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Enrichment of both nitrogen and phosphorus is of 
concern, though the consensus that has evolved among 
much of the scientific community is that increased ni-
trogen is the primary driver of eutrophication in many 
coastal ecosystems (Howarth and Marino 2006). How-
ever, this has been challenged by recent scientific liter-
ature which acknowledges the need to reduce both ni-
trogen and phosphorus to control coastal eutrophica-
tion (Howarth and Marino 2006; Howarth and Paerl 
2008; Riemann et al. 2016; Asmala et al. 2017). Success-
ful reductions of phosphorus have occurred through-
out freshwater systems through the banning of phos-
phorus in detergents, and a corresponding reduction in 
phosphorus is being measured in many coastal waters 
(Paerl 2006). While this is a hopeful trend, this has led to 
a global N:P imbalance in our coastal and marine eco-
systems and an increasing N: P ratio which can impact 
the plankton community structure and phosphorus limi-
tation of natural growth (Howarth and Paerl 2008; Paerl 
2009). A comprehensive response needs to focus on con-
sistent reductions in nitrogen to marine systems to alle-
viate this imbalance and will be the focus of this chapter.

The global nitrogen cycle is now greatly perturbed 
by human (anthropogenic) activity, particularly on land 
(Gruber and Galloway 2008; Rockström et al. 2009; 
Fowler et al. 2013). The increasing inputs of nitrogen 
from human activity, predominantly from land-based 
activities can modify oceanic, and even global, bioge-
ochemical systems (Jickells et al. 2017). The estimated 
anthropogenic release of nitrogen into the global en-
vironment (160 Tg N/yr, Tg =  Teragram = 1012 g) is 
now of similar magnitude to natural nitrogen fixation 
(250 Tg N/yr−) and is likely to increase in the future 
due to a growing global population (Gruber and Gallo-
way 2008). Four of the primary sources of bioavailable 
(hence the term reactive) nitrogen to estuarine, coastal 
and marine waters are runoff and discharge from the 
land, upwelling on the continental shelf  break; atmos-
pheric deposition; and fixation by nitrogen-fixing mi-

Acronyms and Abbreviations
CoTS  Crown of Thorns Starfish
Chl-a  Chlorophyll-a
DIN  Dissolved inorganic nitrogen
DON  Dissolved organic nitrogen
DOP  Dissolved organic phosphorus
GBR  Great Barrier Reef
HABs  Harmful algal blooms
PIN  Particulate inorganic nitrogen
PON  Particulate organic nitrogen
POP  Particulate organic phosphorus
SAV  Submerged aquatic vegetation
STP  Sewage treatment plant
USA  United States of America
TM4-ECPL  Tracer Model 4 of the Environmental Chemical Processes Laboratory

4.1   Introduction

Excess nutrients from fertiliser application, pollution 
discharge and water regulations outflow through riv-
ers from lands to oceans, seriously impact coastal eco-
systems. Terrestrial runoff of waters polluted with nu-
trients (primarily nitrogen [N] and phosphorus [P] com-
pounds) from point sources, such as sewage treatment 
plant (STP) discharges, and diffuse sources via river 
discharges, such as fertiliser losses, are having devas-
tating adverse effects in coastal and marine ecosystems 
globally (Carpenter et al. 1998; Halpern et al. 2008; 
Crain et al. 2008; Smith and Schindler 2009). The nu-
trients can be dissolved such as dissolved nitrate and 
phosphate typically discharged from STPs or agricul-
tural runoff or in a particulate form, often associated 
with soil erosion.

Biomass production of plant matter in coastal wa-
ters is often limited by the availability of nitrogen 
and/or phosphorus (light is a limiting factor in turbid 
zones). Conversely, the increased human-derived inputs 
of nutrients can lead to increased biomass production 
that can disturb the natural ecological balance in ma-
rine ecosystems. This disturbance, the process of eutro-
phication, is one of the biggest threats to marine eco-
system health. Eutrophication, like climate change, 
is a global issue with coastal regions throughout the 
world being impacted through the input of elevated 
nutrients (Galloway et al. 2014). Well-documented ad-
verse ecological responses to increased nutrient dis-
charge into coastal and marine waters include harmful 
algal blooms (HABs) (Hudnell 2008; Glibert and Bur-
ford 2017), changed preponderance and dominance of 
certain types of algae over other benthic plants (sea-
grass, coral, other algae) (Lapointe et al. 2018, 2019), 
hypoxia and subsequent dead zones (Diaz and Rosen-
berg 2008), habitat degradation and adverse changes 
in aquatic food webs (Carpenter et al. 1998; Gross and 
Hagy 2017).
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above the consumption capacity of herbivores before 
we can conclude the system is eutrophic (Nixon 2009).

The term eutrophication refers to a process of  in-
creased production of biomass in an aquatic ecosys-
tem, evolving over long timescales until the system is 
full of  biomass (Bricker et al. 2008; Boyd 2020). How-
ever, the term is more commonly used now to refer to a 
process that has been accelerated by anthropogenic ac-
tions, resulting in the process occurring in short time-
frames of  years to decades (Nixon 1995). Eutrophica-
tion can be defined in different ways for different sys-
tems, but for marine and estuarine waterbodies, it is a 
process resulting from the input of  excessive plant nu-
trients into an aquatic system. The excess nutrients 
lead to enhanced plant growth or changes in the com-
position and structure of  communities and, as a con-
sequence, the high plant growth reduces the penetra-
tion of light through the water. Light is essential for 
plant growth with light-limiting conditions resulting in 
plant death. This can cause ongoing adverse effects as 
the dead plant material is consumed by aerobic bacte-
ria leading to high demands on the oxygen supply. Re-
ductions in dissolved oxygen impacts all organisms 
and may result in a crash of the whole system. Crite-
ria that are used to measure the impacts through this 
process include algal blooms and low-oxygen (hypoxic) 
waters that can kill fish, reduce essential fish habitats 
and result in epiphytic algae over-growth and death 
of  marine plants, such as seagrass, through smother-
ing and reducing its capacity to photosynthesise (. Fi-
gure 4.1). Anthropogenic eutrophication thus can be 
defined as ‘the overproduction of aquatic plant biomass/
organic material induced by anthropogenic inputs of 
phosphorus and nitrogen’.

crobes. The sources of the increased nutrient fluxes are 
associated with:
5 fertiliser use and losses in agriculture such as graz-

ing and cropping;
5 human sewage discharges;
5 farm animal wastes discharge; and
5 fluxes to the atmosphere which are discharged to 

marine waters via rainfall and particulate matter 
deposition.

4.2   Nutrification and Eutrophication 
in Marine Waters

4.2.1   Definitions

Waters with low concentrations of nutrients and phy-
toplankton and hence low productivity are called oli-
gotrophic, while those with high nutrient and/or phyto-
plankton (and benthic algae) concentrations and high 
productivity are eutrophic. Waters with an intermediate 
level of productivity are termed mesotrophic.

Nutrification is the action or process of nutrifying 
an environment with nutrients (generally nitrogen and/
or phosphorus). Nutrification is of concern, however, 
enrichment alone does not necessarily confer an im-
pact, and assessment of eutrophication typically needs 
to meet several other criteria before impact and distur-
bance can be measured (Tett et al. 2007; Ferreira et al. 
2011; Brodie et al. 2011). The excessive input of an-
thropogenic nitrogen and phosphorus needs to cause 
additional impacts, for example, marine algal blooms 

. Figure 4.1 The process of eutrophication and the resulting impacts on the marine ecosystems. Adapted from Devlin et al. 2011 by M. Devlin
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includes ammonium (NH4), nitrate NO3− and nitrite 
NO2−. Other sources of nitrogen include dissolved or-
ganic nitrogen (DON), particulate inorganic nitrogen 
(PIN, essentially ammonium ions attached to clay par-
ticles) and particulate organic nitrogen (PON). Phos-
phorus forms include phosphate PO3−

4
, which consist of 

orthophosphate or polyphosphates, dissolved organic 
phosphorus (DOP), particulate inorganic phospho-
rus (PIP), essentially phosphate ions attached to clay 
particles) and particulate organic phosphorus (POP). 
Rainfall and river flow will contain both ammonium 
and nitrate in solution, while dry deposition of dust 
can contain various forms of particulate nitrogen and 
phosphorus.

4.2.3   Nutrient Limitation and Nutrient 
Ratios

The nutrients essential for primary production, which 
are often present in a limiting amount, are nitrogen and 
phosphorus. The C:N:P (carbon to nitrogen to phos-
phorus) stoichiometric ratios of living organisms (es-
pecially plants, and in the ocean, phytoplankton) are 
fairly constant and are termed Redfield ratios (Geider 
and La Roche 2002). For both phytoplankton and zo-
oplankton, the ratio of (C:N:P), known as the Redfield 
ratio is 106:16:1 with some variation between different 
organisms. In addition, silica (Si) is essential for diatom 
growth so the ratio of C to N to P to Si may also be 

This definition is used to overcome the difficulty 
of summarising in a few words the multitude of bio-
geochemical and biological responses (including direct 
and indirect effects) triggered by excessive nitrogen and 
phosphorus inputs (Devlin et al. 2011; Le Moal et al. 
2019). Eutrophication can cause structural changes 
throughout the marine ecosystem and reduce ecosys-
tem resilience (. Figure 4.2).

Eutrophication issues have often been divided into 
three descriptive terms:
5 Causative factors: Factors which cause eutrophica-

tion such as nutrient inputs, elevated nutrient con-
centrations and imbalance in nutrient concentra-
tions (see 7 Section 4.2.3, where Redfield ratios are 
described).

5 Direct effects: Effects which are caused directly by 
the increased nutrients such as impacts on primary 
producers (phytoplankton) and submerged aquatic 
vegetation.

5 Indirect effects: Effects that are influenced by the 
direct effects and are known as secondary effects. 
These can be related to negative changes in zoo-
plankton, fish and invertebrate benthic fauna (ani-
mals living on and in the seabed).

4.2.2   Nutrient Types

Nutrients enter the marine environment in many forms, 
including dissolved inorganic nitrogen (DIN), which 

. Figure 4.2 Schematic diagram of the different pathways of nutrient deposition into coastal waters and ensuing processes leading to eu-
trophication (algal blooms) and hypoxia. Image: Hans W. Paerl CC BY 2.0
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nutrients (Penuelas et al. 2013; Paerl et al. 2014; Burson 
et al. 2016).

4.2.4   Sources and Causes

Excess nitrogen and/or phosphorus is sourced from 
many anthropogenic processes including fertiliser run-
off, human sewage effluent, animal waste discharge and 
atmospheric fallout in rain and precipitation. Iron, sil-
ica and other micronutrients may also be involved in 
nutrification, but case studies of adverse effects are less 
common (however, see silica to nitrogen ratio 7 Sec-
tion 4.2.3).

Increasing demands for nitrogenous fertilisers for 
use in agriculture (Lu and Tian 2017) and particularly 
urea in recent times, is largely responsible for the rap-
idly increasing discharge of  nitrogen to the marine 
environment (Jickells and Weston 2011a, b) (. Fi-
gure 4.3). The share of  total global anthropogenic ni-
trogen and use (187 Mt/yr) from agriculture has been 
estimated at 86% (Galloway et al. 2008). Many stud-
ies also reveal low nitrogen use efficiency in crops, 
with only approximately half  of  the nitrogen ap-
plied to croplands being incorporated into plant bi-
omass, while the rest is lost through leaching (16%), 
soil erosion (15%) and gaseous emission (14%) (Liu 
et al. 2011; Liu et al. 2013a, b). Additional sources in-
clude nitrogen and phosphorus discharges to coastal 
seas from domestic wastewater and groundwater inputs 
driven by human population growth (Powley et al. 
2016) with increased atmospheric deposition and 
rainfall inputs of  phosphorus (Jickells et al. 2017). 
There is also increased watershed erosion (with par-
ticulate nitrogen and phosphorus content), especially 
in the tropics, associated with deforestation and ag-
ricultural land development (Bainbridge et al. 2018). 
Analysis of  changes in the global freshwater nitro-
gen and phosphorus cycles in rivers and streams over 
the twentieth century suggests that, during this pe-
riod, the global river nutrient transport to the ocean 
increased from 19 to 37 Tg N/yr and from 2 to 4 Tg 
P/yr (Seitzinger et al. 2005; Bouwman et al. 2009; 
Beusen et al. 2016).

From the 1940s to the 1980s, eutrophication was re-
ported in the northern Adriatic Sea, the northwest con-
tinental shelf  of the Black Sea (Mee 1992), the Kat-
tegat betweenDenmark and Sweden (Rosenberg et al. 
1996), Chesapeake Bay (Boesch et al. 2001) and many 
other areas in temperate northern hemisphere waters 
(Lotze et al. 2011a, b). Recent prominent and large-
scale examples of eutrophication include the North 
China Sea (Qingdao) with massive algal blooms in-
terfering with the aquatic events of the 2008 Bei-
jing Olympic games (7 Section 4.3.3); in the Carib-
bean and West Africa (Smetacek and Zingone 2013)  

important. Thus, instead of the traditional Redfield ra-
tio of C:N:P as 106:16:1, a modified Redfield ratio to 
include silica becomes C:N:P:Si as 106:16:1:15, known 
as the Redfield–Brzezinski ratio, and is often used as a 
standard to understand nutrient limitation with respect 
to nitrogen, phosphorus or silicate for natural phyto-
plankton assemblages. Increased nutrient inputs gener-
ally entail a change in the ratio between dissolved ni-
trogen and phosphorus species in the water (i.e. the 
DIN:DIP ratio). A significantly lower ratio (than 16:1) 
can cause nitrogen limitation, whereas a higher ra-
tio can lead to phosphorus limitation for phytoplank-
ton primary production (Tett et al. 1985). Species that 
are less sensitive for their growth to require optimal 
DIN:DIP ratios can outcompete more sensitive species.

Nitrogen and phosphorus are the major limiting nu-
trients in most aquatic ecosystems (Conley et al. 2009). 
Primary production is frequently limited by nitrogen 
and phosphorus in freshwaters and by nitrogen in the 
ocean (Howarth and Marino 2006). The long-standing 
debate over nitrogen versus phosphorus limitations to 
ocean primary production had appeared to be settled 
in favor of nitrogen as a result of the substantial rates 
of denitrification recently reported in marine environ-
ments (Nixon 1995; Howarth and Marino 2006). Nev-
ertheless, phosphorus appears to limit phytoplankton 
activity in some regions (Wu et al. 2000) and iron (Fe) 
and phosphorus appear to co-limit the growth of nitro-
gen-fixing Trichodesmium in the Atlantic Ocean (Mills 
et al. 2004). In addition, changing anthropogenic ac-
tivities have caused imbalances in nitrogen and phos-
phorus loading, making it difficult to control eutroph-
ication by reducing only one nutrient (Paerl 2006; Du-
arte et al. 2008; Howarth and Paerl 2008). The forms 
of nitrogen and the ratios of nitrogen and phospho-
rus in river discharge (from both agricultural and hu-
man waste sources) are also changing (Glibert 2017). 
A global increase in fertiliser nitrogen to phosphorus 
ratio has also occurred during 1961–2013, which may 
have global implications for the types and extent of 
marine eutrophication in the longer term (Lu and Tian 
2017). For example, with the increasing use of urea as 
one of the cheapest and most readily available sources 
of nitrogen, losses of nitrogen are increasing from cur-
rent applications of fertiliser in agriculture compared 
to older and less soluble forms of nitrogen fertiliser.

Changes in the ratio of nitrogen to phosphorus also 
have significant potential effects on phytoplankton and 
other algal growth and speciation in the marine envi-
ronment. Upstream nutrient management actions (ex-
clusively phosphorus controls) have exacerbated nitro-
gen-limited downstream eutrophication which can im-
pact coastal plankton communities. These imbalances 
can lead to shorter trophic food webs with fewer pred-
ators, and potentially decreasing biodiversity and long-
term management should consider controls on both 
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for example, 67% of the combined surface area of es-
tuaries in the USA exhibiting moderate to high de-
grees of eutrophication (Potter et al. 2016), a trend 
also found elsewhere in coastal waters across the world 
(Duarte et al. 2008; Duarte 2009; Rabalais et al. 2009; 
Paerl et al. 2014). Breitburg et al. (2018) note a worry-
ing trend in declining oxygen in the global ocean and 
coastal waters associated with watershed pollution as 
well as climate change.

Globally, nitrogen and phosphorus loadings to 
coastal and marine waters are expected to at least dou-
ble by 2050 (Johnson and Harrison 2015; Kroeze and 
Seitzinger 1998) through the continued increase in the 
use of fertilisers (Heffer and Prud’homme 2012), in-
creased coastal aquaculture, increased populations and 
associated sewage waste, animal wastes, further dep-
osition of nitrogen associated with gaseous emissions 
from fossil fuel burning and other industrial discharges 
to the atmosphere (Johnson and Harrison 2015). Riv-
erine nitrogen fluxes to the global ocean are estimated 
to be 23 Tg/N/yr for DIN and 11 Tg/N/yr for DON 
(Seitzinger et al. 2005, 2010). The total river input of 
nitrogen to coastal seas has approximately doubled 
over the last few hundred years (Seitzinger et al. 2005, 
2010; Yan et al. 2010; Beusen et al. 2016). This input 
is also now dominated by nitrate, reflecting the influ-
ence of indirect land use inputs through fertiliser usage 
(Jickells and Weston 2011a, b; Jickells et al. 2017). Ni-
trogen use is now outside of the bounds of global plan-
etary sustainability (Steffen et al. 2015) and poses a 
high risk to the Earth's systems (Johnson and Harrison 
2015; Lu and Tian 2017).

Fertiliser Use and Losses from Agricultural Land
Rising agricultural demands for nitrogenous fertilisers 
(and particularly urea) in recent times is responsible 

(7 Section 4.3.4); and further eutrophication across 
the Baltic Sea generally (Andersen et al. 2017). There 
are now numerous reports of macroalgal blooms with 
the most common algae involved being species of Ulva 
(green tides) and Sargassum (golden tides) worldwide in 
recent years. These blooms negatively impact tourism, 
particularly countries that have high economic depend-
ence on tourism. The blooms may smother aquaculture 
operations (some of which are also a source of nutri-
ents) or disrupt traditional artisanal fisheries (Smeta-
cek and Zingone 2013).

Nutrient pollution is a leading global threat to 
coastal and marine ecosystems, including saltmarshes, 
mangroves, kelps, seagrasses and corals (Howarth and 
Paerl 2008). About half  the global riverine nitrogen in-
put (about 40 from the total 80 Tg of N yr−1) is an-
thropogenic in origin (Beusen et al. 2016) and river-
ine fluxes of nitrogen have increased greatly (Bouw-
man et al. 2009; Beusen et al. 2016). Rivers in western 
Europe and eastern China have seen large increases in 
nitrogen fluxes (e.g. the Yangtze River had about four 
times more nitrogen load in 2010 than in 1991, while 
the amount of fertiliser used doubled, resulting in in-
creased riverine DIN levels). The increased riverine 
DIN flux between 1991 and 2010 in the United States 
of America (USA) was affected primarily by nitro-
gen fertiliser use, while rivers in Europe and China 
have seen fertiliser use, human waste and atmospheric 
sources increase. These changes have also occurred in 
tropical waters with the total anthropogenic DIN ex-
ported to the Pacific Ocean increasing from 10 to 30% 
of the total, a higher rate than any other ocean (Liu 
et al. 2019).

Eutrophication from increased nutrient input is now 
recognised as one of the most serious issues facing estua-
rine and coastal waters in many parts of the world, with, 
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(Fowler et al. 2013). Wang et al. (2015) estimate that 
combustion-related emissions (associated with fos-
sil fuels) are 1.8 Tg/P/yr, which represent over 50% of 
global atmospheric sources of P. Using these estimates 
in models, they found that the total global emissions of 
atmospheric P (3.5 Tg/P/yr) were broken up into a de-
posited amount of 2.7 Tg/P/yr over land and 0.8 Tg/P/
yr over the oceans.

Human Sewage Wstes
Global nitrogen and phosphorus emissions from hu-
man sewage for the period 1970–2050 have been esti-
mated from the four Millennium Ecosystem Assess-
ment scenarios. An increase in global sewage emis-
sions is predicted, from 6.4 Tg of nitrogen and 1.3 Tg 
of phosphorus per year in 2000 to 12.0–15.5 Tg of ni-
trogen and 2.4–3.1 Tg of phosphorus per year in 2050. 
North America (strong increase), Oceania (moder-
ate increase), Europe (decrease) and North Asia (de-
crease) show contrasting developments, and in the de-
veloping countries, sewage nitrogen and phosphorus 
discharge will likely increase by a factor of 2.5–3.5 be-
tween 2000 and 2050 (Bouwman et al. 2005; Van Dre-
cht et al. 2009; Seitzinger et al. 2010). This is a com-
bined effect of increasing population, urbanisation and 
development of sewage systems. Despite some optimis-
tic scenarios for the development of wastewater treat-

. Table 4.1 TM4-ECPL model estimated global atmospheric nitrogen emissions by source for 1850, 2005 and 2050, the latter based 
on the RCP6.0 scenario. Adapted from Jickells et al. 2017

Source 1850 2005 2050

NOx

      Terrestrial anthropogenic NOx 0.6 27 20.2

      Shipping NOx 5.3 3.1

      Aircraft NOx 0 0

      Biomass burning NOx 0.5 5.5 5.7

      Natural NOx soils and lightening 11.8 11.6 11.6

NHx

      Terrestrial anthropogenic NHx 5.4 32.9 43.7

      Biomass burning NHx 0.9 9.2 9.4

      Natural NHx soils 2.4 2.4 2.4

      Natural NHx ocean emissions 8.2 8.2 8.2

Total inorganic N 29.8 102.1 104.3

Organic N (ON)

      Anthropogenic and biomass burning 1.3 7.0 6.8

      Natural biogenic particles and soil dust 9.3 9.3 9.3

      ON insoluble on marine aerosol 1.1 1.1 1.1

      ON soluble on marine aerosol and marine amines 5.8 5.8 5.8

Total ON 17.5 23.2 23

Total N emissions 47.2 125.2 127.3

for the rise in reactive nitrogen (Galloway et al. 2008). 
Nitrogen fertiliser production increased from 15 mil-
lion tonnes N/yr in 1860 to 187 million tonnes N/yr in 
2005 (. Figure 4.3). Nitrogen and phosphorus fertil-
iser usage rates per unit of cropland area increased by 
approximately eight times and three times, respectively, 
since the year 1961 (Lu and Tian 2017). This increase 
in fertiliser nitrogen is compounded by the inefficient 
use of fertiliser on agricultural lands. More than half  
of the synthetic fertiliser applied to the world’s fields 
has been applied in the past 30 years (Pearce 2018) but 
less than half  of this fertiliser reach the intended crops, 
with the remainder running off  into rivers and even-
tually into the ocean. Large increases in atmospheric 
nitrogen emissions have also occurred over the last 
200 years associated with this human activity (. Table 
4.1).

Fossil Fuel Combustion Emissions and Aerial Deposition
Combustion (especially of fossil fuels) is a major source 
of oxidised nitrogen which is transformed in the atmos-
phere to nitric acid and rained out as nitrate (. Ta-
ble 4.1). Direct agricultural emissions from fertiliser 
use are a major source of ammonia (Duce et al. 2008). 
Rapid and efficient atmospheric transport allows these 
emissions to reach the open oceans within days, hence 
much faster and more effectively than fluvial inputs 
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tion of nitrogen and phosphorus river discharges (e.g. 
for the Great Barrier Reef (GBR) (Waterhouse et al. 
2012)). The tropics produce 56 ± 6% of global land ni-
trogen pollution despite covering only 34% of global 
land area and receiving far lower amounts of fertilisers 
than the areas outside of the tropics. Tropical land use 
needs to be considered as a major mechanism in man-
aging global nitrogen pollution (Lee et al. 2019).

Phytoplankton Speciation Differences
Phytoplankton species in the nutrient-depleted tropi-
cal waters are typically dominated by picocyanobacte-
ria (often species of Synechococcus and/or Prochloro-
coccus) of  very small cell size, while temperate waters 
have higher ratios of diatoms and dinoflagellates (influ-
enced partially by temperature) (Odebrecht et al. 2018; 
Righetti et al. 2019). Polar seas can also be dominated 
by picocyanobacteria. In general, in tropical seas when 
large injections of nutrients occur from river discharge, 
sewage discharge or upwelling, phytoplankton specia-
tion shifts from picocyanobacteria dominance to dom-
inance by diatoms and dinoflagellates (Jacquet et al. 
2006).

4.2.6   Effects Related to Eutrophication

Hypoxia, Dead Zones, Climate Change and Loss of 
Oceanic Oxygen
Human inputs of nutrients to coastal waters can lead 
to the excessive production of algae and an excess of 
organic matter, as part of the eutrophication process 
(see 7 Section 4.2.1). Microbial consumption of this 
organic matter lowers oxygen levels in the water (Gil-
bert et al. 2010; Cai et al. 2011). The decomposing 
plant biomass causes an oxygen deficit and can produce 
toxic compounds such as hydrogen sulfide (H2S) and 
ammonia (NH3) in the anoxic sediments.

Oxygen concentrations in open ocean and coastal 
waters have been declining since at least the middle 
of the twentieth century. This change which is asso-
ciated with the eutrophication process can be exacer-
bated by the increasing temperatures associated with 
increased CO2 levels in the oceans and atmosphere. 
These changes are affecting the abundances and dis-
tributions of many marine species. Low-oxygen zo-
nes, or dead zones, in the ocean have expanded by sev-
eral million square kilometres and hundreds of coastal 
sites now have oxygen concentrations low enough to 
limit the distribution and abundance of animal popu-
lations (Rabalais et al. 2009, 2014; Gilbert et al. 2010; 
Breitburg et al. 2018). There have been greater declines 
in marine oxygen levels in coastal seas compared to the 
open ocean (Gilbert et al. 2010); oxygen decline rates 
are more severe in a 30 km band near the coast than in 

ment systems, it is predicted the contributions of waste-
water nutrients will contribute to high fluxes of global 
nitrogen and phosphorus fluxes for many years to come 
(Van Drecht et al. 2009).

Animal Wastes
The large quantity of manure produced by intensive 
animal production is generally applied to land as fertil-
iser, stacked in the feedlot, or stored in lagoons. Fre-
quently, an oversupply of manure means that it is ap-
plied to crops more than is necessary, further ex-
acerbating nutrient runoff and leaching (see WRI: 
7 https://www.wri.org/our-work/project/eutrophica-
tion-and-hypoxia/sources-eutrophication). In China, 
meat production rose by 127% between 1990 and 2002 
(Fao 2012), but fewer than 10% of an estimated 14,000 
intensive livestock operations have installed pollution 
controls (Ellis 2017).

Upwelling
The vertical distribution of nutrients in the sea shows, 
for both nitrates and phosphates, a surface minimum 
that sharply increases with depth during the first 100–
500 m and is approximately steady in deeper waters. 
Upwelling occurs in the open ocean and along coast-
lines. Water that rises to the surface as a result of up-
welling is typically colder and rich in nutrients (mainly 
nitrate and phosphates). These nutrients fertilise sur-
face waters, meaning that these surface waters of-
ten have high biological productivity. Therefore, good 
fishing grounds typically are found where upwelling is 
common (see NOAA: 7 https://oceanservice.noaa.gov/
facts/upwelling.html). Upwelling of nutrients into shal-
low habitats is unlikely to have been increased by an-
thropogenic effects, although changed current regimes 
associated with climate change may affect this process 
in the future (Bakun et al. 2015).

4.2.5   Temperate Versus Tropical Waters

Differing Discharge Processes in the Tropics
Nitrogen pollution in aquatic systems is shaped by 
multiple sources and processes. Modelling of nitrogen 
budgets of basin–marine systems provides estimates 
that globally, land currently sequesters 11 (10–13)% 
of annual nitrogen input (Lee et al. 2019). River basins 
can act as a buffer, taking up greater than 50% of their 
nitrogen inputs, which can provide some protection 
to the coastal systems. However, activities such as de-
forestation, agricultural intensification and/or exports 
of land nitrogen storage in tropical systems can create 
large nitrogen pollution sources including erosion of 
nitrogen-rich soils. Particulate nitrogen (and phospho-
rus) discharges as a result of erosion are a major issue 
for the tropics and can contribute to the largest frac-

https://www.wri.org/our-work/project/eutrophication-and-hypoxia/sources-eutrophication
https://www.wri.org/our-work/project/eutrophication-and-hypoxia/sources-eutrophication
https://oceanservice.noaa.gov/facts/upwelling.html
https://oceanservice.noaa.gov/facts/upwelling.html
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the known risk factors, including eutrophication and el-
evated temperatures, are common. Altieri et al. (2017) 
documented an unprecedented hypoxic event on the 
Caribbean coast of Panama and assessed the risk of 
dead zones to coral reefs worldwide. The event near 
Panama caused coral bleaching and massive mortal-
ity of corals and other reef-ahypoxiassociated organ-
isms but observed shifts in community structure com-
bined with laboratory experiments revealed that not 
all coral species are equally sensitive to . Analyses of 
global databases showed that coral reefs are associated 
with more than half of the known tropical dead zones 
worldwide, with >10% of all coral reefs at elevated risk 
of hypoxia based on local and global risk factors. Hy-
poxic events in the tropics and associated mortality 
events have likely been underreported, perhaps by an 
order of magnitude, because of the lack of local scien-
tific capacity for their detection (Altieri et al. 2017).

Algal Proliferation and Subsequent Changes in Marine 
Plant communities
Algal blooms are a natural phenomenon, but their fre-
quency, duration and geographical scope have been in-
creasing since the 1950s, largely in response to fertiliser 
runoff and sewage discharge, and human-induced cli-
mate change. Increased competition from algal blooms 
can impact saltmarshes, mangroves, kelps, seagrasses 
and corals (Lefcheck et al. 2018) (. Figure 4.4). For 
instance, partly as a result of increased nutrient in-
puts, the global cover of seagrasses has declined by 
over 29% in the last century (Waycott et al. 2009)  

. Figure 4.4 Signs of nutrient enrichment around the Kei Islands, Eastern Indonesia a algae-covered corals b epiphyte growth on seagrass 
fonds inhibiting sunlight and photosynthesis of seagrass c green microalgae bloom visible in surface waters. Photos: A. Reichelt-Brushett

the open ocean (>100 km from the coast) because of 
the influence of increased nutrient fluxes from rivers. In 
the 1990s, scientists reported coastal Hypoxia in north-
ern Europe, North America and Japan. By the 2000s, 
there were more such reports in South America, south-
ern Europe and Australia, as well as increasing dead 
zones in the Baltic Sea (Gilbert et al. 2010; Rabalais 
et al. 2014). Low-oxygen zones are now known as dead 
zones due to the detrimental impacts of low dissolved 
oxygen on benthic fauna which can culminate in mass 
mortality events (Diaz and Rosenberg 2008).

Coastal Hypoxia and the associated dead zones 
have been exacerbated by worldwide enhanced coastal 
primary production and eutrophication driven by in-
creased riverine inputs of nitrogen and phosphorus, soil 
erosion of particulate nitrogen and phosphorus and the 
burning of fossil fuelsfossil fuels. These processes lead 
to an accumulation of particulate organic matter, which 
encourages microbial activity and the consumption of 
dissolved oxygen in bottom waters. Degradation of 
coastal water quality in the form of low dissolved oxy-
gen levels (Hypoxia and anoxia) can harm biodiversity, 
ecosystem function and human well-being. Extreme hy-
poxic conditions along the coast, leading to dead zones, 
are known primarily in temperate and sub-tropical re-
gions. Dead zones have now been reported from more 
than 400 ecosystems, affecting a total area of more than 
245,000 km2 (Diaz and Rosenberg 2008) with conse-
quent impacts on marine ecosystems (Ekau et al. 2010; 
Altieri et al. 2017). However, less is known about the 
potential threat of Hypoxia in the tropics, even though 
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1950, their extent in coastal waters has increased (An-
derson et al. 2002; Heisler et al. 2008) and the risks to 
coastal seas increased dramatically as was witnessed in 
the Gulf seas with mass mortality of coral reefs and 
fisheries associated with the proliferation of HABs and 
reduction of light climate (Richlen et al. 2010).

4.2.7   Tropical Ecosystem Effects

Crown of Thorns Starfish (CoTS)
CoTS are one of the major causes of coral mortality 
in the Great Barrier Reef (GBR) and generally on In-
do-Pacific reefs (. Figure 4.6) (De’ath et al. 2012; 
Pratchett et al. 2017). River nutrients can influence 
CoTS outbreak dynamics (Schaffelke et al. 2017) as wet 
season nutrient inputs from the central GBR rivers, 
typically discharge when phytoplankton-feeding CoTS 
larvae are present in the water column (November to 
March) (Devlin et al. 2012, 2013). The increase in nu-
trients provides food for the phytoplankton blooms 
which allows a greater number of CoTS larvae to sur-
vive to a stage where they are able to settle out on a 
coral reef (Brodie et al. 2005; Fabricius et al. 2010; Bro-
die et al. 2017).

Waves of outbreaks are initiated when these phy-
toplankton food resource conditions are reinforced 
by favourable hydrodynamic conditions (Wooldridge 
and Brodie 2015) and sufficient coral cover to sustain 

(. Figure 4.4b). Localised issues of water quality, par-
ticularly sedimentation, can have negative impacts on 
seagrass cover (Petus et al. 2014; Brodie et al. 2020).

Green algal blooms (green tides), are formed by 
rapid growth and accumulation of unattached green 
macroalgae and are associated with nutrient-enhanced 
marine environments (. Figure 4.5). Over the last 
50 years, green tides have been increasing in sever-
ity, frequency and geographic range, resulting in these 
events becoming a growing concern worldwide (Ye 
et al. 2011). High concentrations of beached algal bio-
mass started to appear along the shores of industrial-
ised countries through the 1970s. These became known 
as green tides and, over the next few decades, became 
a common sight along many beaches with increases in 
both frequency and magnitude of the green tides dur-
ing the spring–summer growing season. Green algae 
blooming events harm shore-based activities and tour-
ism as the sheer physical mass can cover the shoreline 
and the dense, drifting seaweeds prevent accessibility to 
the sea (. Figure 4.5). Over the growing season, if  not 
manually removed, the algae can turn into a stinking 
morass, producing toxic hydrogen sulfide (H2S) from its 
anoxic interior, and have major detrimental effects on 
the affected coastal ecosystems (Smetacek and Zingone 
2013).

HABs and Red Tides
Harmful Algal Blooms (HABs), with the term often 
restricted to blooms of toxic algae, are increasing in 
coastal waters worldwide (Glibert and Bouwman 2012; 
Glibert 2017; Glibert and Burford 2017). These blooms 
can be associated with anthropogenic nutrient enrich-
ment, through elevated inorganic and/or organic nutri-
ent concentrations and modified nutrient ratios. Since 

. Figure 4.5 Green algae blooms deposited on the beach at Byron 
Bay, NSW, Australia, inhibiting recreational activities. Photo: A. Re-
ichelt-Brushett

. Figure 4.6 Image of Crown of Thorns (CoTS) in process of con-
suming coral. Photo: A. Reichelt-Brushett
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(Le Grand and Fabricius 2011). Eutrophication of reef 
waters by land-based sources of nutrient pollution can 
magnify the effects of ocean acidification through nu-
trient-driven bioerosion (Prouty et al. 2017). The com-
bined impacts of increased bioerosion by the boring 
organisms and the reduced calcification due to ocean 
acidification can additively reduce reef net calcification 
(DeCarlo et al. 2015; Glynn et al. 2017).

Coral Diseases
Coral diseases are a considerable contributor to coral 
cover declines on coral reefs (Osborne et al. 2011) and 
are predicted to worsen with global pressures of in-
creasing temperature and ocean acidification (Maynard 
et al. 2015; O’Brien et al. 2016). Coral disease manifests 
as a general response to multiple stressors (7 Chapter 
14) of corals and has been positively correlated to sed-
imentation, elevated concentrations of nutrients and 
organic matter and increased plastic pollution (Har-
vell et al. 2007; Haapkylä et al. 2011; D’Angelo and 
Wiedenmann 2014; Pollock et al. 2014; Thompson 
et al. 2014; Vega Thurber et al. 2014; Lamb et al. 2016, 
2018; Zaneveld et al. 2016).

Light Reduction
Algal blooms can be associated with flood plumes (. Fi-
gure 4.7) due to inputs of river-derived nutrients (Dev-
lin et al. 2001; Devlin and Schaffelke 2009; Brodie et al. 
2013) and localised inputs of nutrients. Phytoplank-
ton blooms, as well as non-algal, suspended particu-
late matter (e.g. detritus, clay particles) in flood plumes, 
reduce light availability for benthic plant communities 
including seagrass and coral (Bauman et al. 2010; Pe-
tus et al. 2014; Collier et al. 2016). In shallow waters, 
the reduction of in situ light penetration due to resus-
pended sediment is usually a more dominant effect, 
but in deeper waters (>15 m) where resuspension does 
not normally occur (except in cyclonic conditions), the 
light reduction due to phytoplankton (and zooplank-
ton) may be an important factor for communities such 
as deep water seagrasses (Collier et al. 2016) and coral 
reefs (D’Angelo and Wiedenmann 2014).

4.3   Case Studies

4.3.1   Baltic Sea

Over the twentieth-century nutrient inputs to the Baltic 
Sea increased by factors of three and five for nitrogen 
and phosphorus, respectively, with consequent wide-
spread eutrophication across the Baltic Sea (Gustafs-
son et al. 2012). Declining dissolved oxygen concentra-
tions were noted in the Baltic Sea as early as the 1930s, 
with widespread reporting of this by the 1950s. This 

the outbreaks (Fabricius et al. 2010). Studies highlight 
that the number of outbreaks have increased through 
the period where the GBR inshore waters have expe-
rienced increases in nutrient loads from agriculture. 
This has resulted in the frequency of CoTS waves on 
the GBR moving from low frequencies of about every 
50–80 years to about every 15 years (Brodie 1992; Fab-
ricius et al. 2010; Brodie et al. 2017; Pratchett et al. 
2017).

Macroalgae Versus Coral Diversity
Higher nutrient availability supports the proliferation 
of macroalgae and can negatively affect coral physio-
logy and ecosystem functioning (D’Angelo and Wieden-
mann 2014; Ulloa et al. 2017). High concentrations 
of Chlorophyll-a (Chl-a) (typically at concentrations 
greater than 0.45 µg/L) can indicate increased nutri-
ent availability supporting the growth of macroalgae 
(De’ath and Fabricius 2010). High macroalgal biomass 
can have detrimental effects on corals which can in-
clude space competition (McCook et al. 2001), altering 
the microbial environment of corals which affects their 
metabolism (Hauri et al. 2010; Thurber et al. 2017) and 
larval survival (Morrow et al. 2017), reducing coral set-
tlement (Birrell et al. 2008) and increasing the suscep-
tibility of corals to disease (Vega Thurber et al. 2014).

Increased Coral Bleaching Susceptibility
DIN availability plays an important part in the coral–
algae symbiosis, with elevated DIN concentrations dis-
rupting the ability of the coral host to maintain an op-
timal population of algal symbionts (Wooldridge et al. 
2015, 2017). Elevated DIN concentrations and changes 
in N:P ratios can increase the susceptibility of corals 
to bleaching from increased temperatures (Wooldridge 
2009, 2017; Fabricius et al. 2013; Wiedenmann et al. 
2013; D’Angelo and Wiedenmann 2014; Vega Thurber 
et al. 2014; Humanes et al. 2016; Rosset et al. 2017; 
Wooldridge et al. 2017).

Bioerosion
Coral, both living and dead, can be impacted by the 
process known as bioerosion. This can occur through a 
range of mechanisms involving many different organ-
isms. Bioerosion can be caused by the very small, min-
ute, primarily intra-skeletal organisms, the microbor-
ers (e.g. algae, fungi, bacteria) to larger and often ex-
ternally visible macroboring invertebrates (e.g. sponges, 
polychaete worms, sipunculans, molluscs, crustaceans, 
echinoids) and fish (e.g. scarids, acanthurids) (Hutch-
ings et al. 2005; Chazottes et al. 2017; Glynn et al. 
2017). Nutrient enrichment can increase the growth of 
both types of borers. Increased DIN availability sup-
ports the growth of algal borers and the filter-feeding 
sponges, worms and bivalves are supported through the 
increased phytoplankton (and zooplankton) biomass 

http://dx.doi.org/10.1007/978-3-031-10127-4_14
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As the causes and consequences of eutrophication 
become better understood in the Baltic Sea, many poli-
cies have been implemented to reduce external nutrient 
inputs (Andersen et al. 2017). These policies include the 
Helsinki Commission (HELCOM) Baltic Sea Action 
Plan (BSAP), an ambitious program that established 
nutrient reduction targets to restore the ecological sta-
tus of the Baltic marine environment by 2021. Addi-
tionally, a number of European Union (EU) policies le-
gally require member states—eight of the nine coastal 
counties—to reduce nutrient inputs to surface waters in 
order to meet environmental goals (Borja 2005; Devlin 
et al. 2007; Borja et al. 2010a; Bermejo et al. 2012).

These policies and associated measures have seen 
nitrogen and phosphorus inputs to the Baltic Sea de-
crease by 9% and 14%, respectively, and human ex-
posure to potential toxins has been reduced (Svend-
sen et al. 2018). The combined effects of nutrient and 
fisheries management have also resulted in top preda-
tor population recovery (including cod). Nutrient loads 
are decreasing, however, legacy pollution and different 
rates of load reductions have limited full ecosystem re-
covery with many serious problems still to be addressed 
for the Baltic Sea. Potentially toxic contaminants are 
still at levels of concern in wildlife and fish catches, and 
new contaminants continue to come into use, unde-
sirable symptoms of eutrophication remain evident in 

sustained increase in nutrients originates from farm fer-
tiliser, industry, atmospheric deposition and waste wa-
ter associated with population increases in the large 
catchment area of the Baltic countries.

Large amounts of nutrients in the water increase 
primary production and hence intensify phytoplankton 
growth. Dead algae sink to the bottom, where their de-
composition consumes oxygen, leading to hypoxia. In 
hypoxic conditions, sediments can no longer retain pre-
viously stored nutrients which then start to leak from 
the sediments. This leakage increases the amount of 
available nutrients which, in turn, increases primary 
production. This so-called vicious circle is an important 
indirect effect of eutrophication (Andersen et al. 2017; 
Murray et al. 2019). Benthic animals cannot survive in 
these hypoxic (and eventually anoxic) conditions, and 
large areas on the sea floor become completely depleted 
of life.

In much of the Baltic Sea, the direct consequences 
of elevated nutrient concentrations are increased pri-
mary production and phytoplankton biomass, and of-
ten manifest as algal blooms (Murray et al. 2019). Sub-
sequently, the increased deposition of dead algae has 
reduced oxygen concentrations. These dissolved oxygen 
sags have affected the benthic invertebrates, with high 
rates of mortality, and impacted the spawning success 
rate of cod, a commercially important fish species.

. Figure 4.7 Riverine plume discharging into the Great Barrier Reef, Australia. This image was captured a few days after the torrential rain 
and shows the muddy waters flowing from the Burdekin River into the Coral Sea. Image: European Space Agency CC BY-SA 2.0 contains 
modified Copernicus Sentinel data (2019), processed by ESA, CC BY-SA 3.0 IGO
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comprehensive long-term data exist to mechanistically 
link human impacts and ecological restoration at broad 
scales.

The sustained management actions that have 
evolved out of that cooperation have been successful 
in reducing N concentrations in the Chesapeake Bay 
by 23% with a recent study showing seagrass coverage 
in the Chesapeake Bay increased by 17,000 ha between 
1984 and 2015, a 23% improvement (Lefcheck et al. 
2018). This cooperative management demonstrates 
that nutrient reductions, improvements in water qual-
ity (Zhang et al. 2018) and biodiversity conservation 
are effective strategies to aid the successful recovery 
of degraded systems at regional scales, a finding which 
has been highly relevant to environmental management 
programs worldwide (Lefcheck et al. 2018).

4.3.3   Yellow Sea and Qingdao

Massive free-floating macroalgal blooms of Ulva pro-
lifera occur in the Yellow Sea, covering thousands of 
square kilometres, with millions of tons of biomass and 
causing huge economic losses. These blooms have been 
identified as the world’s largest green tide events, occur-
ring annually from 2007 to 2017 along the coast of the 
Yellow Sea, China, seriously impacting the downstream 
marine environments and ecological services. One of 
the most prominent examples of this happened in 2008, 
when a large green tide covered Qingdao beaches, mak-
ing it a prominent feature during the Beijing Olympics. 

. Figure 4.8 Organic inputs into rivers and coastal waters can increase turbidity and algal blooms. Turbid waters identified in the Potomac 
and Wilcomico Rivers section of Chesapeake Bay. Image: NASA Earth Observatory image by Joshua Stevens and Jesse Allen, using Landsat 
data from the U.S. Geological Survey

many coastal areas; deep water oxygen deficiency is still 
recorded extensively through the Baltic Sea, and toxic 
blooms of cyanobacteria interfere frequently with tour-
ism and recreation (Elmgren et al. 2015), and climate 
change impacts the fragile recovery (Elmgren et al. 
2015; Cloern et al. 2016).

4.3.2   Chesapeake Bay, USA

Since USA1950, the population of the Chesapeake Bay 
watershed in the eastern USA has doubled to 18 mil-
lion people, leading to expansion of agriculture and ur-
banised land use and adding to the substantial nutri-
ent and sediment runoff from previously established 
urban and agricultural lands. From the 1950s through 
to the 1970s, tens of thousands of hectares of sub-
merged aquatic vegetation (SAV) were lost in the larg-
est decline documented in over 400 years with ongoing 
algal blooms (. Figure 4.8) (Harding 1994; Harding 
and Perry 1997; Boesch et al. 2001; Kemp et al. 2005). 
Concern over the loss of SAV and declines in the over-
all health and economy of the bay led to unparalleled 
cooperation among federal, state, local and scientific 
agencies, whose joint efforts identified nutrient pollu-
tion and subsequent loss of SAV as the two most criti-
cal issues facing Chesapeake Bay (Lefcheck et al. 2018). 
These agencies instituted measures to reduce nutrient 
inputs, as well as long-term monitoring programmes to 
gauge their effectiveness, thereby establishing the Ches-
apeake Bay as one of the few places on Earth where 
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Masses of Ulva floated in from the open water of the 
Yellow Sea and beached a few weeks before the com-
petition was due to start, ensuring prominent cover-
age by the international media (. Figure 4.9). Mitiga-
tion included the deployment of a 30-km-long boom to 
keep the masses of floating algae out of the bay, and 
the physical removal of more than a million tonnes of 
algae from the beaches involved 10,000 people at an es-
timated cost to the province of US$30 million. In ad-
dition, aquaculture operations along the shore suffered 
losses of US$100 million (Liu et al. 2013a).

The pelagic seaweed bloom, as well as those in sub-
sequent years, could be traced in satellite images to the 
coastline some 200 km south of Qingdao, where aq-
uaculture of the edible red alga Porphyra yezoensis 
(which is grown on rafts along the intertidal zone) has 
expanded rapidly since 2004. As the algae Ulva proli-
fera also grows profusely on the rafts, algal fragments 
dislodged and discarded in the sea during harvest-
ing of Porphyra are the most likely seed source of the 
mid-summer green tide. It is estimated that 500 tonnes 
of Ulva algae, discarded from the Porphyra rafts, grow 
into one million tonnes in 6 weeks (Liu et al. 2013b). 
The floating algae are transported more than 200 km 
northward to the Shandong coast and proliferate suffi-
ciently to generate this massive green tide.

Management of the Olympics bloom involved hand 
and mechanical clearance from the beaches but efforts 
to reduce the incidence of the blooms are also occur-
ring (Yuan et al. 2017a, b).

. Figure 4.9 Image of green tides in Qingdao beach, China, in 2010. Photo: Philip Roeland CC BY-NC-ND 2.0

4.3.4   Caribbean Wide Algal Blooms 
and West Africa

In recent years, Sargassum seaweed has been wash-
ing up in unprecedented quantities on beaches in the 
Caribbean, Florida and the Gulf of Mexico (Louime 
et al. 2017; Langin 2018; Gower and King 2019) (. Fi-
gure 4.10). NASA satellites recently observed the larg-
est seaweed bloom in the world, stretching from West 
Africa to the Gulf of Mexico. A major cause of the al-
gae bloom was likely to be nutrient discharge from de-
forestation and fertiliser use along the Amazon River 
(Wang et al. 2019). Fertiliser consumption in Brazil 
between 2011 and 2018 increased by about 67% com-
pared to the rates in 2002, while the total forest loss 
along the Brazilian Amazon increased by 25%. In June 
2018, Wang et al. (2019) documented that the 8850-km 
algal bloom contained >20 million metric tons of Sar-
gassum biomass. The bloom of 2011 may be a result of 
the Amazon River discharge in previous years, but re-
cent increases and interannual variability after 2011 ap-
pear to be driven by upwelling off  west Africa during 
boreal winter, and by the Amazon River discharge dur-
ing spring and summer, indicating a possible regime 
shift and raising the possibility that recurrent blooms 
in the tropical Atlantic and the Caribbean Sea may be-
come the new norm.

During 2011, there was an ocean-scale build-up of 
Sargassum in the Caribbean that, at its peak, extended 
across the Atlantic Ocean and resulted in massive 
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the many harmful effects became evident, the affected 
countries took measures to understand the drivers and 
the extent of the problem (Newton et al. 2014; Perrot 
et al. 2014; Gaspar et al. 2017). In the popular tourist 
beaches of Brittany (. Figure 4.12), the magnitude of 
green tides has been increasing since the 1970s (Char-
lier et al. 2008). Events have been managed through 
the collection of seaweed and use as fertiliser by lo-
cal farmers, but this was untenable by the 1990s as the 
magnitude of the seaweed became unmanageable. 
There have been many incidents connected to the large 
volume of seaweed on the Brittany beaches includ-
ing the death of a horse in 2009 from H2S gas coming 
from rotting Ulva, and, in 2011, the death of around 
30 wild boars. Both incidents were widely reported in 
the press admist rising public concerns about the tox-
icity of the algae. Tourism was severely impacted, with 
a loss of visits felt by the local economy, in addition to 
the costs of removing and disposing of 100,000 tonnes 
of beached algae (estimated up to US$150 per tonne).

The consensus among the scientific community 
is that eutrophication from the effluents of  intensive 
stock rearing was one of  the primary causes of  the 
increase in the number and magnitude of  green tides 
since the 1990s. Brittany is a wet region overloaded 
with nutrients released by the high density of  ani-
mals—equivalent to those from 50 million people—
and so eutrophication is inevitable because the ma-
nure is not being shipped back to the animal feed pro-
ducers outside the province. The meat-producing and 
tourist industries are both mainstays of  the provin-
cial economy, and, following the animal deaths, con-

golden tides along the West African coast, from Sierra 
Leone to Ghana, and, on the other side of the Atlan-
tic Ocean, from Trinidad to the Dominican Republic 
(. Figure 4.12). It is believed Sargassum was unknown 
in north-west Africa before 2011, so the event came as 
a shock to the many afflicted fishing villages. A similar 
event occurred again in 2019 (Wang et al. 2019). Satel-
lite images showed that the algal rafts had developed 
along the northern coast of Brazil, north of the mouth 
of the Amazon, from where they moved east and west, 
eventually stretching across the Atlantic Ocean (. Fi-
gure 4.11). A notable event was the whole length of the 
western coastline in Ghana covered in Sargassum and 
extended offshore, clogging fishing nets and impact-
ing small boat traffic and fishing. This resulted in food 
shortages for people living in villages dependent on ar-
tisanal fisheries for their livelihood (Smetacek and Zin-
gone 2013). In the Caribbean, tourism has been nega-
tively affected because of the closure of beaches and 
bays. These large-scale events seem to be unprece-
dented in this area (Louime et al. 2017; Langin 2018; 
Resiere et al. 2018).

4.3.5   Brittany

The increase in Ulva biomass on European and Amer-
ican beaches that began in the 1970s was linked to 
coastal eutrophication. These visible, rotting coastal 
blooms impacted tourism-based economies, smoth-
ered aquaculture operations and disrupted traditional 
artisanal fisheries (Smetacek and Zingone 2013). As 

. Figure 4.10 Proliferation of Sargassum golden tide in a bay in the southern Caribbean. Photo: Mark Yokoyama CC BY-NC-ND 2.0
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and as an additive to animal and human food. How-
ever, the value barely meets the costs of  current meth-
ods of  algal collection and processing (Smetacek and 
Zingone 2013).

frontation between the two industries increased. In ef-
forts to make the best out of  a situation that is unlikely 
to change soon, Ulva biomass has been used as a raw 
material for biogas production, as an organic fertiliser 

. Figure 4.11 The Great Atlantic Sargassum Belt in July 2018. Scientists used NASA’s Moderate Resolution Imaging Spectroradiometer 
(MODIS) on Terra and Aqua satellites to discover the Great Atlantic Sargassum Belt (GASB), which started in 2011. It has occurred every 
year, with the exception of 2013 and typically stretches from the west coast of Africa to the Gulf of Mexico. Image: NASA/Earth Observa-
tory. Data provided by Mengqiu Wang and Chuanmin Hu, USF College of Marine Science

. Figure 4.12 Image of green tides taken in South Coast, United Kingdom. Photo: Mike Best, Environment Agency
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Key elements supporting the nutrient management 
strategy and concomitant ecosystem recovery in Tampa 
Bay include:
5 active community involvement, including agreement 

about quantifiable restoration goals;
5 regulatory and voluntary reduction in nutrient load-

ings from point, atmospheric and nonpoint sources;
5 long-term water quality and Seagrass extent moni-

toring; and
5 a commitment from public and private sectors to 

work together to attain restoration goals.

4.3.7   Kāne’ohe Bay, Oahu, Hawaii, USA

Sewage discharges into Kāne’ohe Bay, Hawaii, in-
creased from the end Second World War due to in-
creasing population and urbanisation, and reached a 
peak of 20 ML/d in 1977. This chronic discharge into 
the lagoon introduced high levels of inorganic nitro-
gen and inorganic phosphorus, with the southern la-
goon waters becoming increasingly rich in phytoplank-
ton (. Figure 4.14). Reefs closest to the outfall became 
overgrown by filter-feeding organisms, such as sponges, 
tube-worms and barnacles. Reefs in the centre of the 
bay further from the outfalls were overgrown by the in-
digenous green algae Dictyosphaeria cavernosa. After 
diversion of the outfalls into the deeper ocean in 1978, 
coastal nutrient levels were reduced with corresponding 
declines in the phytoplankton and zooplankton popula-
tions and D. cavernosa abundance. At the same time, in-
creases in the abundance and distribution of coral spe-
cies were reported, as the reefs slowly recovered (Bahr 
et al. 2015). A drastic decline in previously dominant 
D. cavernosa occurred in 2006, attributed to a gradual 

. Figure 4.13 Trends in mean annual chlorophyll-a concentrations and Secchi disk depth Seagrass extent and watershed population esti-
mates for Tampa Bay. Produced by TBEP; data sources: Environmental Protection Commission of Hillsborough County (in public domain); 
Southwest Florida Water Management District (in public domain) and US Census Bureau (in public domain). Image: Greening et al. 2018, 
figure used with permission from Ed Sherwood, Executive Director. Tampa Bay Estuary Program

4.3.6   Tampa Bay, Florida, USA

In Tampa Bay, Florida, USA, large increases in pop-
ulation in the catchment area led to increased nutrient 
loads so that by the late 1970s the effects of eutrophic 
decline became obvious, including reduced water clar-
ity, accumulations of macroalgae, noxious phytoplank-
ton blooms, intermittent hypoxia and loss of about 50% 
of the seagrass meadows in Tampa Bay (Greening et al. 
2014). The bay was already phosphorus-enriched due to 
catchment drainage from phosphorus ore mining oper-
ations. The ecosystem is strongly nitrogen-limited and 
thus management was focused on nitrogen removal 
from point source discharges of sewage and industrial 
wastes that, in the mid-1970s, comprising 60% of the 
total nitrogen load. Political responses at the state and 
local levels led the way, with the enactment of a 1978 
Florida statute that required advanced treatment of wa-
ter from all wastewater treatment plants discharging to 
Tampa Bay. Additional nutrient limits were required 
for stormwater discharges from 1985. This reduction 
in wastewater nitrogen loading of approximately 90% 
in the late 1970s lowered external total nitrogen load-
ing by more than 50% within 3 years. Continuing nutri-
ent management actions from public and private sectors 
were associated with a steadily declining total nitro-
gen load rate, despite an increase of more than 1 mil-
lion people living within the Tampa Bay metropolitan 
area. Following recovery from an extreme weather event 
in 1997–1998, water clarity has increased significantly, 
and seagrass is expanding at a rate significantly differ-
ent than before the event (Boesch 2019; Greening et al. 
2018). Seagrass extent has increased by more than 65% 
since the 1980s, and in 2014 exceeded the recovery goal 
adopted in 1996 (. Figure 4.13) (Greening et al. 2018).
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return to a coral-dominated state following relocation 
of the sewage outfall in 1978 that eliminated the sew-
age nutrient inputs that drove the initial phase shift to 
macroalgae in the 1970s. However, urban stormwater 
runoff continues to cause short-term eutrophication of 
the bay (Drupp et al. 2011) via spikes in nitrogen inputs 
and subsequent phytoplankton blooms (Stimson 2015).

4.3.8   Pago Pago Harbour, American Samoa

Diverse coral communities have been monitored at Aua 
village in Pago Pago Harbour, American Samoa (. Fi-
gure 4.15). Between the 1950s and 1980s, this area was 
seriously degraded by chronic pollution from two tuna 
canneries, fuel spills in the inner harbour and coastal 
development. By the 1970s, coral communities had de-
clined substantially (Dahl and Lamberts 1977). Im-
proved management of coastal development, fuel spills 
and the installation of a pipe to export wastewater from 
the tuna canneries to the harbour mouth have seen a 
significant recovery of coral communities on the reef 
crest and outer reef flat where there is consolidated reef 
substratum (up to 30 m behind the reef crest) (Birkeland 
et al. 2013). In contrast, it was found that recovery has 
been substantially slower or non-existent behind the reef 
crest, where the substratum is primarily loose rubble.

4.4   Time Lags and Non-linear Responses

In nutrient-enriched conditions, there are well-docu-
mented cases of eutrophic marine systems, dominated 
by algae, where reductions in nutrient loading have not 
returned the systems to their original ecological status 

(Duarte et al. 2008; Lotze et al. 2011b; McCracken and 
Phillips 2017) or where only partial recovery was ob-
served (Borja et al. 2010a; Elliott and Whitfield 2011). 
This can be partly attributed to the range of other fac-
tors in the system that have dramatically changed dur-
ing the period of increased nutrient loading, such as 
human population increases, increased carbon dioxide 
in the atmosphere, changed catchment hydrology and 
discharge volumes, global temperature increases and 
fish stock losses where the functioning of the system is 
highly modified from the original pristine state.

In coral reef systems, the issues of reversibility, time 
lags and phase change have been the subject of much 
recent research (Bruno et al. 2009; Dudgeon et al. 2010; 
Hughes et al. 2011; Wolff  et al. 2018; MacNeil et al. 
2019). However, further research is required on ecosys-
tem responses to changing water quality, particularly 
in combination with other stressors such as climate 
change, to quantify the likely time lags of the response 
of the reef ecosystems and the nature and trajectory of 
the response (Devlin et al. 2021).

4.5   Management, Future Prospects 
and Conclusions

Four decades following the onset of major efforts to re-
verse widespread eutrophication of coastal ecosystems 
via improved sewage treatment, fertiliser management 
and erosion controls (i.e. from about 1980), evidence 
of improvement of ecosystem status is growing. How-
ever, cumulative pressures have developed in parallel to 
eutrophication, including those associated with climate 
change, such as warming, deoxygenation, ocean acidi-
fication and increased runoff. These additional pres-

. Figure 4.14 Kāne’ohe Bay with Moku O Loe island at right centre, Hawaii, USA. Image: NASA Earth Expeditions, National Aeronautics 
and Space Administration. NASA Official: Brian Dunbar
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coastal marine ecosystems from eutrophication showed 
that for coastal marine areas only 24% achieved base-
line conditions after the cessation or partial reduction 
of nutrients with most taking decades to recover. In a 
similar study, Gross and Hagy (2017) identified 16 case 
studies where nutrient reductions had been achieved 
and found that improvements in 8 studies had fallen 
short of stated restoration goals. Five more were suc-
cessful initially, but their conditions subsequently de-
clined. Three of the case studies achieved their goals 
fully and are currently managing to maintain the re-
stored condition. It is of noteworthy interest that of the 
marine examples identified in McCrackin et al. (2017) 
and Gross and Hagy (2017), only one is in the trop-
ics (Kaneohe Bay, Hawaii) and one in the sub-tropics 
(Tampa Bay, Florida).

A study by Desmit et al. (2018) shows that a signifi-
cant decrease in nitrogen fluxes from land to sea is pos-
sible by adapting human activities in the watersheds, 
which prevents at least part of the eutrophication 
symptoms in the adjacent coastal zones. The United 
Nations Sustainable Development Goal (SDG) frame-
work recognises the importance of monitoring oceans 
with a dedicated goal on oceans (SDG 14). Sustainable 
Development Goal SDG 14 Life below water sets the 
aim to conserve and sustainably use the oceans, seas 
and marine resources for sustainable development. This 
includes targets dedicated to coastal eutrophication 
and marine debris, marine area management and con-

. Figure 4.15 Pago Pago Harbor, American Samoa. Image: Tavita Togia, National Park Service of American Samoa, Wikimedia Commons

sures risk countering efforts to mitigate eutrophication 
and arrest coastal ecosystems in a state of eutrophi-
cation despite the efforts and significant resources al-
ready invested to revert coastal eutrophication (Duarte 
and Krause-Jensen 2018). With over 40% of the human 
population residing in coastal areas, ecosystem degra-
dation in these areas can have disproportionate effects 
on society (Wright et al. 2006).

Given the seriousness of eutrophication, major ef-
forts have been made to reduce nutrient inputs and 
hence restore ecosystems to their original state or at 
least to a better state (Conley et al. 2009) (7 Chapter 
15). However, there are concerns about the possibility 
of a full restoration or the time required for impacted 
systems improving to a more desirable state (Duarte 
2009). Although reversing the effects of eutrophication 
and achieving some recovery of marine ecosystems re-
quires actions beyond reducing nutrient loading (Du-
arte 2009), implementing coordinated and long-term 
management strategies has led to at least partial re-
covery in some systems, albeit over long time periods 
(Borja et al. 2008, 2010a, b; Jones and Schmitz 2009). 
Recent reviews, however, have shown that, in many 
cases, coastal ecosystems are failing to meet their recov-
ery objectives (Jeppesen et al. 2005; Duarte 2009; Du-
arte et al. 2008; Kemp et al. 2009; Borja et al. 2010a; 
Verdonschot et al. 2013, Lefcheck et al. 2018). The re-
cent review by McCrackin et al. (2017) of 89 case stud-
ies of nutrient reductions and recovery of lakes and 

http://dx.doi.org/10.1007/978-3-031-10127-4_15
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gae, red tides, water discolouration and foaming, loss 
of submerged vegetation due to shading and changes 
in benthic community structure due to oxygen defi-
ciency or the presence of toxic phytoplankton species 
(Devlin et al. 2011). Our understanding of eutrophica-
tion has certainly improved over the last few decades, 
as long-term data sets provide a unique baseline to un-
derstand the changes and variability associated with 
long-term nutrient enrichment. Long-term studies have 
shown the impacts of eutrophication to be variable de-
pending on the susceptibility of the coastal and marine 
system and require consideration of the many factors 
that influence that susceptibility and vulnerability (Clo-
ern 2001; Cloern and Jassby 2009). Long-term data has 
also shown us that systems can recover, given enough 
time and ongoing management actions to reduce nutri-
ents below acceptable thresholds.

Management of eutrophication has also improved 
over recent years, with programmes that focus across 
the catchment to the coast and look upstream to re-
solve the downstream eutrophication issues. Nutrient 
inputs to riverine and coastal systems come from a va-
riety of diffuse sources (e.g. agricultural runoff and at-
mospheric deposition) and point sources (e.g. sewage 
treatment and industrial discharge). However, measures 
to reduce nitrogen and phosphorus inputs via targeted 
policies tend to focus on individual actions rather than 
addressing the wide range of activities that export nu-
trients into coastal waters. Future management should 
focus on parallel reductions in both nitrogen and phos-
phorus inputs to reduce coastal eutrophication and the 
impacts associated with an imbalanced nutrient system 
(Greenwood et al. 2019).

These long-term impacts on our coastal systems 
continue to degrade our coastal systems and impact 
coastal functioning. This is becoming increasingly 
more important as we recognise the importance of our 
coastal habitats in supporting biodiversity, carbon cy-
cling, coastal protection and maintenance of a func-
tioning food web. Management of eutrophication im-
pacts must consider a changing baseline as climate 
change shifts coastal resilience with the cumulative and 
additive impacts of pollution and climate (Borja et al. 
2010b). Management decisions must also reflect the re-
covery processes can be lengthy and require multiple 
facets of environmental management. Our coastal sys-
tems are integral to our environment, economy and 
community and urgently need long-term protection. 
These systems are facing an ever-increasing set of pres-
sures, with climate change and extreme weather reduc-
ing the resilience of coastal waters. Eutrophication is an 
issue that can be solved, despite the complexity of the 
drivers and impacts, and the uncertainty and timing re-
lated to mitigation and recovery processes. There have, 
and continue to be, positive stories of systems recov-
ering when nutrient inputs are reduced or eliminated. 

servation. SDG 14.1 states by 2025, countries should 
prevent and significantly reduce marine pollution of all 
kinds, in particular from land-based activities, includ-
ing marine debris and nutrient pollution. To assist to-
wards SDG 14.1, UNEP is implementing a global initi-
ative to address excess nitrogen in the environment and 
its negative effects via a project titled ‘Towards the Es-
tablishment of an International Nitrogen Management 
System’. It aims to provide recommendations on strat-
egies to reduce emissions of reactive nitrogen, includ-
ing measures to make production systems, especially 
farms, more efficient in their use of fertiliser. However, 
recent analyses have concluded that new initiatives, not 
just relying on the reduction of nutrient loadings, will 
be required to solve coastal and marine eutrophication 
issues. Duarte and Krause-Jensen (2018) suggest (from 
the abstract) that

» “the time has arrived for a broader, more comprehensive 
approach to intervening to control eutrophication. 
Options for interventions include multiple levers 
controlling major pathways of nutrient budgets of coastal 
ecosystems, i.e., nutrient inputs, which is the intervention 
mostcommonly deployed, nutrient export, sequestration 
in sediments, and emissions of nitrogen to the atmosphere 
as N2 gas (denitrification). The levers involve local-scale 
hydrological engineering to increase flushing and nutrient 
export from (semi)enclosed coastal systems ecological 
engineering such as sustainable aquaculture of seaweeds 
and Mussels to enhance nutrient export and restoration 
of benthic habitats to increase sequestration in sediments 
as well as denitrification, and geo-engineering approaches 
including, with much precaution, aluminum injections in 
sediments.”

4.6   Summary

Eutrophication has been a key issue for coastal and 
marine waters for many years. The consequences of 
eutrophication are wide-ranging and can occur at 
both small and large scales, with multiple impacts on 
many parts of the marine environment. Negative im-
pacts on the coastal and marine environment can result 
through the process of eutrophication as the marine en-
vironment becomes enriched with nutrients, increas-
ing the amount of plant and algae growth to estuar-
ies and coastal waters. Known consequences of nutri-
ent enrichment in coastal and marine waters include 
increased primary production, increased biomass of 
primary producers such as phytoplankton and deple-
tion of dissolved oxygen due to decomposition of ac-
cumulated biomass, resulting in local hypoxic or anoxic 
conditions. Other consequences can include shifts in 
species composition, blooms of nuisance and toxic al-
gae and macroalgae, increased growth of epiphytic al-
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Bermejo R, Vergara JJ, Hernández I (2012) Application and reassess-
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33(6):1249–1260
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(2010b) Marine management—Towards an integrated imple-
mentation of the European Marine Strategy Framework and the 
water framework directives. Mar Pollut Bull 60(12):2175–2186

Bouwman A, Beusen AH, Billen G (2009) Human alteration of the 
global nitrogen and phosphorus soil balances for the period 
1970–2050. Glob Biogeochem Cycles 23(4)

Bouwman A, Van Drecht G, Knoop J, Beusen A, Meinardi C (2005) 
Exploring changes in river nitrogen export to the worlds oceans. 
Glob Biogeochem Cycles 19(1)

Boyd CE (2020) Water quality—An introduciton, 3rd edn. Spinger, 
Cham, p 440

Breitburg D, Levin LA, Oschlies A, Grégoire M, Chavez FP, Con-
ley DJ, Garçon V, Gilbert D, Gutiérrez D, Isensee K (2018) De-
clining oxygen in the global ocean and coastal waters. Science 
359(6371):eaam7240

Bricker SB, Longstaff  B, Dennison W, Jones A, Boicourt K, Wicks 
C, Woerner J (2008) Effects of nutrient enrichment in the na-
tions estuaries: a decade of change. Harmful Algae 8(1):21–32
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Brodie J (1992) Enhancement of larval and juvenile survival and re-
cruitment in Acanthaster planci: effects of terrestrial runoff—A 
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Brodie J, Devlin M, Haynes D, Waterhouse J (2011) Assessment of 
the eutrophication status of the Great Barrier Reef lagoon (Aus-
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Solutions are possible, though almost never simple, 
and rely on a combination of long-term strategies, sew-
age and groundwater infrastructure, best management 
practices around agriculture and aquaculture, detailed 
monitoring and assessment and close partnerships be-
tween all stakeholders, public users and government.

4.7   Study Questions and Activities

1. Research how sewage treatment plants work and 
create a diagram that shows the various steps in 
treatment processes.

2. Four common N-containing fertilisers are ammo-
nia [NH3], ammonium nitrate [NH4NO3], ammo-
nium sulfate [(NH4)2SO4] and urea [(NH2)2CO]. 
How much of each compound must be used to pro-
vide 1 kg of N?

3. Describe the process of eutrophication in your own 
words.

4. Using the various case studies described in 7 Sec-
tion 4.3 create a single table that summarises the 
causes, effects of nutrient enrichment and what 
solutions have been used.

5. Explore the recent media in your country and find 
an article about nutrient pollution. Critique the arti-
cle and suggest some management options that will 
help mitigate the problem (see also 7 Chapter 16).
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