
101101

© The Author(s) 2023 
A. Reichelt-Brushett (ed.), Marine Pollution—Monitoring, Management and Mitigation, 
Springer Textbooks in Earth Sciences, Geography and Environment, 
https://doi.org/10.1007/978-3-031-10127-4_5

Metals and Metalloids
Amanda Reichelt-Brushett and Graeme Batley

5

Contents

5.1   Introduction – 103

5.2   Sources of Trace Metals – 104
5.2.1   Natural Sources – 104
5.2.2   Anthropogenic Atmospheric Inputs – 105
5.2.3   Mining Operations – 106
5.2.4   Mineral Processing – 110
5.2.5   Urban and Industrial Discharges – 110
5.2.6   Other Sources – 111

5.3   Metal Behaviour in Marine Waters – 112
5.3.1   Metal Speciation – 112
5.3.2   Evaluating Metal Speciation and Bioavailability  

in Marine Waters – 114

5.4   Metal Behaviour in Marine Sediments – 114
5.4.1   Metal Forms in Sediments – 114
5.4.2   Metal Bioavailability in Sediments – 115

5.5   Metal Uptake by Marine Organisms – 116
5.5.1   Transport Across Biological Membranes – 117
5.5.2   Other Uptake Routes – 117
5.5.3   Metal Detoxification – 117
5.5.4   Metal Depuration – 117

5.6   Metal Toxicity to Marine Organisms – 118
5.6.1   Mercury Toxicity to Marine Biota – 120
5.6.2   Copper Toxicity to Marine Biota – 120

https://doi.org/10.1007/978-3-031-10127-4_5
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-10127-4_5&domain=pdf


5.7   Managing Metal Pollution – 121
5.7.1   What Is ‘Pollution’ – 121
5.7.2   Guideline Values – 121

5.8   Summary – 121

5.9   Study Questions and Activities – 122

References – 122



103 5
Metals and Metalloids

copper (Cu), zinc (Zn), molybdenum (Mo), silver (Ag), 
cadmium (Cd), gold (Au), mercury (Hg), tin (Sn) and 
lead (Pb). Metalloids of environmental concern include 
boron (B), arsenic (As) and antimony (Sb). Selenium 
(Se) is also sometimes referred to as a metalloid. As 
the electronics industry advances, rare earth elements  
are becoming more useful, and in the future, these el-
ements may also be of environmental concern due to 
poor management of e-waste and other waste sources 
(e.g. Herrmann et al. 2016; Trapasso et al. 2021; Brewer 
et al. 2022). To assist with the flow of this chapter, met-
als and metalloids will generally be referred to as me-
tals except when specific distinctions are necessary.

Most metals occur naturally in the environment, 
and at some places, they are found naturally in very 
high concentrations (e.g. in geological formations such 
as ancient volcanoes and deep ocean hydrothermal 
vents). They are found naturally in ocean waters (al-
beit at extremely low concentrations), sediments and 
rocks, and are transported to the ocean from terres-
trial sources. The abundance and distribution of met-
als in the ocean are a function of their solubility in sea-
water and their degree of involvement in abiotic and 
biotic processes and oceanic circulation (Allen 1993). 
Some metals are essential to life and are required in 
small quantities, others have no known biological func-
tion (. Table 5.1).

5.1   Introduction

This chapter introduces you to metals and metal-
loids that are a concern to the health of marine eco-
systems. It provides a general chemical understanding 
of important metals and metalloids, their sources, be-
haviour, impacts and management. Metals, metalloids 
and non-metals all make up the periodic table (Appen-
dix II) and are classified into these categories accord-
ing to their properties. Metals are good conductors of 
heat and electricity and are malleable and ductile, mak-
ing them very useful to humans and therefore econom-
ically valuable. Metalloids sit on the periodic table in a 
jagged line at the division between metals and non-met-
als and have intermediate properties.

You will come across various terms when studying 
metal pollution. Trace metals are generally referred to 
as those metals that are found in trace quantities in the 
environment although the term may also refer to those 
metals that are required in trace quantities in biological 
systems. The term heavy metal generally refers to den-
sity and excludes lighter metals (such as sodium and 
potassium) but is imprecise and has been questioned as 
useful (Chapman 2007, 2012; Batley 2012). Both terms 
are used to describe metals of environmental concern in-
cluding aluminium (Al), vanadium (V), chromium (Cr), 
manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), 

Acronyms and Abbreviations

AChE  Acetylcholinesterase activity
ASM  Artisanal and small-scale mining
ASGM  Artisanal and small-scale gold mining
ASS  Acid sulfate soils
AVS  Acid volatile sulfide
BLM  Biotic ligand model
CEC  Cation exchange capacity
DGT  Diffusive gradients in thin films
DGV  Default guideline value
DSTP  Deep-sea tailings placement
EC10  Concentration of a toxicant that causes a measured negative effect to 10% of a test population
GST  Glutathione S-transferase
ISA  International Seabed Authority
NOEC  No observed effect concentration
PNG  Papua New Guinea
POM  Particulate organic matter
TBT  Tributyltin
STD  Submarine tailings disposal (also known as DSTP)
USA  United States of America
USEPA  United States Environmental Protection Agency
USGS  United States Geological Survey
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metamorphosis and erosion and sedimentation). The 
formation of mineral deposits such as sulfide miner-
als of lead and zinc, and bauxite deposits of alumin-
ium from the weathering of igneous rock, result in met-
al-enriched soils and sediments as they break down by 
natural weathering processes over geologic time. For 
this reason, natural background concentrations of met-
als in waters and sediments vary depending on the geo-
logical features in the related environments. For exam-
ple, bauxite forms in rainy tropical climates and are 
associated with laterites and aluminous rock, depend-
ing upon climatic conditions in which chemical weath-
ering and leaching are pronounced (Tarbuck and Lut-
gens 1987); deposits of nickel and cobalt are also found 
in laterites that develop from igneous rocks with high 
ferromanganese mineral contents (Tarbuck and Lut-
gens 1987). Maus et al. (2020) provided a timely update 
on mining activities at a global level which highlights 
where naturally rich mineral deposits exist. Globally, 
there are over 5650 mines associated with metals of en-

5.2   Sources of Trace Metals

Metals are naturally found in the marine environment, 
but through anthropogenic activities, they have increased 
in concentration in waters, sediments and biota. There 
are many thousands of research publications, from all 
areas of the world’s rivers and oceans, that demonstrate 
the wide range of metal sources and their impacts on 
marine biota. An updated assessment of global emis-
sions of metals to the environment (. Table 5.2) has 
confirmed that anthropogenic sources far exceed natural 
sources with releases to soils being greater than those to 
water and the atmosphere (e.g. Salam, 2021).

5.2.1   Natural Sources

Most of the Earth’s crust is composed of silicate min-
erals and rarer minerals that have been concentrated 
by one of the rock-forming processes (crystallisation, 

. Table 5.1 Essential and non-essential biotic requirements for metals of environmental concern

Adapted from Brady et al. (2015), other sources a Saunders et al. (2019), b Lane and Morel (2000)

Typical concentration No known biological function in marine 
species

Probably essential (for some 
species)

Proven essential 
(for many species)

Trace (µg/g) Fe, Zn, Cu

Ultra-trace (ng/g) Au, Pb, Hg, Ni, V, Sb, Cdb, Asa Mn, Co, Se, Mo, 
Cr

. Table 5.2 Global emissions of metals to the environment

Adapted from Pacyna et al. (2016)

Metal Natural Anthropogenic Total

Atmosphere Water Soil

103 tonnes/y

Mercury 2.5 2.0 4.6 8.3 14.9

Lead 12.0 119 138 796 1050

Arsenic 12.0 5.0 41.0 82.0 128

Cadmium 1.3 3.0 9.4 22.0 34.4

Zinc 45.8 57.0 226 1372 1655

Copper 28.0 25.9 112 955 1030

Selenium 9.3 4.6 41.0 41.0 86.6

Antimony 2.4 1.6 18.0 26.0 45.6

Tin 44.0 14.7 142 896 1940

Chromium 317 11.0 262 1670 194

Manganese 30.0 95.3 113 325 533

Nickel 26.0 240 12.0 132 384

Vanadium 3.0 2.6 11.0 88.6 102
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Box 5.1: The Mercury Cycle

Mercury (Hg) is transported through the atmosphere from coal burning, oil refining, natural gas combustion, artisanal and 
small-scale gold mining, the chlor-alkali industry that produces chlorine and caustic soda, and waste incineration. Con-
sumer goods such as batteries, electric switches, fluorescent lamps etc. all contain mercury) (Gaffney and Marley 2014) 
(. Figure 5.1). Land and ocean processes play an important role in the redistribution of Hg through the environment, 
including to marine ecosystems. Toxic effects and biomagnification potential result from the net conversion of Hg(II) to 
monomethylmercury (CH3Hg+) and dimethylmercury (CH3)2Hg). This conversion mostly occurs near the sediment:water 

als of environmental concern in ocean waters are gen-
erally in the nanogram/litre range (. Table 5.3) which 
are very difficult to quantify. The analytical process re-
quires ultra-trace metal sampling and analysis proce-
dures to ensure reliable estimations of baseline concen-
tration against which to assess riverine and estuarine 
inputs.

5.2.2   Anthropogenic Atmospheric Inputs

Inputs of metals via the atmosphere from anthropo-
genic activities to the marine environment is an im-
portant pathway and, for mercury, it is the foremost 
transport pathway (Marx and McGowan 2011; Dri-
scoll et al. 2013) (7 Box 5.1). Interestingly, atmospheric 
lead was reportedly deposited in ice layers in Green-
land between 500 BC and 300 AD and was expected to 
be a result of emissions from Roman mines and smelt-
ers (Nriagu 1989, 1996). Atmospheric distribution pro-
cesses result in the deposition of metals throughout 
marine environments even where the human popula-
tions are very small (e.g. polar environments, Barrie 
et al. 1992; Rudnicka-Kępa and Zaborska 2021).

The combustion of coal liberates traces of Hg, Pb, 
Cr, Cd, Sn, Sb, Se, As, Mn and Ti, and exhaust emis-
sions from the combustion of oil is a major source of 
nickel and vanadium (Pacyna and Pacyna 2001; Mun-
awer 2018). The combustion of leaded gasoline was for 
many years determined to be the major source of at-
mospheric lead emissions (Pacyna and Pacyna 2001), 
although the phasing out of leaded fuels in most coun-
tries has seen these emissions decline. Non-ferrous metal 
production also contributes to atmospheric As, Cd, Cu, 
Sn and Zn (e.g. Pacyna and Pacyna 2001).

The largest atmospheric emissions of anthropogenic 
metals were estimated to come from Asia as a result of 
growing demands for energy in the region and increas-
ing industrial production and limited regulatory con-
trols (Pacyna and Pacyna 2001). Atmospheric deposi-
tion has been attributed to long-distance transport of 
Hg, Pb, Cd, As and Fe with enhanced loadings meas-
ured in polar regions and likely sources from Russia, 
China and Europe (Barrie et al. 1992; Driscoll et al. 
2013; De Vera et al. 2021; Thorne et al. 2018).

vironmental concern in over 100 countries (Maus et al. 
2020). The United States Geological Survey (USGS) 
provides an interesting interactive map of global min-
eral resources: 7 https://mrdata.usgs.gov/general/
map-global.html. In addition, there are rich mineral de-
posits of economic interest (but not yet mined) on the 
ocean floor (e.g. Heffernan 2019; Milinovic et al. 2021).

Metals from terrestrial sources can be transported 
to marine environments by dust, in catchment runoff 
and through the atmosphere. Volcanic eruptions con-
tribute to the release of metals into the atmosphere and 
subsequent deposition into the marine environment 
(e.g. Gaffney and Marley 2014). In 1989, it was esti-
mated that biogenic sources (natural sources) of metals 
contributed 30–50% of total metal emissions to the at-
mosphere (Nriagu 1989). As with most contaminants in 
the environment, the ocean is the ultimate sink for the 
vast majority of trace metals. Concentrations of met-

. Table 5.3 Dissolved metal concentrations in ocean waters

a Data for western Atlantic Ocean
b Data for Sargasso Sea. All other data for NSW and Queens-
land coastal waters

Metal Coastal ocean 
water (ng/L)

References

Aluminium 46 Rijkenberg et al. (2014)a

Manganese 5 Angel et al. (2010)

Iron 50 Rijkenberg et al. (2014)a

Cobalt 3 Shelley et al. (2012)b

Nickel 110 Angel et al. (2010)

Copper 30 Apte et al. (1998)

Zinc 22 Apte et al. (1998)

Arsenic 1.5 Apte et al. (1998)

Selenium <73 Apte et al. (1998)

Silver <0.5 Apte et al. (1998)

Cadmium 2 Apte et al. (1998), Angel 
et al. (2010)

Mercury <1 Apte et al. (1998)

Lead 9 Apte et al. (1998)

https://mrdata.usgs.gov/general/map-global.html
https://mrdata.usgs.gov/general/map-global.html
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single mining or processing site. In Thailand, for exam-
ple, elevated concentrations of Pb, Zn, Cu and Fe were 
all found near tin mining and processing operations 
(Brown and Holley 1982). Other examples of mining, 
ore processing and/or tailings disposal that impinge on 
marine environments include copper in Chile, Indo-
nesia and Papua New Guinea (PNG); manganese on 
Groote Island, Australia, and North Maluku Province, 
Indonesia; gold on Lihir Island, PNG, and Buyat Bay, 
Indonesia; aluminium in Gladstone, Australia; nickel 
in New Caledonia and PNG. Yanchinski (1981) noted 
that there were 56 large-scale mining operations in the 
Caribbean region alone. Ultimately, the marine envi-
ronment is a major sink for terrestrial runoff and river 
and ocean discharges from mining activities.

5.2.3   Mining Operations

Metal ore deposits are a vital resource for mineral pro-
cessing facilities that recover purified metals for human 
use. The extraction and processing of ores enhances the 
mobilisation and distribution of metals throughout the 
environment. Mining operations on land areas adjacent 
or close to marine waters are potential sources of marine 
pollution. The major contamination source arises from 
waste rock and mine tailings. Depending on the local ge-
ology, these can be impounded in tailings dams, disposed 
of on nearby land in erodible dumps or transported to 
the ocean for deep-sea tailings placement (DSTP).

Many ore deposits contain a combination of sev-
eral metals and all of these can be contaminants at a 

interface and primarily in anoxic environments with sulfate-reducing bacteria (Scwartzendruber and Jaffe 2012). Such con-
ditions are commonly found in wetlands, in river sediments, in the coastal zones and the upper ocean (Driscoll et al. 2013; 
Gerlach 1981). The production of methylmercury drives the major human exposure route via the consumption of fish, 
particularly higher order fish with the greatest potential for biomagnification (Driscoll et al. 2013). Initiatives such as the 
United Nations Global Mercury Partnership, set up in 2005, are helping global efforts to protect human health and the en-
vironment from mercury emission to the atmosphere, water and land (7 https://www.unep.org/globalmercurypartnership/).

. Figure 5.1 7 Box 5.1: Current estimates of the fluxes (mg/y), pools and enrichment (%) of mercury at the Earth’s surface. 
adapted from Driscoll et al. (2013) and citations therein by A. Reichelt-Brushett. This is an unofficial adaptation of an article that ap-
peared in an ACS publication. ACS has not endorsed the content of this adaptation or the context of its use

https://www.unep.org/globalmercurypartnership/
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Box 5.2: Mariana Dam Disaster (Samarco Mine Tailing Disaster), Brazil

Dr. Pelli Howe, Environmental Scientist.
The collapse of an iron ore tailings dam in Mariana, Brazil, on the 5th of November 2015, has been described as 
Brazil’s worst environmental disaster. Nineteen people were killed and the village of Bento Rodrigues was destroyed. 
60 million m3 of iron-rich waste was released and contaminated 620 km of freshwater ecosystems before arriving at 
the Atlantic Ocean (via the Doce River mouth) 17 days after the collapse. The United Nations reported the immedi-
ate death of 11 million tonnes of fish, and that the flow of mud had destroyed 1469 ha of riparian forest. The plume 
spread over 2580 km2 in surface waters, two times the natural plume observed two months before the incident and high 
concentrations of dissolved metals (Pb, Mn, and Se) were also detected in the plume (Frainer et al. 2016) and further 
studies indicate future metal bioavailability and contamination risk in estuarine soils (Queiroz et al. 2018).

The Doce River mouth is recognised in the Ramsar Convention (2016) due to its extremely high biodiversity. Seri-
ous concerns were raised for local populations of thousands of marine flora and fauna, including the two most endan-
gered cetaceans of the Southwestern Atlantic Ocean: the Guiana dolphin (Sotalia guianensis) and the Franciscana dol-
phin (Pontoporia blainvillei) (Frainer et al. 2016; Miranda and Marques 2016).

Manslaughter charges were laid due to the evidence of negligence. However, on the 25th January 2019, another tail-
ings dam in Brazil, Brumadinho Dam, owned by the same company, collapsed, releasing 11 million tonnes of tailings 
and killing an estimated 270 people (Cionek et al. 2019) (. Figure 5.2).

certain metals reported in seafood commonly eaten by 
Torres Strait Islanders prompted ongoing monitoring 
of Torres Strait metal concentrations (e.g. Gladstone 
1996). Further study showed Ni, Cr, and As were ele-
vated in sediments from the Gulf of Papua but less so 
in the Torres Strait (Haynes and Kwan 2002).

Significant unintentional impacts from landslides and 
erosion have occurred in mining operations in moun-
tainous terrain with high rainfall (7 Box 5.2). Such acci-
dents highlight a need to develop sustainable approaches 
to mine tailings management and a range of alternatives 
such as tailings thickening and paste or cement produc-
tion may be viable for some types of tailings (e.g. Adi-
anyah et al. 2015; Saedi et al. 2021). Furthermore, such 
innovative technologies have the potential to address en-
vironmental problems for both the cement industry and 
tailings management (Saedi et al. 2021).

Adequate waste management in mining operations 
is important for the protection of surrounding ecosys-
tems and, in tropical regions, the restrictions on min-
ing waste disposal are often related to the seasonal var-
iations in rainfall (e.g. Holdway 1992). In many cases, 
there are agreed acceptable levels of discharge of  over-
burden into the environment. The mining of copper 
and gold at Ok Tedi in PNG is an example of the diffi-
culties associated with managing mine waste. Gold and 
copper mining on the Ok Tedi River (a tributary of the 
Fly River) was estimated to contribute 750,000 tonnes 
per day of copper-rich mine tailings and 90,000 tonnes 
of sediment per day to the river (Apte and Day 1998). 
High sediment loads containing significant concentra-
tions of copper could be detected some 600 km down-
stream and beyond the mouth of the Fly River into the 
ocean (Apte et al. 1995). Elevated concentrations of 

. Figure 5.2 7 Box 5.2: Tailings smother the land Mariana, Brazil. Photo: Senado Federal—Bento Rodrigues, Mariana, Minas  
Gerais, CC BY 2.0
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cific. Once tailings are disposed of at continental mar-
gins and into deep-sea environments, the metal avail-
ability and toxicity to organisms will depend on the 
physicochemical conditions specific to the location.

There are various other scientific considerations 
that should be considered in the risk assessment of 
DSTP (see Vare et al. 2018; Stauber et al. 2022). For 
example, the continental margins in general are char-
acterised by many species-rich deep-sea communities, 
mostly dependent on food produced in the upper lay-
ers of the ocean (Glover and Earle 2004; Ramirez-Ll-
odra et al. 2010). Coral and sponge communities flour-
ish in these areas where currents carry food to them. 
The heads of canyons are often productive nursery ar-
eas for fish (Yoklavich et al. 2000; Howard et al. 2020). 
Most publications on deep-sea biodiversity highlight a 
limited understanding and the need for further studies, 
(e.g. Etter et al. 1999; Brandt et al. 2007; Baker et al. 
2010; German et al. 2011; Ramirez-Llodra 2020). Fur-
thermore, canyon topography influences current pat-
terns and local upwelling, pumping nutrients into the 
euphotic zone which stimulates primary productivity 
(Fernandez-Arcaya et al. 2016 and references therein). 
Events such as large storm waves and underwater 
earthquakes along with dense water cascades and hy-
perpycnal waters may trigger mass failures of unsta-
ble deposits in canyon heads and shelf  edges (Fernan-
dez-Arcaya et al. 2016 and references therein).

Deep-Sea Tailings Placement
Continental margins or slopes are the boundary zones 
between the shallow shelf  regions that surround most 
continents and the deeper abyssal plains of  the sea 
floor. These areas have a steep profile, deep canyons 
and rugged topography (Ramirez-Llodra et al. 2010), 
which are the very features that make them attractive 
for DSTP, also known as submarine tailings disposal 
(STD). At the site of disposal (the end of a pipeline), 
which is usually between 50 and 150 m in depth, tailings 
spread over benthic communities (in the impact zone) 
(. Figure 5.3). The pipeline is preferably near a sub-
marine canyon, and once discharged, tailings are ex-
pected to travel downslope to the deep-sea floor and 
settle. Tailings density, local upwelling, currents and 
other conditions will influence the likelihood of tail-
ings redistribution and settlement (Reichelt-Brushett 
2012).

DSTP operations currently occur in Chile, France, 
Turkey, Indonesia, PNG and Norway. Most are uncon-
fined discharges into the deep ocean, but many, such 
as in Norway, use confined disposal into deep fjords 
at 30–300 m depth. In the coral triangle, a hot spot of 
global marine biodiversity, 19 past, current and pro-
posed DSTP sites exist (e.g. Reichelt-Brushett 2012).

The load of tailings to the ocean from a single STD 
operation is in the order of 10–100 s of thousands of 
tonnes a day, with the actual amount being site-spe-

. Figure 5.3 Conceptual diagram of submarine tailings disposal. Image: Reichelt-Brushett 2012, . Figure 5.3, CC BY 4.0: 7 https://creati-
vecommons.org/licenses/by/4.0

https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
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tion of mercury to the atmosphere. Unmapped legacy 
sites (. Figure 5.4d), are commonly close to rivers and 
provide a source of mercury to the marine environment 
via catchment runoff. Mercury can then get into the 
food chain including commercial and small-scale fisher-
ies (7 Box 5.1). In some countries like Indonesia, with 
its many islands, large population and limited farm-
land, communities rely heavily on the ocean for pro-
tein resources and have high consumption rates, and in 
some communities, seafood is part of every meal (. Fi-
gure 5.4e, f).

On Buru Island, Indonesia, gold was discov-
ered in 2011 and ASGM commenced soon after. Sed-
iment samples collected from the Wae Apu River and 
offshore from the river mouth just one year after the 
commencement of mining contained elevated mer-
cury concentrations (Male et al. 2013). Several years 
later mercury concentrations in sediments had in-
creased dramatically at some sites and some seafood 
sourced from the local fish markets also showed mer-
cury concentrations of concern to human health (Re-
ichelt-Brushett et al. 2017a).

Deep Seabed Mining
A new threat to marine ecosystems is the actual mining 
of the deep seabed. Deep seabed mining was raised as a 
possibility in the 1970s in the context of mining man-
ganese nodules, but, at the time, technology and metal 
prices did not make the operations viable. Today, we 

There is an important need to develop standardised 
risk assessment protocols that consider, environment, 
communities and cost–benefit analysis of alternatives. 
Precautionary principles should also be applied where 
knowledge is lacking, such as impacts of smothering, 
changes in water quality and contamination loads on 
ecosystem structure and function and diversity (many 
species are currently unknown to science).

Artisanal and Small-Scale Mining (ASM)
Between 10 and 15 million people in virtually all devel-
oping countries are involved in extracting over 30 dif-
ferent minerals using rudimentary techniques (Veiga 
and Baker 2004). Gold is the predominant metal ex-
tracted in artisanal and small-scale mining (ASM) 
(more specifically known as artisanal and small-scale 
gold mining (ASGM)) due to its high value and easy 
extraction from ore using mercury (. Figure 5.4). Koek-
koek (2013) projected the annual amount of mercury 
released by ASGM in 70 countries to be 1608 tonnes. 
Such mining operations are often deemed illegal but 
provide pathways from poverty for rural communities.
This extraction process requires large volumes of water 
for flushing and results in the deposition of fine sedi-
ments and mercury in river systems and eventually the 
ocean, along with many other environmental and so-
cial problems (Velasquez-Lopez et al. 2010; Male et al 
2013) (. Figure 5.4b, c). Furthermore, the processing 
of the mercury–gold amalgam results in the volatilisa-

. Figure 5.4 Artisanal gold mining and food resources on Buru Island, Eastern Indonesia: a one of the mine sites (Gogrea) in operation; b 
trommel operations to crush ore and extract the with mercury. Water is used to flush the spent ore to the tailings ponds, c tailings ponds are 
designed with small trenches to overflow to the river, d abandoned trommel operations on the Wae Apu River bank, e up to 90% of protein 
comes from the marine environment in many areas of Eastern Indonesia, Buru Island fish markets, f wild harvest of mangrove molluscs. Pho-
tos: A. Reichelt-Brushett
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rock) being deposited onto the seafloor. Elevated con-
centrations of Cr, Cu, Ni, Pb, Zn and Ba relative to the 
natural (background) concentrations in sediment have 
been measured in North Sea drill cutting accumulations 
(Breuer et al. 2004) and some drilling muds have been 
shown to be toxic to biota (Tsventnenko et al. 2000).

5.2.4   Mineral Processing

It is usual to transport ore concentrates from what are 
usually remote mine locations to more accessible main-
land facilities where the ore is refined to produce pure 
metals. These facilities are typically located at coastal 
sites for shipping access and are a major source of trace 
metal contamination from ore spillage, site runoff and 
other discharges.

Largely due to the presence of one of the world’s 
largest zinc smelters, the Derwent estuary was for many 
years the most polluted water body in Australia and ar-
guably the world, resulting in some of the highest re-
ported metal concentrations in sediments and shellfish 
(Macleod and Coughanowr 2019). Contaminants in-
cluded Zn, Hg, Cd, Pb, Cu and As were contributed to 
also by discharges from Australia’s largest paper mill.

Lake Macquarie in New South Wales, Australia, 
suffered extreme lead, zinc, cadmium and selenium 
contamination from the 100-year operation of a lead–
zinc smelter in the north of the lake (Batley 1987), 
again with residual high concentrations in sediments af-
fecting shellfish. The lead smelter at Port Pirie in South 
Australia (Lent et al. 1992) is a further example of his-
torical impacts that remain a concern today. Interna-
tionally, there are many such examples of legacy con-
tamination. Contamination sources are hopefully now 
being better managed, but the costs of remediating 
many years of sediment contamination are generally 
prohibitive.

5.2.5   Urban and Industrial Discharges

Urban harbours and waterways have long been the 
recipient of metal contaminants from a variety of 
sources including shipping, licensed industrial dis-
charges, sewer overflows and sewage treatment plant 
discharges and stormwater. There are activities world-
wide that are attempting to better manage these sources 
(Steinberg et al. 2016).

Elevated metal concentrations including (but not 
limited to) Zn, Ni, Pb, Hg, Cu and Cr in sediments and 
organisms have been related to discharges from sewage 
outfalls (e.g. Kress et al. 2004; Echavarri-Erasun et al. 
2007) and the less well-developed the sewage treatment 
facilities the more likely for adverse effects. In China 
alone, the amount of industrial sewage discharged into 

have reached a point where such initiatives are econom-
ically viable and technological developments have aided 
in accessibility to the deep sea. Geologic exploration 
of the deep sea has identified many sites rich in a wide 
range of mineral resources. In PNG alone, there are 60–
100 exploration leases in deep waters around the island 
archipelagos. In 2018 one mine was in the verge of com-
mercial operation in the sea near New Britain, PNG 
(Nautilus Minerals was developing the Solwara 1 cop-
per and gold project, which is located at 1600 m depth). 
More recently, the mineral rich Clarion-Clipperton Zone 
in the Pacific, controlled by Nauru, has considerable 
commercial interest to extract cobalt and other metals.
As with DSTP operations, deep seabed mining is an-
other risk to the health of marine ecosystems that we 
do not fully understand. The deep sea represents the 
largest and the least explored environment on Earth (e.g. 
Ramirez‐Llodra et al. 2010). Along with the limited bi-
ological assessment mentioned earlier, less than 20% 
of the deep ocean floor has been mapped (seabed2030.
org) and only a small fraction of it has been studied to 
assess its environmental, economic and social values. 
Studies are ongoing and new benthic and pelagic spe-
cies and habitats are continuously being discovered.

Impacts of seabed mining may include the removal 
and compaction of the substrate and the generation of 
large sediment plumes, possibly containing toxic metals re-
leased from the sediments (Hauton et al. 2017; Washburn 
et al. 2019). The ecotoxicological effects on mid‐water and 
benthic communities exposed to environmental changes 
such as these are generally not well understood (Dra-
zen et al. 2020; Mestre et al. 2017; Washburn et al. 2019). 
Some information exists on the specialised biological com-
munities and functioning of deep seabed ecosystems, but it 
is insufficient to properly assess the impacts of these pres-
sures on them or on the services they may provide for the 
well‐being of humans (van den Hove and Moreau 2007). 
There are knowledge gaps and transdisciplinary challenges 
associated with deep seabed mining which need to be ad-
dressed to ensure unexpected and unacceptable negative 
effects do not result (e.g. Reichelt-Brushett et al. 2022).

The International Seabed Authority (ISA) was es-
tablished in 1994 (see also 7 Chapter 16). It is com-
prised of 167 Member States, and the European Union 
is mandated under the UN Convention on the Law of 
the Sea to organise, regulate and control all mineral-re-
lated activities in the international seabed area for the 
benefit of mankind as a whole. In so doing, ISA has 
the duty to ensure the effective protection of the ma-
rine environment from harmful effects that may arise 
from deep seabed-related activities.

Drill Cuttings
The exploration and production of oil and gas reservoirs 
have resulted in large quantities of drill cuttings (drill-
ing mud, speciality chemicals and fragments of reservoir 
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zinc or aluminium. As the anode supplies electrons to 
the cathode, it gradually dissolves, with the result that 
the steel cathode becomes negatively charged and pro-
tected against corrosion (Netherlands National Water 
Board 2008). For zinc anodes, release rates are typically 
50–80 µg/cm2/day. Zinc is a ubiquitous environmental 
contaminant, so it is difficult to estimate the contribu-
tion of this source to sediments in ports and harbours.

Dredging
Dredging is an activity that has the potential to re-
lease metals into the marine environment both from 
the dredging sites in ports and harbours (e.g. Reichelt 
and Jones 1994; Montero et al. 2013), and from the 
dredge spoil disposal that typically occurs in relatively 
deep (<100 m) offshore waters. Such activities are con-
trolled by the London Dumping Convention (NAGD 
2009) (see also 7 Chapter 16) and the dredged sedi-
ment is contained within an agreed spoil ground. Con-
sideration of the metals and their concentrations must 
be done prior to dredging activity in ports and har-
bours and dredge spoil dumping. Dredging physically 
disturbs and redistributes sediments, mobilising associ-
ated metals.

Shipwrecks and Dumping Sites
Shipwrecks are another source of metals. For example, 
the Gulf of Gdańsk, Poland, was an important place 
in Baltic trade routes and military activity, and numer-
ous shipwrecks have been identified on its sea bed. Data 
published by the National Maritime Museum and the 
Maritime Office in Gdynia describe 25 wrecks in the 
Gulf of Gdańsk (NMM 2018 in Zaborska et al. 2019). 
Scientists observed that oil derivatives and metals from 
the SS Stuttgart wreck located near the entrance to the 
Port of Gdynia have contaminated a large part of the 
nearby sea bed (Rogowska et al. 2010, 2015).

Many other solid metal wastes have been dumped 
into the ocean, for example, the famous wreck dive 
site called Million Dollar Point in Vanuatu was created 
when the USA army dumped bulldozers, jeeps, trucks, 
semi-trailers, fork lifts and tractors off  the point when 
they failed to come to a deal with the local commu-
nity to buy the equipment and it was deemed cheaper 
to dump in the ocean rather than transport it back to 
the USA.

Agricultural Runoff
There are several sources of metals in agricultural 
runoff. For example, copper-based fungicides such 
as copper oxychloride are used in the agricultural in-
dustry and these may contribute to the contaminants 
in agricultural runoff. In addition, phosphate fertil-
isers naturally contain elevated concentrations of cad-
mium (Roberts 2014), and the cadmium concentration 
is directly correlated with the amount of total phos-

the aquatic environment was estimated to be 21.7 bil-
lion tonnes in 2008 (NBSC 2009 in Pan and Wang 
2012). The Yangtze River, the Pearl River and the Min-
jiang River are the main rivers that carry metals into 
coastal areas, all of which contributed over 78% of the 
total discharge of metals in 2008 resulting in alarm-
ingly high metal concentrations in sediment, water 
and biota at some coastal locations in China (Pan and 
Wang 2012).

Power Stations
Coal-fired power stations represent a significant indus-
trial source of metal contaminants to estuarine wa-
terways. The direct discharges of cooling waters fre-
quently contribute copper and zinc from brass fittings, 
while arsenic and selenium as leachable components of 
coal ash are present in overflows or releases from ash 
dams (Schneider et al. 2014).

Stormwater
Stormwater is a significant contributor to metal contam-
inants. Increased urbanisation has meant that stormwa-
ter that would have been absorbed on land is now being 
directed via gutters and drains to the nearest waterways. 
Sediment traps and artificial wetlands offer partial solu-
tions in selected areas, but within major urbanised catch-
ments, stormwaters remain the major source of metal 
contaminants to sediments (e.g. Lau et al. 2009; Birch 
et al. 2015; Becouze-Lareure et al. 2019).

5.2.6   Other Sources

Shipping
Most large ships (cruise ships, cargo ships, container 
ships, tankers and ore carriers) are today equipped with 
exhaust gas scrubbers that discharge contaminants to 
the sea that might otherwise be emitted to the atmos-
phere. Washwater discharges from these scrubbers con-
tain vanadium and nickel (derived from fuel oil com-
bustion) together with copper and zinc as the major 
metal contaminants (Turner et al. 2017).

All ships use antifouling paints to prevent ma-
rine growth on their hulls. For a long time, tributyltin 
(TBT) was the major biocide used until its banning on 
small ships in the late 1990s with a slower decline in its 
use on bigger vessels. With a leaching rate near 5 µg/
cm2/day, it is a significant source of dissolved copper to 
the marine environment from both small ships in mari-
nas and large vessels (Turner et al. 2017) (see 7 Chap-
ter 7 for detail on metal biocides and 7 Chapter 8 for 
additional detail on TBT). Today, most antifouling 
paints are copper-based usually together with an or-
ganic biocide.

To protect steel hulls of large ships from corrosion, 
it is usual to fit sacrificial anodes, typically made of 
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landfill leachates impacting marine ecosystems in the 
future due to limited environmental regulatory controls 
or limited enforcement of them in some countries, al-
though some mitigation reuse prospects for leachates 
are developing (Wijekoon et al. 2022). Cash-poor, low- 
and middle- income countries also accept (for a price) 
a large portion of the world’s difficult-to-manage waste 
such as e-waste and known toxicants (e.g. Makam 
et al. 2018).

Desalination Plants
Desalination plants treat seawater to extract freshwater 
from the ocean. Metals are introduced to marine waters 
from desalination plants in waste brine with corrosion 
of metallic surfaces of the desalination system (e.g. 
Sadiq 2002) resulting in changes to community struc-
ture (Roberts et al. 2010). Desalination has become a 
reliable solution to water stress by supplying potable 
water in regions where freshwater supply is restricted. 
Some work is being done on brine management and 
pre-treatment to minimise the impacts of desalination 
from both brine and metal toxicity (Khan and Al-Gh-
outi 2021).

5.3   Metal Behaviour in Marine Waters

5.3.1   Metal Speciation

Metals enter aquatic systems in both dissolved and par-
ticulate forms. Of concern are the chemical species that 
make up these forms, their stability and possible trans-
formations and transport that can occur over time. The 
chemical (and physical) speciation can be approached 
in several ways as will be discussed, but ultimately the 
concern is for their potential to cause biological effects 
to aquatic biota, i.e. their bioavailability, or potential to 
be taken up by aquatic organisms with the likelihood 
of toxic effects.

The speciation of dissolved metals in its simplest 
form involves the free metal ion, e.g. Cu2+, and metals 
that are complexed or bound to complexes, both inor-
ganic (e.g. sulfate, carbonate) or organic (e.g. natural 
humic and fulvic acids or other anthropogenic organic 
contaminants) (e.g. Rashid 1985; Florence and Batley 
1988; Allen 1993; Batley et al. 2004). Hydrous iron and 
manganese oxides form binding sites for many metals, 
particularly in estuarine waters where these exist as col-
loidal species, often in heterogeneous mixtures with or-
ganic complexes. In some instances, these forms aggre-
gate and are transported to bottom sediments.

The greatest bioavailability has been shown to in-
volve the free metal ion, whereas complexes with dis-
solved organics are considerably less bioavailable. It 
is typical to use the term lability to describe the abil-

phorus in the fertiliser (e.g. Roberts 2014; Rayment 
2011). Based on a nutrient budget for the tropical Port 
Moresby catchment, Eyre (1995) suggested that agri-
cultural practices have caused a 2–fivefold increase in 
the phosphorus flux. This provides a potential source 
of cadmium to marine waters from land runoff, par-
ticularly during the wet season. The regulation of cad-
mium in commercial fertilisers has helped reduce the 
quantities of it entering cropping systems (Rayment 
2011). See 7 Chapter 7 for more detail on metal-based 
pesticides and biocides.

Acid Sulfate Soils (ASS)
Acid sulfate soils (ASS) are soils or sediments that con-
tain highly acidic soil horizons or layers affected by the 
oxidation of iron sulfides (actual ASS), and/or soils or 
sediments containing iron sulfides or other sulphidic 
materials that have not been exposed to air and oxi-
dised (potential ASS). The term acid sulfate soil gener-
ally refers to both actual and potential ASS. The acidic 
leachates and dynamic porewater chemistry influence 
metal cycling and behaviour (e.g. Gröger et al. 2011).

Acid sulfate soils are found in North America, South 
America, Asia, Africa, Oceania and Europe. They are 
expansive through the east coast of the USA, the east 
and west coasts of Mexico and Africa, the northern and 
eastern countries of South America, Vietnam, India, 
Bangladesh, China, Indonesia, PNG and much of Aus-
tralia (Proske et al. 2014).

In eastern Australia, most ASS layers were depos-
ited in the Holocene Epoch (10,000 years ago to the 
present) as a consequence of post-glacial sea level rise 
and the subsequent stillstand (a period of stable sea 
level), during which there was an infilling of estuarine 
embayment by marine and fluviatile sediments (Powell 
and Martens 2005). An estimated 666,000 ha of ASS 
occur within the Great Barrier Reef (GBR) catchments 
of Queensland, Australia. Extensive areas have been 
drained causing acidification, metal contamination, de-
oxygenation and iron precipitation in reef receiving wa-
ters (Powell and Martens 2005).

Landfills
Historical coastal landfills are potential sources of 
diffuse pollution due to leaching of contaminants 
through groundwater. For example, the United King-
dom alone has approximately 20,000 historical landfill 
sites without engineered waste management and lea-
chate control (e.g. Cooper et al. 2012). Many of the 
historical landfill sites around the Thames River, Lon-
don are in low-lying, flood-prone areas and recent sam-
pling of sediments showed Cu, Pb and Zn contamina-
tion from anthropogenic sources (O’Shea et al. 2018). 
These legacy sites are problematic but enhanced envi-
ronmental regulations have halted uncontained land-
fill sites in many countries. There are risks of increased 
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extremely toxic metal (Hawker 1990; Sadiq 1992; Baird 
and Cann 2012) and this is true in freshwater environ-
ments, where the chloride concentration is low, and 
cadmium forms complexes with oxygen-containing li-
gands. These cadmium oxo-complexes are more labile 
and more bioavailable. With the abundance of chloride 
in seawater, more thermodynamically stable cadmium 
complexes are formed, which may be less bioavaila-
ble. Conversely, copper in seawater forms more labile 
chloro- and carbonate complexes (Steemann Nielsen 
and Wium-Andersen 1970).

A reduction in salinity, due to freshwater influxes 
from rainfall can be extreme during major weather 
events. Reduced salinity may extend far offshore and 
remain for several weeks, interfering with the domi-
nance of metal–chloride complexes and subsequently 
altering trace metal availability.

Many metal ions including Fe, Co, Ni, Cu, Zn and 
Cd, are complexed by organic ligands in seawater which 
influences their speciation. For iron, these include si-
derophores (low-molecular-weight ligands produced by 
marine bacteria), humic and fulvic substances and mi-
crobial exopolymeric substances (porphyrins, saccha-
rides and humic-like substances), while for copper, pro-
tein-based phytoplankton exudates, thiols and humic 
substances appear to dominate (Sato et al. 2021).

The dissolved organic matter content of marine wa-
ters is very low except in areas close to river discharges 
where it is more abundant and the nutrient availability 
affects the abundance of planktonic masses. Planktonic 
and other biotic interactions have been reported to af-
fect copper speciation due to the complexing capac-
ity of the associated organic molecules (e.g. Jones and 
Thomas 1988; Florence and Batley 1988). Hence, large 
temporal and spatial variations in the copper complex-
ing capacity of seawater are expected and may cause 
large variations in the speciation of copper in seawater 
(Coale and Bruland 1990; Sadiq 1992).

Metal Interactions with Suspended Particles
Adsorption to the surfaces of suspended particles plays 
an important role in the removal of metals from sea-
water. The capacity for metals to bind to these surfaces 
depends upon the size, composition and abundance of 
the particles, concentration of other ions in solution, 
the charge of the metal ion and pH of the solution. 
Metal adsorption onto suspended particles is a signifi-
cant mechanism controlling their solubility and disper-
sion (Batley and Gardner 1978; Florence 1986; Sadiq 
1992; Reichelt-Brushett et al. 2017b). Flooding events 
can transport suspended sediment and freshwater loads 
far offshore (e.g. Devlin and Schaffelke 2009).

Positive and negative charges can be present simul-
taneously on solid surfaces of colloidal particles. It is 
commonly supposed that the adsorption of ionic spe-
cies occurs in response to attraction by solids of oppo-
site electrical charge. However, this oversimplification 

ity of metal–organic complexes to dissociate at a bio-
logical membrane and exert toxic effects. Strong metal 
complexes are usually non-labile, whereas weak com-
plexes are typically labile. Lability is, however, opera-
tionally defined, so measurements of the labile fraction 
determined using a particular technique need to be as-
sessed for their link to toxicity to sensitive biota. Or-
ganometallic complexes such as methylmercury where 
the metal is covalently bound to a carbon atom, are 
usually lipid-soluble (unless charged) and are directly 
transported across biological membranes and so have 
greater toxicity than other complexed forms.

The bioavailability of metals in estuarine and ma-
rine waters will be controlled by pH, salinity and re-
dox potential, together with the presence of dissolved 
organic matter and its metal-binding constant (Luoma 
1996; Batley et al. 2004). Many metals can exist in solu-
tion in different oxidation states, in particular Fe, Mn, 
Cr, As and Se, and these have different bioavailabilities 
and toxicities. Often both oxidation states can co-ex-
ist with transformations between forms highly depend-
ent on redox potential. Manganese is a typical exam-
ple, where in oxic waters, it exists as colloidal MnO2, 
whereas in anoxic waters, Mn2+ prevails. Since MnO2, 
as with hydrous iron (III) oxides, is able to adsorb met-
als, redox potential changes can significantly affect this 
association.

Metal speciation and toxicity (particularly of 
Cu, Pb, Ni, Zn and Cd) in natural waters depend on 
the pH, and the type and concentration of poten-
tial complexing ligands. The tendency for metals to 
form certain complexes is largely pH-dependent. Be-
cause the pH is easily changed in freshwater a large 
range of complexes are possible (Turner et al. 1981). 
In contrast, seawater is well buffered at a pH of 8.1–
8.2 (Sadiq 1992), and the range of complexes that can 
form is more limited compared to freshwater. Var-
iations in pH occur in coastal and estuarine environ-
ments due to freshwater mixing (e.g. Riba et al. 2003), 
groundwater inputs (e.g. Santos et al. 2011), and inter-
actions with floodplain soils (see acid sulfate soils in 
this chapter).

There are several extensive reviews of metal chem-
istry in marine and aquatic waters which discuss metal 
behaviour in detail (e.g. Batley 1989; Sadiq 1992; Tess-
ier and Turner 1995). This section provides a basis to 
build your knowledge upon and the literature cited are 
good places to seek more detailed information.

Metal Complexation
Complexes in freshwater are formed predominantly by 
oxygen-containing ligands (nitrates, phosphates, sul-
fates and organic acids), whereas most metal complexes 
in seawater are chloro- and carbonate or bicarbonate 
complexes (Kester 1986). Cadmium and copper exhibit 
the most notable differences in their toxicities between 
fresh and salt water. Cadmium is considered to be an 
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90% of copper in seawater is in the form of copper hy-
droxide; and Sunda and Hanson (1987) suggested that 
organic complexation plays a major role). While the 
outputs of such models are of interest, they provide lit-
tle information about metal bioavailability.

The Biotic Ligand Model (BLM)
A major advance in identifying the bioavailable con-
centration of metals in natural waters was offered by 
the biotic ligand model (BLM) as an extension of the 
free ion activity model (Pagenkopf 1983). The BLM 
is based on the assumption that metal bioavailability 
and toxicity are controlled by the binding of metals to 
a fish gill or cell membrane surface via a biotic ligand 
(BL). There is competition for this ligand between the 
free metal ion, protons, other metal ions, and organi-
cally and inorganically bound metals. Application of the 
BLM requires a chemical speciation model and derived 
equilibrium constants for the metal–BL complexes. The 
BLM has been applied extensively to metals in fresh-
waters, but there have been limited applications to ma-
rine waters apart from that for copper (Arnold et al. 
2005). Limitations to current approaches to marine 
waters have been discussed by de Polo and Scrimshaw 
(2012). BLM models usually only predict metal toxicity 
to within a factor of 2.

Speciation Measurement
Measurement techniques offer a dynamic approach to 
the estimation of metal bioavailability, compared to 
the equilibrium approaches offered by modelling. In es-
sence, these involve the measurement of an operatio-
nally defined labile metal fraction that is able to be re-
lated to the bioavailable or toxic form. Measurement 
techniques, as described by Batley et al. (2004), in-
clude separations using a chelating resin, electroanalyt-
ical techniques such as anodic stripping voltammetry 
and the use of diffusive gradients in thin films (DGT) 
to sample a metal fraction that diffuses via a gel mem-
brane to a chelating resin-binding phase.

Toxicity Testing
The ultimate test of whether the chemical species are 
in forms that are potentially toxic requires the use of a 
sensitive bioassay (7 Chapter 3).

5.4   Metal Behaviour in Marine Sediments

5.4.1   Metal Forms in Sediments

Metals in sediments are distributed among a range of 
chemical forms. In particular, these include metals ad-
sorbed to iron and manganese oxyhydroxides often in 
association with organic matter in stabilised colloids in 

does not take into account of adsorption of non-elec-
trolytes, selectivity between ions of like charge, adsorp-
tion of ionic species on solids of like charge or the re-
versal of charge that occurs when an excess of certain 
ionic species is adsorbed (Parks 1975). The binding ca-
pacity of colloidal material to trace metals depends on 
the net charge density of the particle.

Clays carry both a positive charge and a negative 
charge, and the magnitude of the charge depends on 
the type of clay. Positive charges are a result of the iso-
morphous replacement of structural oxygen by the hy-
droxyl groups: this leaves a negative charge deficiency. 
Negative charges are largely due to the isomorphous 
replacement of the structural silicon by aluminium or 
ferric iron, or the replacement of structural alumin-
ium by magnesium or ferrous iron (Yariv and Cross 
1979). Negative charges on clays are usually more com-
mon than positive charges. Positively charged metal-
lic exchangeable cations are adsorbed in the inter-layer 
spaces (Yariv and Cross 1979). The capacity of clay 
minerals to adsorb ions is primarily governed by the 
degree of electrostatic attraction or cation exchange ca-
pacity (CEC) (e.g. Gambrell et al. 1976; Davranche and 
Bollinger 2001), which shows a linear relationship with 
particle size (Ormsby et al. 1962). Hydroxides and hy-
drous oxides of polyvalent cations such as alumin-
ium, iron and manganese often cover clay minerals and 
some are potentially able to attract positively charged 
metal ions or species from seawater (e.g. Drever 1982).

Despite humic compounds and clays both being 
negatively charged, they do not necessarily repel one 
another: organo-clays can form as a result of intricate 
and varied forms of bonding involving physical and 
chemical forces. The reaction involved depends on the 
nature of the humic material, the type of clay minerals, 
the ionic composition of seawater and pH conditions. 
The chemical bonds associated with the organo-clays 
influence trace metal adsorption and desorption from 
particles. Some of the most prominent bonds are ionic 
bonds, coordinate bonds or ligand exchange and hydro-
gen bonds.

5.3.2   Evaluating Metal Speciation 
and Bioavailability in Marine Waters

Geochemical Modelling
There are a range of geochemical models that have 
been used to estimate the equilibrium speciation of dis-
solved metals (Batley et al. 2004) and the findings are 
not necessarily consistent. A challenge remains with 
the accommodation of binding to colloids and to natu-
ral organic ligands. Modelled complexation of Cu2+ in 
seawater varies widely with different major species pre-
dicted (e.g. Kester (1986) suggested that 90% of copper 
in seawater forms carbonate complexes; Hawker (1990) 
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alytical techniques are operationally defined and not 
truly selective and, more importantly, they do not re-
late to metal bioavailability. Analysis of metals in sed-
iments typically uses a total acid digestion, however, a 
cold, dilute acid extraction has been shown to best re-
late to the bioavailable fraction and discriminate from 
the mineralised forms. This will dissolve iron and man-
ganese oxyhydroxides and metal sulfides (Simpson and 
Batley 2016).

5.4.2   Metal Bioavailability in Sediments

Sediment Grain Size
In the metric scale sediment grain size range from 
clays (<2 µm diameter) to silts (2– <63 µm) and sand 
(<63 µm–2 mm). Gravel, rocks and other coarse mate-
rial exceed 2 mm. Metal concentrations are highest in 
the finer clay and silt particles which have a greater sur-
face area and hence more binding sites for metals. It is 
therefore important when reporting metal contamina-
tion to indicate the grain size. Most sediment quality 
guideline values apply to clay/silt sediments. The same 
metal concentration in a sandy sediment would poten-
tially have greater bioavailability than that in a clay/silt 
sediment.

Pore Waters
Pore waters (or interstitial waters) are the waters occu-
pying the spaces between sediment particles, typically 
comprising 30–80% of the sediment volume, depending 

surface waters, that ultimately aggregate and precipitate, 
particularly as the salinity increases to that of seawater, 
ultimately settling to bottom sediments. In anoxic wa-
ters, sulfides metals such as Cu, Cd, Ni, Pb and Zn form 
sulfides with low solubility products that will precipitate, 
thereby becoming enriched in marine sediments (Ches-
ter 1990). For this reason, sediments are referred to as 
a sink for metals with metals being most often found in 
higher concentrations in sediments than in marine wa-
ters at any particular site (Förstner 1987) (. Figure 5.5).

Typically, a zone of oxygenation extends from the 
sediment:water interface to about 1–5 cm below the 
sediment surface. This is known as the oxic zone. Be-
low this is an intermediate sub-oxic zone of reduction 
overlying an anoxic zone, where dissolved oxygen is 
minimal and sulfate-reducing bacteria are active (. Fi-
gure 5.6a). If  reduced sediments, high in metals are mo-
bilised, the sulfide is oxidised to sulfate and the associ-
ated metals can be released from the sediments into the 
water column. Bioturbation (. Figure 5.6b–d) results 
in a mixing of the oxic and anoxic zones and benthic 
organisms can be in close contact with sediments, pore 
water (water that sits between sediment particles) and 
associated metals. 

A number of selective extraction schemes have 
been devised to quantify the metal phases in sediments. 
These typically consider an exchangeable fraction, sep-
arate fractions for carbonates, organics (and sulfides) 
and metal oxyhydroxides, and a residual fraction com-
prising inert mineralised forms (Hass and Fine 2010). 
While these are useful for comparing sediments, the an-

. Figure 5.5 Conceptual model of major metal contaminant processes in sediments (where M indicates ‘metal’, POC is particulate organic 
carbon, and Org refers to organic compounds, so POC—Org is organics associated with POC). Image: Simpson, Stuart; Batley, Graeme, edi-
tors. Sediment quality assessment: A practical guide. CSIRO; 2016
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5.5   Metal Uptake by Marine Organisms

The topic of bioaccumulation of metals in marine bi-
ota is very broad. The general principles of bioaccu-
mulation are provided in 7 Chapter 3 and further de-
tails on measuring rates of accumulation are provided 
in 7 Chapter 6. These same principles apply to metals 
but the ways in which they interact with biota need to 
be specifically considered given that some metals are es-
sential in small quantities for life. Furthermore, metals 
generally do not biomagnify as they are not lipophilic 
(there are a few exceptions, such as mercury when it is 
methylated).

Metal uptake by organisms not only depends on 
metal chemistry in the different environmental compart-
ments the organism utilises (water, sediment and biota) 
but also on the metal interactions within an organism 
(e.g. an organism’s ability to take up, regulate and de-
toxify accumulated metals). Such abilities vary between 
taxonomic groups and the different life stages of a spe-
cies. Some filter-feeding marine organisms such as bi-
valve molluscs have been utilised in biomonitoring stud-
ies of pollution because they readily bioconcentrate and 
bioaccumulate contaminants (see 7 Chapter 2, Box 2.1).

Importantly, metal ion assimilation (the processes of 
uptake) is essential for organisms and the pathways of 
uptake and methods of regulation help to satisfy their 
dietary requirements of essential metals while avoiding 

on the grain size. Because they are in close association 
with sediments, porewater contaminants are in chemi-
cal equilibrium with those in sediments. Pore waters 
represent a diffusive pathway for metals to overlying 
waters. The speciation and bioavailability of porewater 
metals will be largely controlled by redox potential and 
pH. Burrowing organisms (. Figure 5.6) can introduce 
oxygenated waters into anoxic sediments, oxidising iron 
and manganese and other metal sulfides and releasing 
metals that can diffuse to overlying waters. The chang-
ing physicochemical conditions associated with biotur-
bation influence metal bioavailability and toxicity.

Acid Volatile Sulfides (AVS)
In sub-oxic sediments, amorphous iron and manga-
nese monosulfides, so-called acid-volatile sulfides (AVS) 
(because they dissolve in dilute acids) can react read-
ily with dissolved metals (e.g. Cd, Cu, Ni, Pb and Zn) 
forming insoluble metal sulfides. This means that if  
there are metals in the sediments or pore waters that 
can exchange with AVS, then there should be no bio-
available metals, and hence no toxicity, provided AVS is 
in excess of the available exchangeable metals. The ex-
changeable metals (so-called simultaneously extract-
able metals (SEM)) and AVS are both measured after 
dilute acid extraction of the sediments to determine if  
AVS > SEM (Simpson and Batley 2016 and citations 
therein).

. Figure 5.6 Sediment redox interactions with organisms; a black reducing sediment just below the surface in a mangrove area. The aerial 
roots of mangroves are called pneumatophores and take up oxygen in these reducing sedimentary environments; b some fish such as a number 
of goby species excavate burrows to live in, sometimes they also share these burrows with shrimp who help in the excavation; c large sediments 
mounds (~25 cm diameter) processed by benthic organisms; d high-density benthic burrowers. Photos A. Reichelt-Brushett

http://dx.doi.org/10.1007/978-3-031-10127-4_3
http://dx.doi.org/10.1007/978-3-031-10127-4_6
http://dx.doi.org/10.1007/978-3-031-10127-4_2


117 5
Metals and Metalloids

cadmium to be released from the particles (i.e. become 
bioavailable) and subsequently absorbed by the oysters.

5.5.3   Metal Detoxification

Some organisms are able to regulate metal uptake 
through detoxification processes such as sequestration 
in granules, or by temporary storage in granules that 
are later excreted or made available for use (Rainbow 
et al., 1990). Similarly, lysosomes are used by many in-
vertebrates such as crustaceans to sequester metals (e.g. 
Sterling et al. 2007). Lysosomes are organelles that reg-
ulate cellular waste. Other organisms can regulate and 
detoxify metals through the production of metallothio-
nein proteins which can be enhanced by increased metal 
loads (Roesijadi and Robinson 1994; Roseijadi 1996). 
Metallothionein proteins not only play a role in the ho-
meostasis of essential metals such as copper and zinc 
but can also be induced by non-essential metals such 
as cadmium (Stillman et al. 1999). Another detoxifica-
tion system used by some algae is the production of a 
layer of metal hydroxides such as Fe(OH)3 on the out-
side of the cell which adsorbs metals and thus renders 
them less toxic.

Some elements can provide protection from toxicity 
of other metals. A rather well-known example of this 
is the protective effects that selenium (an essential ele-
ment) seemingly plays with mercury for some marine 
mammals (e.g. Kehrig et al. 2016) and seabirds (e.g. 
Ikemoto et al. 2004). The presence of selenium reduces 
the availability of some metal ions by forming insoluble 
compounds (Feroci et al. 2005).

Processes of detoxification require energy that is di-
verted from other needs or organisms such as sourcing 
food, growth and reproduction.

5.5.4   Metal Depuration

Depuration is the process that removes metals from the 
organism’s body and is helpful in understanding the 
longer term ability of organisms to regulate metal loads 
and recover from toxicity after exposure. Many studies 
on the uptake and toxicity of metals now incorporate a 
recovery phase where organism health is monitored for 
a period after the exposure to the toxicant has ended. 
Depuration can occur as a reverse of passive and active 
diffusions (7 Section 5.4.1), in organism waste, shed-
ding of exoskeletons, reproductive outputs (e.g. eggs, 
sperm and offspring) and suckling of young in marine 
mammals. Some pathways of depuration need to be 
considered in biomonitoring studies (7 Box 5.3).

toxicity, known as homeostasis. It is possible for some 
non-essential metals to be taken up via these pathways 
and also regulated. When metal concentrations exceed 
an organism’s ability to store and regulate them, then 
the organism exhibits toxic responses (Morrison et al. 
1989). Here, we discuss processes of metal uptake and 
methods of regulation.

5.5.1   Transport Across Biological 
Membranes

There are three main metal uptake pathways by which 
metals enter organisms. The simplest route is via pas-
sive diffusion where metals diffuse through aqueous 
pores in cell membranes. The rate of diffusion is a func-
tion of the size of the molecule with larger colloidal 
species excluded. Active transport is driven by potential 
ionic gradients across the membrane, known as mem-
brane-bound ion channels and higher metal concen-
trations can overwhelm their function (Morrison et al. 
1989). Metal uptake termed carrier-mediated trans-
port is facilitated by carrier molecules that involve in-
teraction with the cell membrane (Morrison et al. 1989; 
Rainbow et al. 1990; Riba et al. 2003). Additionally, si-
derophores, organic chemicals excreted by organisms 
such as phytoplankton and bacteria, complex metals 
in seawater which can then be taken across the mem-
brane (Vraspir and Butler 2009). Once inside an organ-
ism, diffusible metal species are able to bind to non-dif-
fusible, intracellular ligands, and may be transferred to 
blood proteins and transported away from the uptake 
site (Rainbow et al. 1990).

5.5.2   Other Uptake Routes

Examples of other ways that organisms may accumu-
late metals include ingested from food sources when 
metals are bound to ingested sediment particles, or di-
rectly in the food they consume.

Once metals are ingested by organisms, the internal 
body conditions may then play a role in changing the 
metal speciation, as seen in the pearl oysters Pinctada 
carchariarium in Shark Bay, Australia (McConchie and 
Lawrence 1991). Cadmium concentrations in these oys-
ters exceeded health guidelines, but there was no appar-
ent anthropogenic or geologic contamination of the en-
vironment. It was discovered that cadmium in the water 
had adsorbed onto fine particles of negatively charged 
colloidal hematite (Fe2O3). During normal filter-feed-
ing, oysters ingested these metal-loaded particles, and 
the lower pH conditions in the gut of the oyster in-
duced a reversal of the hematite charge which caused 
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ured in future studies. Metal toxicity in marine waters 
and sediments can be considered in relation to the con-
centrations that cause detrimental effects and can be 
generally categorised in order of toxicity (. Table 5.5), 
although the order may vary depending on the environ-
mental conditions as explained above. Values are based 
on the 95% species protection values except for the two 
metals that are known to biomagnify, mercury and 
cadmium, for which the 99% species protection value 
is recommended as default guideline values. The two 
metals, mercury and copper, that are among the great-
est concern in marine waters in relation to toxicity and 
current sources will be discussed further.

5.6   Metal Toxicity to Marine Organisms

Metals can affect many factors associated with the 
health of marine organisms and the mode of action 
(7 Chapter 3) will vary between taxonomic groups. 
. Table 5.4 provides a summary of the types of ef-
fects measured in organisms after exposure to metals. 
These responses have been measured in a combination 
of field and laboratory studies and specific responses 
have only been measured in some species (e.g. moulting 
is a typical feature of crustaceans but is not common 
in other taxa). . Table 5.4 provides some insight into 
what might be useful organism responses to be meas-

Box 5.3: Cautious Considerations for Using Some Species as Biomonitors

Caution needs to be taken for some species intended for use in biomonitoring studies and consideration of depuration 
pathways is important. For an interesting example, corals have often been considered useful as biomonitors because 
they are sessile, easy to collect and the same genetic colonies can be subsampled over time. However, corals and some 
other marine species such as anemones, jelly fish and giant clams, contain symbiotic dinoflagellates (Symbiodiniaceae). 
Some thoughts about using corals as biomonitors:
5 when corals are stressed they may bleach resulting in a loss of the Symbiodiniaceae;
5 gametes take place 5–9 months to develop and can amount to about 80% of the tissue weight of a coral; the time of 

year sampling takes places in relation to annual spawning will influence the contribution of the gametes to the overall 
sample mass;

5 clear differences exist for different metals in terms of the uptake and partitioning between the coral tissue, symbiotic 
dinoflagellates, gametes and skeleton as summarised by Reichelt-Brushett and McOrist (2003) and further investi-
gated in Hardefeldt and Reichelt-Brushett (2015); and

5 the density of the dinoflagellates can naturally vary widely within and between colonies depending on factors such as 
exposure of the coral surface to sunlight, therefore repeated sampling of the same colony is unlikely to have consistent 
ratios of host tissue and dinoflagellates.

For the reasons above, each type of biological material should be assessed separately or at least their mass contribution 
to the sample taken into the consideration in the assessment (. Figure 5.7).

. Figure 5.7 7 Box 5.3: Metals in corals can be lost from the colony though bleaching, coral may recover from a bleaching event and 
will slowly regain Symbiodiniaceae; a coral bleaching; b clear linear assemblages of Symbiodiniaceae in Acropora muricata. Photos:  
A. Reichelt-Brushett

http://dx.doi.org/10.1007/978-3-031-10127-4_3
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. Table 5.4 Example of types of responses exhibited by marine biota when exposed to elevated metal concentrations in marine waters 
(content sourced from Weis 2014 and citations there in)

Response mechanisms Examples of sublethal responses of organisms after metal exposure

Osmoregulation Loss of osmoregulatory capacity through organ damage, inhibition of Na+, K+ and ATPase 
inhibition

Excretion Reduced ammonia excretion due to decreased food intake
Increased ammonia excretion due to increased protein catabolism (digestion)
Decreased excretion rates and faeces production

Respiration and metabolism Enhanced or reduced respiration rates due to changes in enzyme activity
Enhanced mucous production
Reduced metabolism is a strategy to minimise metal uptake or a result of damage to organs 
such as gills
Affects metabolic biomarkers (e.g. ATP, histidine)

Feeding Growth can be inhibited due to reduced feeding which may be a manifestation of changed 
behaviour (e.g. bivalves may remain closed to avoid poor water quality)

Digestion Inhibition of digestive enzymes

Reproduction and development Endocrine disruption (impacting the nervous system and reproductive system)
Reduced sperm motility and reduced fertilisation success
Delayed moulting
Delayed sexual maturity
Reduced larval motility
Interference with metamorphosis

Embryonic development Reduced fecundity
Inhibition of embryo development
Failure to hatch
Deformities
Genotoxicity

Growth Reduced growth
Impaired limb regeneration
Reduced pigment production
Abnormal growth
Weakened bones and reduced calcification
Tumours

Behaviour Disruption of mating activity
Erratic swimming
Increased swimming speed
Decreased motility
Lack of interest in optimal habitat
Reduced valve closing speed in molluscs
Active avoidance of contamination (e.g. reduced burrowing and burying in contaminated sed-
iments)
Decreased prey capture
Reduced escape ability
Reduced olfactory (food odour) responses
Reduced response to water-borne alarm substances resulting in increased vulnerability to 
predators
Retardation of schooling behaviour and migration
Neurotoxicity

. Table 5.5 General order of metal toxicity in marine environments (based on Australian and New Zealand default guideline val-
ues (DGVs) for 95% species protection for marine waters (99% for Hg and Cd) and the related DGVs for sediments, expressed as molar 
concentrations. Available at: 7 https://www.waterquality.gov.au/anz-guidelines/guideline-values/default/water-quality-toxicants)

a where metals are not shown, insufficient data exist, b as nM Sn/kg, c inorganic Hg

General order of metal toxicity (most toxic first)

Marine watera TBTb > Hgc > Cd > Cu, Ag > Pb, Se > Cr(VI), Co > Ni, As > Zn > V > Cr(III)

Marine sedimentsa TBTb > Hgc > Ag, Cd > As, Pb > Ni > Cu > Cr > Zn

https://www.waterquality.gov.au/anz-guidelines/guideline-values/default/water-quality-toxicants
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(Harayashiki et al. 2016). Dietary exposure of inorganic 
mercury concentrations below 2.5 µg/g to juvenile P. mo-
nodon for up to 12 days did not increase the body burden 
or impact AChE activity but resulted in a suppression of 
CAT activity at 2.5 µg/g (Harayashiki et al. 2018).

Mercury is generally less toxic to fish than some 
other metals, such as Cu, Pb, Cd or Zn. The main dan-
ger is diet-derived methylmercury, which accumulates in 
internal organs and exerts its effects by disruption of the 
central nervous system. Harayashiki et al. (2019) studied 
the effects of dietary exposure to inorganic mercury on 
fish activity and brain biomarkers on yellowfin bream 
(Acanthopagrus australis) and found that swimming ac-
tivity increased for the test population after dietary ex-
posure to food containing 2.4 and 6 µg/g although there 
was some variably between concentrations. Additionally, 
GST activity was also higher in mercury-exposed fish 
relative to controls, but differences were not found for 
other biomarkers.

Bioaccumulation of mercury from water may also 
be an issue. Bioconcentration factors of 5000 have 
been reported for mercury (II); factors for methylmer-
cury ranged from 4000 to 85,000 (US EPA 1986). Fur-
ther studies could focus on reproductive success result-
ing from maternally derived mercury to embryonic and 
larval stages.

5.6.2   Copper Toxicity to Marine Biota

EC10 values and no observed effect concentrations 
(NOECs) for the chronic effects of copper on marine 
algae range from 0.2–10 μg/L (ANZECC/ARMCANZ 
2000) (examples provided in . Table 5.6). The acute 
toxicity of copper to marine animals is also wide-rang-

5.6.1   Mercury Toxicity to Marine Biota

Data on the acute toxicity of mercury (II) chloride 
(HgCl2) in marine water to biota was summarised 
by the US EPA (1985) and values ranged from 3.5 to 
1700 μg/L, depending on the species. Hg (II) concentra-
tions ranging from 10 to 160 μg/L inhibited growth and 
photosynthetic activity of marine plants (ANZECC/
ARMCANZ 2000). Wu and Wang (2011) showed that 
an inorganic mercury concentration between 15 and 
36 µg/L inhibited the growth of three marine algae spe-
cies, and effects from organometallic forms of mercury 
were similar but interspecies variations were evident. 
Marine molluscs are relatively resistant to the effects 
of mercury exposure, but some life stages are sensitive. 
Fertilisation success of the European clam (Ruditapes 
decussatus) was significantly reduced compared to con-
trols at 32 µg/L, the EC50 (EC50 is defined in 7 Chap-
ter 3) for embryonic development was 21 µg/L, and lar-
val survival was affected at 4 µg/L after 11 days expo-
sure (Fathallah et al. 2010). Responses of crustaceans 
to mercury exposure can be variable. The proteasome 
systems (a protein complex which degrades unneeded 
or damaged proteins) of the lobster Homarus gamma-
rus and crab Cancer pagurus were severely inhibited by 
mercury at concentrations of 2 and 5 mg/L respectively 
(Götze et al. 2014) but these concentrations are unlikely 
to be reached in the environment.

Dietary pathways of exposure to mercury are also 
an important consideration for toxicity. Mercury (II) 
exposure via the diet of post-larvae Penaus mono-
don after 96 h resulted in changed swimming behaviour 
and this endpoint was more sensitive than biochemi-
cal biomarker endpoints including glutathione S-trans-
ferase (GST) and acetylcholinesterase activity (AChE) 

. Table 5.6 Some examples of marine species’ sensitivity to copper (µg/L)

Species Endpoint Duration EC10 Source

Algae

Nitzschia closterium Exponential growth 72 h 8 Johnson et al. (2007)

Phaeodactylum tricornutum Exponential growth 72 h 1.5 Osborn and Hook (2013)

Echinoderms

Evechinus chloroticus Larval development 96 h 2.1 Rouchon (2015)

Corals

Acropora aspera Fertilisation success 5 h 5.8 Gissi et al. (2017)

Mollusc

Mytilus galloprovincialis Embryo development 48 h 5 Zitoun et al. (2019)

Haliotis iris Larval development 96 h 0.7 Rouchon (2015)

Fish

Sparus aurata Juvenile growth 30 d 290 (NOEC) Minghetti et al. (2008)

Atherinops affinis Embryo development 12 d 62 (NOEC) Anderson et al. (1991)

http://dx.doi.org/10.1007/978-3-031-10127-4_3
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state/province or site-specific guidelines. The guideline 
values for waters are usually derived from rigorous tox-
icological testing, usually laboratory-based, using mul-
tiple aquatic species (e.g. Warne et al. 2018; ANZG 
2018; Gissi et al. 2020). Most long-term guideline val-
ues are based on chronic toxicity testing, whereas 
short-term effects use acute toxicity data.

Chronic toxicity is defined as a lethal or adverse 
sub-lethal effect that occurs after exposure to a chem-
ical for a period of time that is a substantial portion of 
the organism’s life span (>10%) or an adverse effect on 
a sensitive early life stage. Acute toxicity is a lethal or 
adverse sub-lethal effect that occurs after exposure to 
a chemical for a short period relative to the organism’s 
life span (Warne et al. 2018).

When chronic toxicity data are used in species sen-
sitivity distributions (SSDs) to derive guideline values, 
it is usual to apply the 95% species protection value to 
most waters, defined as slightly to moderately contami-
nated, while the more conservative 99% species protec-
tion value is reserved for high conservation value wa-
ters, e.g. in a national park (see 7 Chapter 6 for further 
details in SSDs). Species protection levels of 90 and 
80% are both reserved for highly disturbed ecosystems 
and it is these values that likely constitute pollution as 
the stated goal with such waters is a continual improve-
ment (ANZG 2018; ANZECC/ARMCANZ 2000).

For sediments, guideline values are commonly 
based on the 10th percentile of a ranking of effects 
data (Simpson and Batley 2007, 2016). Limited ap-
proaches to the chronic toxicity testing of whole sedi-
ments have been undertaken, e.g. for copper (Simpson 
et al. 2011), hampered until recently by the availability 
of a sufficient number of whole sediment test species 
(Simpson and Batley 2016).

5.8   Summary

Most metals and metalloids are found naturally in the 
marine environment in very low concentrations and 
many are essential to life. Anthropogenic inputs from 
atmospheric emissions, mining, mineral processing 
and urban and industrial discharges increase the con-
centrations in marine environments. Coastal waters are 
at greater risk of predominantly terrestrially derived 
metal sources.

Each metal behaves differently and organo-metallic 
metal forms are generally the most toxic to marine or-
ganisms. Understanding the sediment and water inter-
actions, chemical behaviour and pathways of metal up-
take in marine organisms are important for understand-
ing toxic effects. Toxic effects vary between different 
metals and are different for different taxonomic groups.

ing from 5.8 μg/L for blue mullet to 600 μg/L for green 
crab (US EPA 1986). Invertebrates, particularly crusta-
ceans, corals and sea anemones are sensitive to copper. 
Fertilisation success is a sensitive endpoint for copper 
across a wide range of marine invertebrates. A good 
summary was provided by Hudspith et al. (2017), who 
reported that EC50 estimates ranged between 1.9 and 
10,030 µg/L, with most species of corals, echinoderms, 
polychaetes, molluscs and crustaceans tested exhibiting 
EC50 estimates of <70 µg/L.

Gastropods seem to be more tolerant to copper and 
can accumulate quite high concentrations without toxic 
effects and typical 96-h LC50 values for snails are 0.8–
1.2 mg Cu/L (ANZG 2018). Marine bivalves, including 
the mussel Mytilus edulis are more sensitive to copper, 
with a 96-h LC50 of 480 μg/L (Amiard-Triquet et al. 
1986). Reduced growth and larval development were 
found at copper concentrations as low as 3 μg Cu/L in 
bivalves (ANZG 2018 and references therein).

Marine fish appear to be relatively tolerant of cop-
per (ANZG 2018). In general, embryos of marine fish 
are more sensitive than their larvae, whereas larvae of 
freshwater fish are more sensitive than embryos.

5.7   Managing Metal Pollution

5.7.1   What Is ‘Pollution’

Pollution is the introduction of harmful materials into 
the environment. These harmful materials are called 
pollutants. Many environmental scientists prefer the 
term contaminants as all pollutants are contaminants 
but not all contaminants are pollutants (see 7 Chapter 
1 for further details). The challenge is in defining what 
level of contamination constitutes pollution. Metal 
concentrations that are close to guideline values are 
deemed contaminated, but we don’t have an accepted 
metric that defines polluted or heavily contaminated. 
Nevertheless, it is common among the general public to 
refer to water pollution and air pollution as represent-
ing something bad that needs management. We need 
to keep that in mind when we are talking about mildly 
contaminated waters and say they are polluted, as it 
over-exaggerates the problem.

5.7.2   Guideline Values

Many countries have guideline values (or similar) to 
protect marine ecosystems from contaminants includ-
ing metals in marine waters (. Table 5.7) and separate 
guidelines for sediments (see also 7 Chapter 3). Some 
countries have also developed protocols to determine 

http://dx.doi.org/10.1007/978-3-031-10127-4_6
http://dx.doi.org/10.1007/978-3-031-10127-4_1
http://dx.doi.org/10.1007/978-3-031-10127-4_3
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5.9   Study Questions and Activities

1. Select one metal and describe the sources, fate and 
consequences in the marine environment. This may 
be a metal that is explored in the chapter, or you 
may select a different metal of interest to you. Use 
diagrams if  you wish.

2. Investigate the cycle and fluxes of a metal of en-
vironmental concern and explain it in your own 
words or create your own conceptual model (for an 
example see 7 Box 5.1).

3. Investigate the guideline values for metals in marine 
waters in your region or country. What are three key 
points you notice about them in the context of this 
chapter?

4. What metal do you think is of most concern in the 
marine environment? Justify your answer.
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