ex-
ample, the smothering of coral reefs (Personal observa-
tion, K. Berry), seagrass beds (Kiessling et al. 2015) or 
mangroves (Martin et al. 2019), and the entanglement 
or ingestion of plastic debris by marine fauna (Gregory 
2009; Wesch et al. 2016).

9.2.2  � Microplastics

Microplastics (<5 mm) are sub-categorised into primary 
and secondary microplastics. Primary microplastics 
are intentionally manufactured to be small for various 
uses and include virgin plastic resin pellets, small items 
or spheres used in personal care products known as mi-
crobeads (e.g. for face washes, toothpaste, or cosmetics, 
. Figure 9.2b, as well as abrasives in cleaning products 
(Cole et al. 2011; Derraik 2002). Secondary microplas-
tics are created during the breakdown of larger plastic 
items. They commonly take the form of weathered and 
degraded plastic pieces (see 7 Section 9.5) and microfi-

. Figure 9.1  Plastic debris is ubiquitous in the marine environment, some examples include a plastic found washed up on beaches b floating 
on the water’s surface c floating within the water column d and deposited on the seafloor. Photos: A. Malmgren (a), K. Berry (b–d)

http://dx.doi.org/10.1007/978-3-031-10127-4_16
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leased from a typical six kilogram wash of synthetic 
clothing, such as polyester and nylon (Napper and 
Thompson 2016). Large quantities of microplastic items 
(up to 90%) can be removed from sewage during various 

Many microplastic items, such as microbeads and 
microfibres, are washed down drains, entering water-
ways either directly or via wastewater management sys-
tems. More than 700,000 microplastic fibres can be re-

. Figure 9.2  Marine plastic pollution comes in all shapes and sizes and is categorised by size, shape, and colour. a Larger plastic debris is 
referred to as macroplastic (>20 mm) and is often observed floating c on the ocean surface or washed up on beaches. Smaller plastic debris, 
known as mesoplastic (5–20 mm) and b and d and microplastic (<5 mm) are harder or impossible to detect with the naked eye. Microplastics 
are sub-categorised into “primary”, which are purposely manufactured to be small, such as microbeads used in exfoliating face cleansers (b), 
and “secondary” microplastics, formed from the breakdown of larger plastic items (c and d). Photos: K. Berry

. Figure 9.3  Plastic enters the marine environment from land and maritime sources. Virgin plastic pellets may spill during manufacturing 
and transport, entering waterways. Manufactured plastic products may enter the marine environment due to degradation, accidental loss, or 
intentional disposal. Discarded waste, whether properly or improperly managed, may still enter the environment via numerous pathways such 
as wastewater effluent discharge, storm drains, and rivers. Adapted from Law (2017) by K. Berry
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tic object. The size, shape, and polymer density all in-
fluence where the item will sit in the water column, and 
how easily it will move into another part of the water 
column (Chubarenko et al. 2016; Erni-Cassola et al. 
2019; Lenaker et al. 2019). Ocean water has a density 
in the range of 1.02–1.03 g/cm3 and therefore plas-
tic polymers range from buoyant to negatively buoy-
ant (e.g. PVC is denser than seawater [1.38 g/cm3] and 
therefore tends to sink) (Andrady 2011; Plastics Europe 
2014; Wang et al. 2016). Yet, where the plastic item sits 
in the water column depends also on the physical size 
and shape of the object. Despite PVC having a higher 
density than seawater (Syakti 2017), if  a PVC object is 
large and hollow (e.g. a chemical drum), it may remain 
buoyant due to displacement. If  it was a microplas-
tic item (<5 mm), then the polymer type would have 
a much stronger influence on where it is found in the 
water column, and it will most likely sink. Very small 
plastic items such as microplastics can easily be mixed 
through the water column and can sink to different 
depths in the ocean (Reisser et al. 2015).

Plastic debris in the marine environment will often 
become substrate for sessile (immobile) marine organ-
isms (this process is called bio-fouling), which can in-
crease an item’s density (e.g. Fazey and Ryan 2016; 
Kaiser et al. 2017). Smaller plastic debris and those 
with a density closer to that of sea water, which ex-
perience bio-fouling, can have their density changed 

wastewater treatment stages (Carr et al. 2016), however, 
the capture of microplastic items is dependent on types 
of treatment processes. Due to their small size (microbe-
ads are <50 µm) they are not always captured by filtra-
tion devices. The quantity of microplastic items released 
in effluent can equate to 300 million plastic pieces per 
day, making wastewater discharge a major source of 
microplastic debris into the aquatic environment (Edo 
et al. 2019). The most commonly reported types of ma-
rine microplastic debris worldwide are pellets, frag-
ments, and fibres (GESAMP 2015), however, ropes, 
sponges, foams, rubber, and microbeads are also impor-
tant contributors to plastic pollution (Auta et al. 2017).

Although most plastic enters the marine environ-
ment because of human activity, natural events such 
as floods, earthquakes, and tsunamis can result in large 
quantities of plastic debris unintentionally entering the 
ocean (Murray et al. 2018; Veerasingam et al. 2016).

9.4  � Plastic Transport in the Marine 
Environment

Plastics move through the marine environment via 
winds and ocean processes such as currents and eddies 
(Eriksen et al. 2014). Exactly how items move and how 
far is governed by the physical properties of the plas-

. Figure 9.4  Mismanaged waste is a major source of plastic debris to the marine environment. a and b Waste may be considered misman-
aged due to lack of full containment, c and d that may result in accidental loss, or due to a lack of waste management infrastructure, which re-
sults in plastic items being discarded directly into the environment. These photos, depicting mismanaged waste, were taken in Indonesia (a, b, 
c) and Myanmar (d). Photos: A. Reichelt-Brushett (a, b, c), K. Berry (d)
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patterns. The world’s five major gyres (. Figure 9.5) are 
found in the middle of the oceanic basins of the North 
and South Atlantic Ocean, the Indian Ocean, and the 
North and South Pacific Oceans. The largest gyre-asso-
ciated “floating garbage patch” is the GPGP in the North 
Pacific Gyre (Lebreton et al. 2018), situated in the sub-
tropical waters of the Pacific between California and Ha-
waii. In the GPGP, microplastic debris accounts for 94% 
of the plastic pieces floating in the area (Law et al. 2014). 
The micro- and meso-plastic debris concentrations in the 
GPGP are reported to be between 22,000 and 678,000 
pieces/km2, respectively (Lebreton et al. 2018).

Oceanic gyres are not a static accumulation of plas-
tic debris, however, the time in which a plastic item re-
mains within a gyre is very high (Howell et al. 2012). 
Accumulation can be defined as occurring when the 
supply (or input) to an area is larger than loss (or out-
put). Each piece of plastic is perpetually moving, be-
ing mixed, and eventually leaving the gyre. Yet, this loss 
of plastic is very small when compared with the sup-
ply. Floating plastic debris has also accumulated in 
semi-enclosed regional seas globally, for example, the 
Caspian Sea (Nematollahi et al. 2020), the Mediterra-
nean Sea (Suaria et al. 2016; Vianello et al. 2018), and 
Laizhou Bay in China (Teng et al. 2020).

The seabed is an accumulation zone that is only be-
ginning to be understood (Woodall et al., 2014). Because 
degradation processes and bio-fouling can cause most 
categories of plastics to sink to the seafloor (Kowalski 
et al. 2016), microplastic debris has been found in sedi-
ments collected from the deepest parts of the ocean (Peng 
et al. 2020). This includes in deep sea sediments from the 
Great Australian Bight, the Southern Ocean, the North 
Atlantic Ocean, and the Mediterranean Sea (Van Cau-
wenberghe et al. 2013; Barrett et al. 2020;). A plastic bag 
was recently found in the world’s deepest ocean trench, 
the 10,898 m deep Mariana Trench (Chiba et al. 2018).

enough that the item will eventually sink to the seafloor 
(Kane and Clare 2019). Size is an important factor. 
Even microscopic sized pieces of plastic (known as na-
noplastics, <1 µm), with a low polymer density making 
them very buoyant, can become tangled in marine snow 
(organic detritus in the water column) and sink (Porter 
et al. 2018). A similar process is thought to occur in the 
faeces of marine organisms that ingest and then excrete 
nanoplastics (Kvale et al. 2020). Larger plastic debris, 
instead, continues to drift in the ocean until it accumu-
lates, either on beaches or in large ocean circulations, 
like the Great Pacific Garbage Patch (GPGP).

9.4.1  � Modelling the Movements of Plastic

As with many ocean processes, it is not possible to study 
real-time plastic debris dispersal and movement at ocean 
scales in the field. The area is too large, the time scales 
are too long, and working on, or in, the ocean is expen-
sive. Therefore, scientists use models to understand and 
predict plastic movement. Early studies modelled the 
movement of plastic debris at the scale of whole oceans 
(e.g. Law et al. 2010; Maximenko et al. 2012; van Sebille 
et al. 2012), while more recent studies focussed on the 
scales of seas and individual beaches (e.g. Cozar et al. 
2014; Turrell 2018; Yabanlı et al. 2019). These models 
allow us to learn about the processes that transport and 
accumulate plastic debris in the environment.

9.4.2  � Accumulation

Oceanic gyres are now infamous as large-scale debris ac-
cumulation areas for plastic pollution (Cozar et al. 2014; 
Eriksen et al. 2013). Gyres are large-scale eddies in the 
ocean, generated by oceanic currents and global wind 

. Figure 9.5  The world’s five major oceanic gyres. Adapted from what are the 7 continents (2020) by P. Lewis
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Box 9.3: What is the Significance of Microplastic Items in Sea Ice?

Microplastic concentrations within Arctic sea ice can im-
pact the absorption of incident solar radiation, which af-
fects the light reflectance (albedo) of sea ice. Light re-
flectance is how the ice reflects solar energy and is one 
of its key properties, regulating heat exchange between 
the ocean and the atmosphere. High salinity sea ice has 
been associated with large concentrations of microplas-
tic items, which could adversely affect albedo and how the 
ice melts, but also the brine volume content, which con-
trols the permeability of sea ice. Microplastic impurities 
can be light-absorbing, affecting light penetration depth, 
potentially impacting algae that lives underneath, al-

gae that forms the basis of the Arctic foodweb.1 A total 
of 96 microplastic items from 14 types of polymers were 
discovered in sea ice samples collected near Casey Sta-
tion in East Antarctica.2 Local sources include clothing 
and equipment used by tourists and researchers, as well as 
varnishes and plastics commonly used by the fishing in-
dustry (. Figure 9.6).

For further reading:
The Guardian Australia 7 https://mville.libguides.

com/c.php?g=370027&p=5932225#:~:text=Structure%20
of%20a%20citation%20for,Publisher%2C%20Publica-
tion%20date%2C%20URL.

transport routes (Bergmann et al. 2019). Another signifi-
cant source and transport vector within the region is the 
Arctic sea ice, which can trap between 38 to 234 plastic 
items per m3 of ice (Obbard 2018), items that can then be 
re-released after the seasonal migration and melting of the 
ice in the North Atlantic (Peeken et al. 2018) (7 Box 9.3).

At the other end of the world, the Antarctic Con-
vergence current that surrounds Antarctica was 
thought to act as a potential barrier to flowing de-
bris and pollutants from the north (Ainley et al. 1990). 
However, studies now show the presence of microplas-
tics in sea ice, sediments, and surface waters of the Ant-
arctic and Southern Ocean, as well as in the scat of sea-
birds from sub-Antarctic Islands and the Antarctic 
Peninsula (e.g. Isobe et al. 2014; Bessa et al. 2019; Kelly 
et al. 2020; Sfriso et al. 2020; Waluda et al. 2020).

9.4.3  � Plastics in Remote Environments

Plastics have polluted remote terrestrial and marine en-
vironments, from the highest mountains to the depths 
of the ocean. These include the Arctic, Antarctic, and 
Southern Ocean, the Tibetan Plateau at 3000 m altitude, 
and the deep sea, at greater than 1000 m in depth (Wang 
et al. 2019a). Baseline pollution in remote polar regions, 
such as the Arctic and Antarctic, are considered indica-
tors of global environmental health. The Arctic in par-
ticular is now being recognised as a global sink for an-
thropogenically derived particulates (Eriksen et al. 2020), 
with microplastics and microfibres being dispersed into 
the region from population centres by subsurface cur-
rents (Wichmann et al. 2019). Recent studies have also 
identified the atmosphere and snowfall as significant 

. Figure 9.6  7 Box 9.3: AWI scientists sample a melt pond on Arctic sea ice, discovering record levels of microplastics. Photo: Mar 
Fernandez/Alfred Wegener-Institute

2	 Ecowatch 2020
7 https://www.ecowatch.com/antarctica-microplastics-sea-ice-2645809545.html?rebelltitem=2#rebelltitem2.

1	 The Conversation 2019
7 https://theconversation.com/microplastics-may-affect-how-arctic-sea-ice-forms-and-melts-120721.

https://mville.libguides.com/c.php?g=370027&p=5932225#:~:text=Structure%20of%20a%20citation%20for,Publisher%2C%20Publication%20date%2C%20URL
https://mville.libguides.com/c.php?g=370027&p=5932225#:~:text=Structure%20of%20a%20citation%20for,Publisher%2C%20Publication%20date%2C%20URL
https://mville.libguides.com/c.php?g=370027&p=5932225#:~:text=Structure%20of%20a%20citation%20for,Publisher%2C%20Publication%20date%2C%20URL
https://mville.libguides.com/c.php?g=370027&p=5932225#:~:text=Structure%20of%20a%20citation%20for,Publisher%2C%20Publication%20date%2C%20URL
https://www.ecowatch.com/antarctica-microplastics-sea-ice-2645809545.html?rebelltitem=2#rebelltitem2
https://theconversation.com/microplastics-may-affect-how-arctic-sea-ice-forms-and-melts-120721
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Weathering processes can also release harmful ad-
ditives from the plastic polymer matrix (Teuten et al. 
2009). These can include plasticisers such as phtha-
lates (Schrank et al. 2019), flame retardants (Fauser 
et al. 2020), and other endocrine-disrupting chemicals 
(EDCs) (Gallo et al. 2018). Biological degradation of 
plastic is also possible, through the bio-fouling of plastic 
surfaces (Fazey and Ryan 2016). Emerging research sug-
gests that the cells of some microbes conform to the pits 
and grooves found on the surfaces of microplastics and 
may be degrading polymers in situ (Zettler et al. 2013; 
Reisser et al. 2014). Laboratory studies by McGivney 
et al. (2020) found physiochemical changes in microplas-
tics exposed to bacterioplankton biofilms extracted 
from coastal waters in Sweden. Biofilm effects were de-
pendent upon polymer type. Increases in crystallinity 
and maximum compression were observed in polyeth-
ylene and polystyrene items respectively, while polypro-
pylene items decreased in stiffness when exposed to the 
biofilm (McGivney et al. 2020). Gene sequencing anal-
yses found significantly higher abundances of Sphingo-
bium spp., Novosphingobium ssp., and uncultured Planc-
tomycetaceae on polyethylene, while polypropylene and 
polystyrene both had greater abundances of Sphin-
gobacteriales and Alphaproteobacteria. These results 
provide evidence to support the hypothesis that bacte-
ria are degrading microplastics and that different mem-
bers of the bacterial community are responsible for this 
degradation, depending upon polymer type. More work 
is needed in order to determine how these biological 
modifications, in concert with the physical and chemical 
changes from abiotic factors, impact the fate of the var-
ious microplastic polymers in the marine environment.

9.5  � Degrading Processes

Durability is a valued property of  plastic. None-
theless, plastic items do not remain in their original 
form forever, and eventually degrade over time. Plas-
tics can undergo different weathering and aging pro-
cesses in the marine environment, due to a wide va-
riety of  environmental factors (7 Box 9.4). These in-
clude photo-degradation from the sun, thermal aging, 
bio-film growth, and oxidation that results in the deg-
radation of  the plastic polymers (Andrady 1994; Min 
et al. 2020). The physical damage that results from 
this degradation can include cracking, surface ero-
sion, and abrasion, all of  which depends on the struc-
ture and chemical properties of  the plastic polymer 
(Andrady 2011; Min et al. 2020). Photo-degradation, 
or the physical and chemical weathering by UV light, 
breaks polymer bonds, weakening the plastic struc-
ture and allowing the item to fragment, forming sec-
ondary microplastics (Efimova et al. 2018). Plastic 
that has sunk to ocean depths, or that is buried in sedi-
ment, does not experience exposure to UV light, there-
fore it will not undergo fragmentation processes, un-
less exposed to another mechanism of degradation 
(Andrady 2011). Mechanical forms of  degradation are 
possible, particularly in the swash zone of  high-energy 
beaches (Corcoran et al. 2009). The relentless battering 
of  the plastic against sand grains, pebbles, and stones 
will cause it to break up, with previous UV light ex-
posure exacerbating the process (. Fig. 9.7). These 
processes are believed to be the most common ways 
in which plastics become microplastics (described in 
7 Sect. 9.2.2).

Box 9.4: The Physical and Chemical Degradation Processes of Plastic

Type – Details
Biological – Microorganism actions cause degradation

Photo – UV light or photons, usually sunlight, cause degradation

Thermo-oxidative – Slow oxidative, molecular degradation at moderate temperatures

Hydrolysis – Chemical reaction with water causes degradation

Mechanical – Physical breakdown of plastics on high energy beaches

Adapted from Rochman et al. (2015).

Weathering Agents in Different Marine Zones

Weathering agent Beach Surface water Deep water or sediment

Sunlight Yes Yes No

Temperature High Moderate Low

Oxygen levels High High/moderate Low

Fouling (screens solar radiation) No Yes Yes

Adapted from Andrady (2015)
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techniques is likely overestimating microplastic con-
tamination (Song et al. 2015; Provencher et al. 2020).

Lastly, procedural contamination by microfibres is a 
serious concern (Woodall et al. 2015; Torre et al. 2016), as 
is the ecological relevance of studies. Many studies inves-
tigating the potential effects of microplastics utilise con-
centrations and sizes of microplastics not commonly re-
ported in the natural environment, meaning that the 
true implications of the results may be misinterpreted 
(Phuong et al. 2016). Increased baseline studies, standard-
ised collection and quantification methods, and consist-
ent reporting units will help provide accurate and compa-
rable environmental data to inform management and pol-
icy decisions (Cowger et al. 2020; Pittura et al. 2023).

9.6  � Impacts of Plastic Debris

9.6.1  � Impacts Overview

The ubiquity of plastic debris and diversity of plastic 
debris characteristics (e.g. shape, size, density, chemi-
cal composition) results in many interaction pathways 
with marine wildlife (. Table 9.1) and humans. Plastic 
pollution is known to impact many trophic levels and 
can have physical and chemical effects. It is aestheti-
cally unpleasing, creates human health concerns, and is 
an economic burden. In this section, we will discuss the 
impacts of plastic pollution on the environment, hu-
man health, and the economy.

9.6.2  � Physical Interactions with Wildlife

Entanglement and ingestion are the most commonly re-
ported interactions between marine plastic debris and 
wildlife (. Table 9.1) (Kühn and van Franeker 2020). 

9.5.1  � Complications of Measuring 
and Comparing Plastic Pollution

Scientific research on the quantification and environ-
mental impacts of macro- and microplastic have in-
creased drastically over recent years, providing criti-
cal information to scientists and policy makers (Forrest 
2019). However, discrepancies in terminology, reporting 
units, and inconsistencies in methodologies make accu-
rate geographical comparisons and summaries of this is-
sue difficult (Provencher et al. 2020; Pittura et al. 2023).

Plastic quantification is presented by either (1) 
the number of plastic pieces per m2, (2) the num-
ber of plastic items per litre of seawater, or (3) weight 
(Miller et al. 2017). The range of units makes it diffi-
cult to make accurate comparisons between study sites 
or obtain true estimates of total plastic contamination 
at the local, regional, or global level. Laboratory stud-
ies have quantified plastic ingestion by extracting plas-
tics from animal tissue, yet all extraction methodologies 
have limitations (Miller et al. 2017). For example, di-
gestion techniques using acid solutions can digest cer-
tain plastic polymers, resulting in the underestimation 
of plastics (Claessens et al. 2013; Li et al. 2015; Van-
dermeersch et al. 2015), while, methods using physi-
cal extractions may fragment plastic pieces, resulting in 
over-estimations (Kathryn Berry personal observation). 
These over- and underestimations can also occur when 
microplastic polymer types are not identified correctly, 
for example, many naturally derived materials can also 
resemble plastic, requiring these pieces to be validated 
as synthetic polymers (Lusher et al. 2020; Zhao et al. 
2018). FTIR and Raman spectroscopy are the most 
commonly used methods for plastic polymer identifi-
cation, however this equipment is expensive and the 
process is time consuming (Cozar et al. 2014; Lv et al. 
2019). Consequently, any study that has not correctly 
validated microplastic polymers using one of these 

. Figure 9.7  Weathering (physical and chemical) contributes to the degradation of plastic items on beaches, a This blue plastic item was ob-
served during the fragmentation process on a beach in Queensland, Australia, and b a sample was collected and taken back to the lab for im-
aging under a stereomicroscope, which revealed that the plastic pieces were fragmenting into more than 20 microplastic pieces, many of which 
were smaller than a grain of sand. If  left on the beach, these new smaller fragments would continue to break into smaller and smaller pieces 
Photos: K. Berry
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due to drowning (e.g. Allen et al. 2012). Plastic de-
bris may cause additional physical harm to marine hab-
itats and sessile benthic organisms (e.g. corals, seagrass, 
mangroves) via smothering (. Figure 9.8c), and when 
dragged along the seafloor. Fishing nets (referred to as 
ghost nets) that are lost, abandoned, or discarded at sea 

Wildlife is more likely to become entangled in certain 
shapes/types of plastic debris, such as ropes (. Fi-
gure 9.8a, b), bags, or circular plastic items, such as al-
uminium can six-pack rings. Entanglement can cause 
tissue abrasion, strangulation, reduced feeding effi-
ciency, reduced growth and development, and death 

. Table 9.1  Summary of plastic debris impacts on marine wildlife related to encounter types (field and laboratory measurements)

Abbreviations: ENT entanglement, ING ingestion, INT interaction, (L) laboratory experiment, CON contaminant

Animal Encounter type Predominate debris type Impact (response) Study

Grey seals ENT Fishing line, net, rope Constriction Allen et al. (2012)

Manatees ENT Fishing line, bags, debris Death Beck and Barros (1991)

Elephant seals ENT Fishing line, fishing jibs Dermal wound Campagna et al. (2007)

Fur seals ENT Trawl net, packing bands Death Fowler (1987)

Invertebrates, fish, seabirds, 
marine mammals

ENT Derelict gillnets Death Good et al. (2010)

Gorgonians ENT Fishing line Damage/breakage Pham et al. (2013)

Sea turtles ENT Fishing gear Death Vélez-Rubio et al. (2013)

Whales ENT Fishing line Dermal wound Winn et al. (2008)

Manatees ING Fishing line, bags, debris Death Beck and Barros (1991)

Penguins ING Plastic, fishing, debris Perforated gut, death Brandão et al. (2011)

Sea turtles ING Plastic bags, ropes Gut obstruction, 
death

Bugoni et al. (2001)

Seabirds ING Plastic items, pellets Perforated gut Carey (2011)

Fish (L) ING Nano items Biochemical/cellular Cedervall et al. (2012)

Seabirds ING Plastic debris Gut lesions Fry et al. (1987)

Sperm whales ING Fishing gear, debris Gastric tear, death Jacobsen et al. (2010)

Copepods (L) ING Micro- and nanoplastics Death Lee et al. (2013)

Sea turtles ING Marine debris Gut obstruction Vélez-Rubio et al. (2013)

Seabirds ING Microplastics Gut obstruction Gilbert et al. (2015)

Mussels (L) ING Microplastics Biochemical/cellular von Moos et al. (2012)

Bivalves (L) ING Microplastics Limited response Bour et al. 2018

Marine larvae (L) ING Microplastics Limited response Kaposi et al. (2014)

Brine shrimp (L) ING Microplastics Limited response Wang et al. (2019b)

Marine fish (L) ING Microplastics Limited response Critchell and Hoogen-
boom (2018)

Copepods
Zebrafish (L)

ING/CON Microplastics Trophic transfer, POP 
uptake

Batel et al. (2016)

Fish ING Microfibres Limited response Kroon et al. (2012)

Zebra Fish (L) ING/CON Microplastics Pb (lead) bioavailable Boyle et al. (2020)

Pearl oyster ING/CON Aquaculture gear Leachate absorption, 
reproduction

Gardon et al. (2020)

Seabirds ING/CON Microplastics PBDE body burden Tanaka et al. (2013)

Coral reef INT Fishing gear Tissue abrasion Chiappone et al. (2005)

Seagrass INT Fishing gear, debris Breakage, death Uhrin and Schellinger 
(2011)

Coral (L) INT Microplastics Limited response Berry et al. (2019)



9

218	 K. L. E. Berry et al.

in behaviour, reduced swimming performance, impaired 
reproduction, and oxidative stress (Sigler 2014; Cole 
et al. 2015; Gray and Weinstein 2017; Foley et al. 2018).

9.6.3  � Plastic as an Unnatural Substrate

Micro- and macroplastics act as a platform for colo-
nisation (. Figure 9.8d) by sessile organisms and mi-
crobes, including pathogens. Movement of colonised 
plastic debris may increase an organism’s dispersal and 
transport of invasive species (Barnes et al. 2009; Greg-
ory 2009). Colonisation of sunken plastic debris may 
alter habitat structure by providing sessile benthic or-
ganisms with alternative substrate to settle and grow 
upon. The long-term implications of plastic debris as a 
3D habitat structure are unknown.

Plastic debris provides a novel habitat upon which 
microbes can flourish (Zettler et al. 2013). The plas-
tisphere refers to the unique structure and taxonomy 
of  the microbial community that forms on the sur-
face of  marine plastic debris, which differs signifi-
cantly from the overall microbial community of  the 
surrounding substrates (Bryant et al. 2016; Feng et al. 
2020; Zettler et al. 2013). It has yet to be determined if  
the taxonomy of  the plastisphere varies between pol-
ymer types, as other factors such as the age of  the de-
bris (i.e. virgin or weathered), season, and geographic 

can continue to catch fish and other marine organisms 
such as rays and turtles for many years (Gunn et al. 
2010). These environmental impacts may create eco-
nomic loss associated with losses to fisheries due to de-
pletion of fish stocks and gear replacement costs.

Many marine species are reported to ingest plas-
tic debris, including the smallest marine animals at the 
bottom of the food chain, zooplankton (Cole et al. 
2013), fish (Kroon et al. 2018), turtles (Caron et al. 
2018), seabirds (Gilbert et al. 2015), whales and other 
large marine animals (Besseling et al. 2014; Germanov 
et al. 2019; Moore et al. 2020). Ingestion of plastic de-
bris occurs due to an organism mistaking plastic de-
bris for prey either by sight, for example, turtles mis-
taking plastic bags for jellyfish (Schuyler et al. 2014), 
or by smell, for example, some species of seabirds in-
gest microplastics after targeting zooplankton swarms 
(Gilbert et al. 2015; Savoca et al. 2016). Ingestion is in-
fluenced by the size and shape of the plastics, an or-
ganism’s feeding behaviour, and feeding range (depth) 
within the water column (Fossi et al. 2012; Cole and 
Galloway 2015; Lusher et al. 2017). Impacts associated 
with ingestion are often related to size of the plastic de-
bris, ranging from minimal effects (likely due to the an-
imal simply passing the plastic debris through its diges-
tive system) to obstruction of the intestinal tract and 
reduced stomach capacity (which can lead to malnutri-
tion and reduced growth rates), internal injury, changes 

. Figure 9.8  Plastic debris interacts with the marine environment and wildlife in numerous ways: a and b Organisms, such as turtles and cor-
als may become entangled in fishing nets/rope, c sunken plastic debris may smother sessile organisms such as corals, causing physical harm 
and blocking out essential light and d plastic can act as a platform to transport fouling organisms and microbes. Photos: A. Hassan (a), A. Re-
ichelt-Brushett (b), K. Berry (c, d)
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Persistent Organic Pollutants (POPs) (Mato et al. 2001; 
Endo et al. 2005; Teuten et al. 2009), metals (Ashton 
et al. 2010), and EDCs (Hermabessiere et al. 2017).

The addition of chemical additives during the plastic 
manufacturing process can also pose a chemical threat 
(Rios et al. 2007; Oehlmann et al. 2009; Guo and Wang 
2019). Additives include plasticisers such as phthalates 
or bisphenol A, flame retardants, and stabilisers such 
as lead (Pb) and other metals. These can leach into the 
marine environment as plastic weathers (Gardon et al. 
2020; Lomonaco et al. 2020), or if  ingested, into the tis-
sues and guts of organisms (Teuten et al. 2007; Eng-
ler 2012; Tanaka et al. 2013). The harmful substances 
sorbed and leached are often persistent, enabling plastic 
objects to become vectors for contaminants or biovec-
tors (. Figure 9.9) (Wang et al. 2020), resulting in bio-
accumulation (Paul-Pont et al. 2016; Gallo et al. 2018).

The cumulative effects of microplastics and asso-
ciated pollutants remain a developing field. Theoret-
ical modelling has shown that the effect of adsorbed 
pollutants in organisms ingesting microplastics should 
be minor (Koelmans et al. 2016). However, laborato-
ry-based studies have shown that once microplastics 
are ingested, the associated contaminants can be read-
ily released into the bloodstream of marine organisms 
(Tanaka et al. 2013; Besseling et al. 2014). Further im-
pacts may occur through biomagnification (e.g. Roch-
man et al. 2013; Batel et al. 2016). As these impacts 
can increase through the marine food chain, there are 
also implications for human health (Wang et al. 2019b; 
Enyoh et al. 2020).

location appear to also play a role (Erni-Cassola et al. 
2019; Oberbeckmann et al. 2016; Zettler et al. 2013). 
The plastisphere has been shown to include pathogenic 
Vibrio and Escherichia coli species, antibiotic-resistant 
bacteria, harmful algal bloom species, and the fish dis-
ease causing bacteria Aeromonas salmonicida (Kirst-
ein et al. 2016; Casabianca et al. 2019; Rodrigues et al. 
2019; Silva et al. 2019; Laverty et al. 2020; Moore 
et al. 2020). Although this field of  research is still 
novel, the likelihood of  coral disease increased from 4 
to 89% when corals (from 159 reefs in the Asia-Pacific 
region) were in contact with macroplastic debris. This 
suggests microbial colonisation of  plastic by patho-
gens may contribute to disease outbreaks in the ocean 
(Lamb et al. 2018). Further research is required into 
the mechanisms of  plastic as a vector for pathogens, 
trophic transfer of  pathogens via plastic ingestion, 
and the potential for plastics to act as a vector for the 
long-distance dispersal of  harmful microorganisms.

9.6.4  � Chemical Effects of Microplastics

While ingestion of microplastics may cause physical 
harm to marine biota, there is also the potential for 
chemical impacts. The physical processes that weather 
plastic objects to microplastics can create a large spe-
cific surface area on the particles, causing the items to 
act as a sponge by taking up contaminants from sedi-
ments or the water column via adsorption (Fred-Ah-
madu et al. 2020). Adsorbed contaminants can include 

. Figure 9.9  Through their physical and chemical properties, microplastics can act as biovectors of contaminants through marine food 
chains, with increasing biological effects and bioaccumulation through trophic levels. Yet the combined impacts of microplastic ingestion and 
transfer of chemicals on individuals or populations require further research. Image: P. Lewis
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tourism, fishing (subsistence, recreational, commer-
cial), shipping, aquaculture, recreation, and other eco-
system services. Ecosystem service are the benefits peo-
ple obtain from nature, including food, carbon stor-
age and cultural benefits (Worm et al. 2006; Liquete 
et al. 2013) and evidence suggests that plastic pollu-
tion causes significant impacts to almost all global eco-
system service (Beaumont et al. 2019). In 2011, based 
on ecosystem service values and marine plastic abun-
dance estimates, marine plastic’s economic costs were 
conservatively estimated at between US$ 3300 and US$ 
33,000 per tonne of marine plastic per year (Beaumont 
et al. 2019).

Renowned or frequently visited beaches that are lit-
tered may incur a range of economic costs including 
clean-up expenses and lost tourism revenue (Beaumont 
et al. 2019). Shipping, navy, coast guard, and fishing in-
dustries are impacted by direct damage and entangle-
ment of fishing gear in propellers (Chen 2015). Fishing 
industries also suffer economic loss due to plastic de-
bris negatively impacting fish habitats (e.g. sunken der-
elict fishing gear) and stocks (e.g. ghost fishing) (Kaiser 
et al. 2003; NOAA 2015). In Indonesia, local fisherfolk 
described the direct and indirect negative impacts of 
marine debris, including propeller entanglements, foul-
ing of gill nets and hooks, damage to fishing gear, and 
injuries (Nash 1992). Such impacts can result in addi-
tional fishing time and modified fishing behaviour to 
attain the same yield compared to as if  there were no 
waste associated losses. Some modified fishing behav-
iour includes the adoption of harmful fishing methods 
(Nash 1992).

9.7  � Actions to Drive Change

Our current knowledge and understanding of the ma-
rine plastic pollution issue, including key sources, waste 
management inefficiencies, and gaps in legislation, pro-
vide a solid foundation for developing actions to com-
bat this global issue (Rochman et al. 2016). Despite 
knowing where actions are required, finding effective 
solutions is a complex task for many reasons:
5	 there are economic incentives for continued and in-

creased use of plastic;
5	 production continues to rise;
5	 waste management is inadequate and inconsistent 

within and amongst countries;
5	 plastic inputs are difficult to predict and hard to 

control;
5	 plastic knows no boundaries and will move to new 

jurisdictions;
5	 there are areas with no jurisdiction; and
5	 plastic debris accumulates in remote areas, or may 

sink out of sight.

9.6.5  � Human Health Impacts

Similar to marine wildlife, marine plastic pollution in-
teracts with humans via numerous pathways. Humans 
may be exposed to plastic debris through seafood, as 
microplastic debris has been found in invertebrates, 
crustaceans, and fish harvested for human consump-
tion (Van Cauwenberghe and Janssen 2014; Rochman 
et al. 2015; Carbery et al. 2018; Smith et al. 2018; Cox 
et al. 2019; Walkinshaw et al. 2020). Since most plastic 
remains in the digestive tract of an animal, the risk of 
ingestion by humans is higher when organisms are con-
sumed whole, such as with small fish or bivalves (Roch-
man et al. 2015). There is concern that the chemical 
impacts associated with micro- and nanoplastic inges-
tion documented in marine wildlife are also a concern 
for human health, including adsorption across the gas-
trointestinal tract (Waring et al. 2018), chemical tox-
icity associated with leaching of plastic additives (e.g. 
BPA, heavy metals, EDCs) (Campanale et al. 2020), 
or sorbed contaminants (Smith et al. 2018), as well as 
hazards associated with microbial colonisation (Wright 
and Kelly 2017; Wang et al. 2019a, b). Knowledge on 
the implications of microplastic consumption by hum-
ans is currently limited, however the severity of im-
pacts will be dependent on seafood contamination lev-
els, exposure frequency, and effects of exposure. Similar 
to other organisms, it is possible humans simply ingest 
and then egest plastic pieces. While evidence is growing 
about the interactions between micro- and nanoplastic 
exposure, toxicology, and human health (Wright and 
Kelly 2017; Smith et al. 2018; De-la-Torre 2020), fur-
ther research is required on this topic.

Marine plastic debris on beaches can directly im-
pact an individual’s physical and mental health (Beau-
mont et al. 2019). Sharp plastics or plastic containers 
that contains chemical waste can result in cuts or ex-
posure to dangerous liquids and unsanitary items (San-
tos et al. 2005). Littered coastlines can negatively im-
pact mood and mental wellbeing, resulting in a reduc-
tion in recreational use of littered areas (Wyles et al. 
2016). Additionally, since some people experience well-
being in the knowledge that culturally significant ani-
mals will be experienced and enjoyed by future genera-
tions, a loss of wellbeing can be associated with the ad-
verse impacts of plastic debris on culturally significant 
marine megafauna such as turtles and whales (Beau-
mont et al. 2019).

9.6.6  � Economic Impacts

Economic costs associated with marine plastic pollu-
tion can be either direct or indirect (McIlgorm et al. 
2011). Marine plastic pollution negatively impacts 
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A critical short-term action to reduce plastic in-
puts into the marine environment includes improve-
ments to waste management regulations and infrastruc-
ture (Löhr et al. 2017). Around 4.8–12.7 million tonnes 
of marine plastic pollution enter the ocean from land-
based sources annually, originating from 20 of 192 
coastal countries (Jambeck et al. 2015). Highly pollut-
ing counties include China, Indonesia, Philippines, Vi-
etnam, Sri Lanka, Thailand, Egypt, Malaysia, Nige-
ria, and Bangladesh (Jambeck et al. 2015). Many of the 
listed countries lack adequate waste management, mak-
ing improvements to waste management (e.g. provid-
ing and improving collection infrastructure and tech-
nologies) critical for reducing plastic inputs into the 
ocean. Many new instruments are taking a hierarchi-
cal approach to waste management (. Figure 9.10), 
which prioritises inhibiting waste generation and move-
ment of litter into the marine environment, rather than 
cleaning up what is already in the ocean (Watkins et al. 
2012). This is not to say that ocean and beach clean-
ups are not important, but rather highlights how ap-
proaches that prioritise prevention rather than mitiga-
tion and curative measures are very important (Critch-
ell et al. 2019; Watkins et al. 2012).

Large system changes such as behavioural changes 
and transitioning to a circular economy are suggested 
as longer-term solutions (Löhr et al. 2017). A circu-
lar economy focuses on purposeful design to incorpo-
rate end-use and reuse from the start of a product’s life 
cycle (reduce, reuse, recycle, redesign, recover), encour-
aging supply chain investments that will ultimately re-
duce waste entering the ocean (Ellen MacArthur Foun-
dation 2017). A circular economy approach is designed 
to not only benefit the environment, but also the econ-
omy, as it recaptures costs currently being lost (WEF 
2016).

As such, solutions require coordinated approaches by a 
range of stakeholders, including producers, consumers, 
scientists, and policy makers (local, regional, national, 
and international levels) (Löhr et al. 2017).

Global partnerships and commitments are being 
made to address marine plastic pollution (and other types 
of marine litter) at many major global fora (e.g. G7, G20, 
and the 2017 World Oceans Summit) (Vince and Hard-
esty 2018). International partnerships have led to instru-
ments that regulate marine plastic pollution through con-
ventions, strategies, action plans, agreements, and regula-
tions (Chen 2015). For example, the EU Action Plan for 
a Circular Economy (a Europe-wide strategy commit-
ted to reducing plastic pollution impacts and increasing 
material value in the EU economy), MARPOL Conven-
tion (prevention of pollution from ships), the Honolulu 
Strategy (improving co-operation to prevent land-based 
plastic entering the oceans), and The Clean Seas Global 
Campaign on Marine Litter (worldwide elimination of 
single-use plastics and microplastics in cosmetics by 2022) 
(Ferraro and Failler 2020). In March 2022 Heads of 
State, Ministers of environment and other representatives 
from UN Member States endorsed a historic resolution 
at the UN Environment Assembly (UNEA-5) to 

»	 “End Plastic Pollution and forge an international legally 
binding agreement by 2024. The resolution addresses the 
full lifecycle of plastic, including its production, design 
and disposal”.

Although international instruments are a step in the 
right direction, international policy framework can be 
fragmented, its focus can be limited, and laws are often 
soft (i.e. non-binding) (Vince and Hardesty 2018; Ferraro 
and Failler 2020). It is therefore imperative that these ef-
forts coincide with actions taking place at local and na-
tional, levels, such as legislation and regulation creation.

. Figure 9.10  Hierarchical approaches to waste management guide and rank waste management decisions. The preferred option is the pre-
vention of waste generation, through limiting raw materials or acquiring used/recycled materials or materials that can be recycled. Waste dis-
posal is unsustainable and can have long-term environmental impacts. Disposal is the least preferred option and should be carried out respon-
sibly. Image: Wikibooks: CC-BY-SA-3.0
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tion, other types of pollution, and climate change, and 
that the cumulative effects of these stressors may be 
causing more damage than plastic pollution alone.

While there are many governance challenges and 
complexities influencing the success of plastic waste re-
duction and management, significant steps have been 
made. These include strategies to change consumer be-
haviour, transitioning to a circular economy, and the 
implementation and enforcement of policies and law 
(Löhr et al. 2017). The further success of initiatives 
will require actions from a range of stakeholders (e.g. 
producers, consumers, industry, and policy makers). 
Nonetheless, as is the case for most environmental is-
sues, individuals can create positive change by staying 
informed, educating others, and changing their behav-
iour. Some easy actions to start with include: (1) read 
personal care product labels for plastic ingredients 
and don’t purchase products that use microplastics; 
(2) carry reusable bottles/thermal cups and refuse sin-
gle-use plastic items; (3) pick up and properly discard 
plastic litter; (4) educate yourself  on local recycling 
policies and ensure you’re recycling plastics properly; 
(5) read clothing labels and only purchase clothes that 
made from natural fibres, such as cotton, wool, hemp, 
and bamboo. These seemingly minor actions will con-
tribute greatly to the positive changes occurring world-
wide.

9.9  � Questions and Activities

1.	 Take the time to monitor how much plastic waste 
you create each week. What activities result in the 
most plastic consumption?

2.	 What are three actions you can take regularly to re-
duce your plastic use?

3.	 What types of marine wildlife are most at risk from 
plastic floating in the ocean?

4.	 What characteristics make an animal more vulnera-
ble to the impacts of plastic pollution in the ocean?

5.	 Provide examples of how a circular economy could 
reduce plastic waste from entering the ocean.
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9.8  � Summary
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