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Visual Programming of Robot Tasks with Product
and Process Variety

Dominik Riedelbauch and Sascha Sucker

Abstract

In flexible manufacturing settings, automation is shaped by ever changing conditions
(e.g. varying part feeding locations, highly customizable products). Quick adaptation
of robot systems is mostly achieved by visual end-user robot (re-)programming. In this
paper, we discuss the explicit integration of anticipated product and process variety into
visually programmed tasks. We contribute a task model which captures a user-defined
range of task variants. To this end, parts are specified in terms of approximate locations
and generalized parts families. Workspace exploration and combinatorial assignment
planning enable online adaptation to unknown environments. Our experiments show that
this adaptation capability can increase the economical efficiency of cobot use.
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1 Introduction and Related Work

Contrasting to traditional mass production, manufacturing demands have shifted towards
shorter innovation cycles and small-batch production. This has raised the demand for flexible
manufacturing systems that can quickly be adapted to customized products by domain-
experts in small and medium enterprises [6]. When additionally considering recent advances
in collaborative robotics towards flexible partial automation, adaptation of robot programs
to various sources of variety are needed [1, 4]: Product variety is needed to manufacture
different product instances from a product family by assembling parts with varying features
(e.g. color) to suite individual customer demands [9]. In this field, we particularly focus on
process-specific variations [7] that additionally yield process variety. Relevant robot task
parameters that may change with process-specific variations are e.g. pickup or placement
locations, or even the ordering of process steps [1].

Visual end-user robot programming is an established approach to cope with such
variety [6]. Corresponding approaches [14, 17-19] are mostly based on skill frameworks.
Those let users combine skills with human-readable semantics into tasks (e.g. [15]) even for
human-robot collaboration [16, 18]. Modularity and intuitive usability support convenient
(re-)programming and, in consequence, quick adaptation. In contrast, our contribution seeks
to reduce recurrent programming efforts by applying the visual programming paradigm to a
task model that intrinsically encodes a subset of feasible variations (e.g. different part types
or locations) and adapts online (Fig. 1). We hypothesize that this would further contribute
to the economic efficiency of intelligent robot systems.

Corresponding task models with variety have also been addressed in literature. Among
them, especially precedence graphs and hierarchical AND/OR Trees are frequently used
in intelligent robot systems (e.g. [4, 13, 16]). They seek to encode all feasible assembly
sequences [10], hence focussing on process variety. Similarly, hierarchical models empha-
sizing product variety [7, 9, 11], approaches at the intersection of assembly and product
family oriented goals [5], and ontologies to exchange production data under variety [8]
have been proposed. They commonly decompose products into functional entities [11] until
inseparable, constituent components referred to as primary generic products [9] or parts
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Fig.1 Visual programming enables frequent end-user robot task adaptation to customer demands in
flexible manufacturing (a). We seek to reduce programming efforts by online adaptation (b). To this
end, we propose to explicitly encode different situations with product variety (A1, A2) or process
variety (B1, B2) in a single task model
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Jfamilies [7] are reached. A group of feasible variants for assigning a part in concrete product
instances is associated with each component. Analogously, groups of feasible locations can
be expressed with spatial relations [14], or more specifically with areas in the workspace
[18]. Taking inspiration from this group notion for feasible part types and locations, we pro-
pose end-user programming of assembly task models with skills accepting parts families and
partly known locations as input. This way, parameters can be partially left underspecified
at modelling time to create a single task model for several instances of the task. Consider
e.g. a pick-and-place task that involves fetching five bolts from the imprecise location
conveyor and putting them into a box—with our approach, a single task model is suffi-
cient to robustly conduct this kitting task for any positions and orientations of bolts on the
conveyor, and for any size of bolts.

Once a skill is executed, one of the physically present entities with precisely known
parameters as sensed by the robot must be assigned to the symbolic part description in
the task model. Establishing a link between symbolic parts and the world is referred to as
the anchoring problem [3]. This in particular includes deciding between multiple sensed
entities that equally match an ambiguous part description (e.g. bolts of different sizes all
being of type bolt). Related approaches perform anchoring with local decisions [4, 14, 18].
Ambiguity is here resolved in the scope of a skill without considering subsequent process
steps, e.g. by choosing from all matching entities the one closest to the robot [14], or by
drawing randomly [18]. However, such decisions can render the overall process infeasible
(Fig.2): Despite being suitable for the currently considered skill, an entity may be strictly
required by some subsequent skill with more strongly constrained input parts. Choosing
the “wrong” entity will thus lead to an error when trying to anchor this subsequent skill.
Therefore, we propose an algorithmic procedure with global decisions which considers the
constraints of all skills during the anchoring process.

All in all, our contribution is twofold: (i) We propose a task model and visual pro-
gramming procedure with robot skills accepting parts families and flexible locations rather
than definitely specified, uniquely identified parts as input parameters. (ii) We show a

Task Model World Model
O T

) y |2 y | P y | [ 1 N C i
O— o —wo—wo—un—O| Wk ik
Local Anchoring: * * x ) Task Start Node

@ rask End Node

; . a b c d :
Global Anchoring: * * * * \/ | o “Transfer Object’-Skill

Fig. 2 Our task models may be underspecified, e.g. by skills accepting any kind of gear (1 and
2) for adaptation to sensed parts in a world model (a-d). Locally correct anchoring decisions, e.g.
assigning red_gear c to skill 1, can render the process infeasible when subsequent skills have
strictly specified input parts (3 and 4)
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computationally efficient method for anchoring and executing such task models in unknown
environments with ambiguous parts.

2 Our Approach

An overview of our approach is shown by Fig. 3. Users will first use a visual programming
task editor to create a precedence graph model (Sect.2.2) capturing different instances of
the task (Sect.2.3). After that, the robot workspace is prepared by supplying concrete parts.
The task model provides partly underspecified information about the types and approximate
locations of parts to be expected when executing the task (Sect.2.1). From this information,
a path to explore points of interest in the workspace with a camera attached to the robot
hand is calculated. A world model is then built by active vision, i.e. by approaching each
point of interest and performing object recognition. The world model enables the computa-
tional process of plan instantiation for the perceived situation in the workspace (Sect.2.4):
Detected entities in the world model are assigned to parts referenced in the task model with
an assignment planner solving the anchoring problem. Together with the task model, the
resulting assignment solution is passed to a task sequencer. The sequencer applies a schedul-
ing algorithm to the task model and finishes skill parametrization by replacing underspecified
parameters with precise information from the world model. The resulting operation sequence
is finally passed to a skill execution engine. After task completion, further materials can be
supplied, and the plan instantiation process can be re-iterated starting from the workspace
exploration step without manually adapting the task model.

2.1 Part Types and Locations

We describe parts in terms of their type and location in the workspace. To this end, a part
type is an entry taken from a tree-shaped part type ontology. This ontology is a required input
to the approach. It captures “is-a”-relations between a set of nodes O = {01, 02, ..., 0j0|}.
Leaf nodes P C O denominate concrete part types as which parts in the physical world
can be classified. We assume a CAD model given for each o € O for the purpose of

Offline | Online '
| Visual Programming | | Exploration |] Assignment Planner I

Task Model ]——[ World Model }—T L( Part Assignment }—T

Placement Planner i
Task Sequencer H Skill Execution I

Fig.3 Our approach adapts generalized task models emerging from a visual programming procedure
by means of active workspace exploration, assignment planning, task sequencing, and skill execution
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grasp and placement planning. When ascending from leaf nodes upwards towards the root
node, encountered inner ontology nodes encode increasingly generic part descriptions. The
ontology thus encodes parts families with an increasing level of generalization over part
types. An example inspired by the benchmark domains used in our experiments is shown
by Fig.4. Here, different gear and conductor leaf part types are summarized under the
more general terms gear and conductor. The approach is intuitively adapted to other
domains by specifying a corresponding tree with several levels of generalized part types.
Formally, the ontology is characterized by the functionis_a : O x O — {TRUE, FALSE}
with is_a(o, 0’) = TRUE whenever o = o’ or o is a child of ¢’. In all other cases, is_a(o, 0')
is FALSE.

Regarding the part location, we distinguish two cases: A location can be known precisely
and, hence, be specified by a rigid body transform VT € R4 indicating the object
translation and rotation with respect to some world frame w. This is e.g. the case for object
recognition results, for parts provided on workpiece carriers etc. In the second case, a part
location is not given precisely, but only within a certain tolerance. These two concepts can
be captured by a unified formalization: Let L = {I1, [, ..., ||} denote a set of locations
relevant to the task. A location /; € L may describe the precise position and orientation of
some place where parts are usually located (e.g. the output slot of a parts feeder). Let LP™¢ C
L denote these precisely known locations, each associated with a rigid body transform
pose(l;) € R** (I; € LP™). In addition to these precisely known locations, elements
of L may also describe a 2-dimensional area on the workbench surface, a 3-dimensional
volume defining the interior of a box etc. We will see in Sect.2.3 how L emerges from the
visual programming process. For the planning process (Sect.2.4), each location /; € L is
associated with a location function is_at;, : O x R*** — {TRUE, FALSE}. These functions
are designed to output is_at;, (0,% Tpar) = TRUE for a part type 0o € O and transformation
W part € R**4if and only if some part of type o with pose described by ¥ part 18 at the location
denominated /;. Our system currently supports is_at;, functions for comparing equality of
precise positions, and for checking whether parts lie in planar workspace areas considering

| root node
inner nodes e@a
'—'—
[ 1 ‘ 1 I = : 1
green_conductor ) (blue_conductor red_conductor lue_gear green_gear red_gear
\ >
leaf nodes

Fig. 4 A part ontology tree encodes “is-a”-relations to group different part leaf types into more
generic type descriptions represented by inner tree nodes
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their axis-aligned bounding boxes aabb(o) (Fig.5). The formalism allows for integrating
more complex location specifications in future work (e.g. spatial relations between parts).

2.2 Task Models with Degrees of Freedom

Our goal is programming tasks that can be adapted to product and process variety at execution
time. To this end, we first define the notion of part templates which capture boundary
conditions that parts used in a task must satisfy. A part template p = (p¥P, p'°) combines
an arbitrary node p¥P® € O from the part type ontology with alocation p'°° € L. It describes
a part with parameters that are possibly only partly known during the visual programming
procedure, e.g. a conductor that may be either red, green, or blue and that lies at any position
within a larger area on the workbench. Part templates enable task models with a certain
degree of generality regarding part types and locations: In our framework, each task (7', <7)
is composed of partially ordered operations T = {t1, 12, ..., 7j7|}. The partial order <7
defines assembly precedence relations between operations, i.e. some operation 7; € T must
be done before t; € T (i # j)if and only if ; <7 7;. This task model is well known
from the assembly planning domain [10] and suited for flexible production settings. We
further describe each operation with a pair t; = (p;, [;) of a part template p; and a part goal
location /; € L. The model thus covers any sort of operation where a part is transferred to a
new location by the robot. This comprises basic pick-and-place actions as well as operations
during which the transfer requires more sophisticated robot control (e.g. force-supervised
gear meshing, see Sect. 3).

Task models as defined above are underspecified, and each part template must be anchored
to a physical entity when the task is executed (Sect. 1). To this end, the robot builds a world

ST ST is_aty, (vaTpart):
return
VT part & pose(lr)

b) min(ly)—

ma DQV

1l
max l4

o
e’

is_aty, (0," Tpart) :
Omin :WTpart . min(aabb(o))
Omax =" Tpart - max(aabb(0))

i
®

return

FAV AV AV ar S O O |

Omin > min(l4)A
Omax S max(l4)

Fig.5 Our task editor (left) combines icon-based precedence graph modelling (a) with part creation
in a virtual workspace (b). The modelling process outputs task models with associated operators to
compare locations and part types (right)
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model W = {p1, ..., pjw|} containing all entities perceived on camera images. Entities are
encoded by part states. Contrasting to part templates, part states p = (p¥P°, p1°) combine
an ontology leaf node p¥P¢ € P and a precise location p'°° € LP™ as detected by object
recognition. We say that an operation t; € T may be applied to a part state p € W if and
only if p satisfies the part template p;. Validation of this connection between part templates
and states is achieved with a satisfies-function (Eq. 1).

TRUE i is_a(p¥Pe, p¥P¢) A is_at i (PP, pose(p'®))

satisfies(p, p) = €))

FALSE otherwise

2.3 Visual Programming

Users create task models by interacting with a graphical editor shown in Fig. 5. To this end,
it is first necessary to specify part templates for each part to be used during the task. A
new template can be added by choosing its part type and initial part location. The user is in
charge of selecting from the part type ontology appropriately so that the desired level of task
generalization is reached. The selection of locations is supported by a virtual representation
of the workspace. In the virtual workspace, a workspace layout as introduced in our prior
work [16] offers pre-defined regions to be chosen as part locations (e.g. /4 in Fig.5, left).
For each area defined by the layout, a location function based on the area corner vertices is
instantiated and added to the location set L (Sect. 2.1). If the user prefers to specify part poses
precisely (I1, I, I3 in Fig. 5), additional location functions are defined by corresponding pre-
cise poses. Having specified all parts, pick-and-place operations may be added. Finally, the
operations are connected with precedence relations using the icon-based editor component.
Currently, the system is based on a single pick-and-place skill — suitable control algorithms
are derived from annotations to the part type ontology (e.g. force-supervised gear meshing
vs. position-controlled placement of our benchmark conductor parts). Yet further classes
of skills, e.g. for visual inspection or presentation of parts to the user for collaborative steps,
can be added in the future.

24 Plan Instantiation

Having modelled a task with operations T = {ry, ..., 7j7|}, users need to prepare the
workspace by supplying necessary parts to the robot. After an active vision exploration
procedure (see [2] for an overview of applicable methods), the robot has all detected parts
stored in its world model W = {p, ..., pyw|}. The next step is solving the anchoring
problem as introduced in Sect. 1, i.e. mating each part template p; of operation r; with a part
state p; so that satisfies(p;, p;) holds. Assuming that the user has provided at least one part
for each operation (|W| > |T|), this means O(|W|!) possible assignments. Enumerating and



248 D.Riedelbauch and S. Sucker

testing those to find a valid solution, clearly, is a computationally infeasible combinatorial
problem even for small |W|. However, we can apply efficient combinatorial optimization
algorithms to this unbalanced assignment problem, e.g. the well-known Kuhn-Munkres
algorithm [12] with O(| W13) runtime complexity:

Let C = (c;,;) denote a |T'| x |W| cost matrix with a row for each part template and a
column for each part state. Any wrong assignment of p; to p; is modelled to have infinite
costs, whereas a correct assignment has no costs, i.e.

0 if satisfies(p;, pi) . )
cij= TP e (1, T G e, L W) )
o0 otherwise

Given C, combinatorial optimization computes an optimal, injective assignment f :
{1,...,IT]} — {1,...,|W|} which minimizes the total assignment costs Y, c; f()
@@ e{l,...,|T|}). Inour case, f says that part template p; of operation t; must be associ-
ated with part state p ¢(;) to incur the minimum cost assignment. By construction of C, any
solution involving a wrong assignment (cf. Fig. 2) leads to infinite overall costs. This means
in practice that the user has not supplied all required parts to the workspace—in this case,
our system outputs an error message to inform about missing parts. By contrast, a solution
f with 0 overall costs means that each part template was matched with a suitable entity in
the workspace. The process can then proceed to the task sequencing step.

The task sequencing procedure prepares a fully specified sequence of operations to be
executed by the skill engine. For each operation t = (p, /), a suitable input entity matching
p is known from the above assignment f. We further use a grid-based placement planner
that determines precise part goal locations whenever the operation goal location / is an
area. Finally, the precedence graph is transferred into a sequence that complies with all
“earlier-later” relations. The fact that we are using a graph structure as task model opens
a range of future possibilities here: Aside from searching for an operation sequence that
optimizes energy consumption or other secondary criteria, planning of collaborative action
with a human-robot scheduler would also be feasible at this point in the process.

3 Experimental Validation

We have modelled four benchmark tasks (Sect. 2.3) which are designed to illustrate specific
aspects of product and process variety (Fig. 6a): Product variety is represented by task S1,
in which gears of arbitrary types (red, blue, green, cf. Fig.4) are assembled with force-
supervised robot control. Task S2 is a kitting task, where a connector of each type is added
to a bundle of three. Tasks S3 and S4 replicate assembly tasks of electrical circuits with a
serial/parallel connection. The tasks S2—-S4 use region-based initial locations, thus enabling
convenient part feeding by the user. Task S2 furthermore allows for the bundle to be placed
anywhere within an area. We have executed each task with different workspace configu-
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rations (e.g. S1 with different part types, S4 with orderly or arbitrarily placed connectors,
cf. Fig.1). Online adaptation and task execution in these differing settings was achieved
successfully.

Moreover, a theoretical comparison of the effort needed for adaptation with our approach
versus the traditional re-programming method was conducted. We say that a production
cycle consists of executing a task N times, i.e. finishing N instances of a product. By intro-
ducing the flexibility demand ratio FD = % we characterize the manufacturing setting,
i.e. traditional mass production with hardly any adaptations for FD — 0, decreasing lot
sizes for FD — 1, and one-off products for F D = 1. The adaptation effort per cycle of our
approach depends on N, as each program execution is preceded by exploration and assign-
ment planning—re-programming effort is not required during a cycle as the task models
for S1-S4 have covered all necessary adjustments. During the experiments with our bench-
mark tasks, an exploration time of about 9s was measured whereas the planning time was
negligible. By our definition, the effort per cycle for adaptation by visual re-programming
is independent of N and therefore constant. However, the re-programming time including
loading and saving the task model depends on the degree of necessary changes. We have
considered three cases where only one operation or corresponding part (minimum effort);
half of the involved parts (medium effort); or all parts (maximum effort) need to be adjusted
in the task model between consecutive cycles. Representative durations of these three re-
programming types have been gathered by observing an expert operate our task editor (min.
~ 31s; med. ~ 80s; max. ~ 110s).

Figure 6b compares the time allocated for adaptation within a production cycle depend-
ing on F D. In general, our approach achieves better results than manual re-programming in
highly flexible domains, i.e. for higher F'D values, since task variants are widely encoded in

| —— Our Approach
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Fig. 6 Our experiments comprise different benchmark tasks S1-S4 (a, goal states are rendered
transparently). Adaptation time measurements enable a comparison of our approach and manual
re-programming for different lot sizes (b)
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the task model. In particular, it performs better for lot sizes of three or less, even when consid-
ering re-programming with minimum effort. In other words, less adaptation effort is needed
with our approach compared to manual re-programming for finishing three products—this
confirms our hypothesis regarding economical efficiency (Sect. 1). For medium and max-
imum re-programming effort, this amortization threshold shifts towards larger lot sizes.
However, the effort for exploring the workspace before each task iteration renders re-
programming more efficient in mass production settings with relatively few changes. These
quantitative results must of course be interpreted within the limits of our benchmark tasks.
Yet, our analysis illustrates qualitative relationships that are transferable to other scenarios
and applications.

4 Conclusion and Future Work

In this paper, we have contributed a visual programming and robot task execution approach
that incorporates product and process variety. For this, part templates are specified as input
to robot skills in terms of approximate locations and generalized parts families. This leads to
partly ambiguous, underspecified task models capturing a set of task variants. Adaptation to
concrete parts is achieved online by workspace exploration and combinatorial optimization
to anchor ambiguous part templates to perceived concrete parts. Our experiments with a set
of characteristic benchmarks show how this approach helps to reduce the (re-)programming
effort of robots in flexible manufacturing settings.

We will address several limitations of the approach in future work: Currently, the task
structure and number of processed parts are fixed. Further task variety could be achieved
by augmenting the task model with constructs as loops for situation-dependent repetition
of operations. Furthermore, we will extend the approach towards human-robot co-working
by integrating multi-agent scheduling. Finally, our concept needs a comparison with other
visual programming systems to evaluate the impact of generic part and location descriptions
on usability.
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tive Commons license, unless indicated otherwise in a credit line to the material. If material is
not included in the chapter’s Creative Commons license and your intended use is not permitted by
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