
Chapter 3
Bayes Factor for Evaluative Purposes

3.1 Introduction

Consider a case where material of known source (control material) and evidential
material of unknown source (recovered or questioned material) are collected
and analyzed. Interpretation of scientific evidence then amounts to assessing the
probative value of the observations made during comparative examinations. The
evidence is evaluated in terms of its effect on the odds in favor of a proposition H1
put forward by the prosecution, compared to an alternative proposition H2 advanced
by the defense.

During comparative examinations, observations and measurements are made,
leading to either discrete or continuous data. Forensic laboratories may also have
equipment and methodologies that can lead to output in the form of multivariate
data. Thus, scientific evidence is often described by more than one variable. For
example, glass fragments from a crime scene can be compared with fragments
collected on the clothing of a person of interest on the basis of several chemical
components, as well as physical characteristics. It should be noted, however, that the
assessment of a Bayes factor for multivariate data may be challenging. For example,
data may not present enough regularity so that standard parametric distributions
cannot be used. Data may also present a complex dependence structure with several
levels of variation. In addition, a feature-based approach might not be always
feasible, and it may be necessary to derive a Bayes factor on the basis of scores.

This chapter is structured as follows. Sections 3.2 and 3.3 address the problem
of evaluation of evidence for various types of discrete and continuous data,
respectively. Section 3.4 presents an extension to continuous multivariate data.
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80 3 Bayes Factor for Evaluative Purposes

3.2 Evidence Evaluation for Discrete Data

This section deals with measurement results in the form of counts, using the
binomial model (Sect. 3.2.1), the multinomial model (Sect. 3.2.2), and the Poisson
model (Sect. 3.2.3).

3.2.1 Binomial Model

In many practical applications, data derive from realizations of experiments that
may take one of two mutually exclusive outcomes. Examples include general
features (so-called class characteristics) observed on questioned and known items
or materials (e.g., fired bullets, fibers) when the question of interest is whether the
compared materials come from the same source.

Consider a hypothetical case involving a questioned document for which results
of analyses of black toner are available. On the questioned document, black bi-
component toner is present. It is of the same type as that used by a given printing
machine (known source). A question that may be of interest in such a case is how
this analytical information should affect one’s belief in the proposition according
to which the questioned document has been printed using the device of interest
(Biedermann et al., 2009, 2011a). The competing propositions can thus be defined
as follows:

H1 : The questioned document has been printed with the device of interest.
H2 : The questioned document has been printed with an unknown device.

Let T denote the observed toner type, either single component (TS) or bi-
component (TB ). Suppose that a database of the toner type (magnetism) of samples
of black toner from N machines is available, n of which use a bi-component toner.
Denote by θ the proportion of the population of printing devices equipped with bi-
component toner. Available counts can be treated as realizations of Bernoulli trials
(Sect. 2.2.1) with constant probability of success θ , Pr(TB | θ) = θ . Suppose a
conjugate beta prior distribution Be(α, β) is used to model uncertainty about θ ,
where α and β can be elicited using the available background knowledge as in (1.42)
and (1.43).

Denote by Ey the observations made on recovered material and by Ex the
observations made on control material (i.e., documents printed with the device of
interest). If the questioned document originates from the device of interest, the
probability of the evidence becomes

Pr(Ey = TB,Ex = TB | H1) =
∫

Θ

Pr(TB | θ) · θα−1(1 − θ)β−1dθ/B(α, β)

=
∫

Θ

θ · θα−1(1 − θ)β−1dθ/B(α, β).
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If the questioned document originates from an unknown device (i.e., two distinct
devices have been used), the probability of the evidence becomes

Pr(Ey = TB,Ex = TB | H2) =
∫

Θ

θ2 · θα−1(1 − θ)β−1dθ/B(α, β).

The Bayes factor can be computed as

BF =
∫
Θ

θ · θα−1(1 − θ)β−1dθ∫
Θ

θ2 · θα−1(1 − θ)β−1dθ

= B(α + 1, β)

B(α + 2, β)

∫
Θ

θα(1 − θ)β−1

θα+1(1 − θ)β−1

B(α + 2, β)

B(α + 1, β)

= α + β + 1

α + 1
. (3.1)

Example 3.1 (Questioned Documents) Consider the case of a printed docu-
ment of unknown origin. Analyses reveal that the toner present on the printed
document is of type “bi-component.” The printing device that is thought
to have been used to print the questioned document is equipped with a bi-
component toner. In an available database with a total of N = 100 samples of
black toner, n = 23 are bi-component (see Table 3.1). Using this information,
the parameters of the beta prior distribution about θ can be elicited as follows:

> n=23
> N=100
> p=n/N
> a=p*(N-1)
> b=(1-p)*(N-1)

This leads to a Be(23, 76).
The Bayes factor in (3.1) can be computed straightforwardly as follows:

> BF=(a+b+1)/(a+1)
> BF

[1] 4.206984

The Bayes factor provides weak support for the proposition H1 according to
which the questioned document has been printed with the printing device of
interest rather than with an unknown printing device (H2).

It is worth noting that there is an alternative development described in the
forensic statistics literature that considers background information derived from a
population database as part of the evidence, (e.g., Ommen et al., 2016; Dawid,
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Table 3.1 Results obtained
following the analysis of,
respectively, the component
type (magnetism) and the
resin type of 100 samples of
black toner (Biedermann
et al., 2011a)

Resin group Single component Bi-component

1. Styrene-co-acrylate 69 14

2. Epoxy A 8 3

3. Epoxy B 0 2

4. Epoxy C 0 1

5. Epoxy D 0 1

6. Polystyrene 0 1

7. Other 0 1

2017). According to this line of reasoning, if proposition H1 is true (numerator),
there are (n + 1) counts of bi-component toners. That is, the questioned item and
the known item are assumed to come from the same source, hence adding one count
to the database. Conversely, if propositionH2 is true (denominator), there are (n+2)
counts of bi-component toner. Here, it is assumed that the questioned item and the
known item come from different sources, hence adding two counts to the database.
The Bayes factor can then be obtained as

BF =
∫
Θ

θn+1(1 − θ)N−nθα−1(1 − θ)β−1dθ∫
Θ

θn+2(1 − θ)N−nθα−1(1 − θ)β−1dθ

= α + β + N + 1

α + n + 1
. (3.2)

One can immediately verify that this corresponds to the BF in (3.1) with parameter
α replaced by α + n, and parameter β replaced by β + N − n. However, it may be
questioned whether the available database should be considered as evidence, rather
than as conditioning information, because the database contains only general data
unrelated to the case under investigation (Aitken et al., 2021).

3.2.2 Multinomial Model

The analyses described in Sect. 3.2.1 can be extended to situations where experi-
ments can lead to more than two mutually exclusive outcomes.

Consider again the case involving printed documents, introduced in Sect. 3.2.1.
Laboratories often analyze resins of toner on printed documents by means of
Fourier Infrared Spectroscopy (FTIR). The results can be classified into one of
several (k) categories (Table 3.1). Suppose that the resin type (R) recovered on
the questioned document belongs to category j , which is also found in the toner
used by a given printing machine. The question of interest is similar to the one
considered in Sect. 3.2.1, that is, how the available analytical information should
affect one’s belief in the proposition according to which a questioned document has
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been printed using a given device, called the potential source, rather than by some
unknown printing device.

Denote by θj the proportion of the population that is of type (category) Rj , j =
1, . . . , k, Pr(Rj | θj ) = θj . Assume that observations of distinct categories can
be treated as independent: available counts n1, . . . , nk can be treated as realizations
from a multinomial distribution Mult(n, θ1, . . . , θk)

f (n1, . . . , nk | θ1, . . . , θk) = N !
n1! · · · · · nk!θ

n1
1 · · · · · θ

nk

k .

A conjugate Dirichlet prior probability distribution Dir(α1, . . . , αk) is considered
for modeling uncertainty about the population proportions θ1, . . . , θk:

f (θ1, . . . , θk | α1, . . . , αk) = θ
α1−1
1 · · · · · θ

αk−1
k /B(α),

with B(α) =
∏k

i=1 Γ (αi)

Γ (α)
and α = ∑k

i=1 αi .
Denote by Ey the observations made on the recovered material and by Ex the

observations made on the control material (i.e., documents printed with the device
of interest). If the questioned document originates from the device of interest, the
probability of the findings E = (Ey,Ex) becomes

Pr(Ey = Rj , Ex = Rj | H1) =
∫

Θ

Pr(Rj | θj ) · θ
α1−1
1 · · · · · θ

αj −1
j · · · · · θ

αk−1
k dθ/B(α)

=
∫

Θ

θj · θ
α1−1
1 · · · · · θ

αj −1
j · · · · · θ

αk−1
k dθ/B(α).

If the questioned documents originate from an unknown device (i.e., two distinct
devices have been used), the probability of the findings E becomes

Pr(Ey = Rj ,Ex = Rj | H2) =
∫

Θ

θ2j · θ
α1−1
1 · · · · · θ

αj −1
j · · · · · θ

αk−1
k dθ/B(α).

The Bayes factor can be computed as

BF =
∫

θj · θ
α1−1
1 · · · · · θ

αj −1
j · · · · · θ

αk−1
k dθ

∫
θ2j · θ

α1−1
1 · · · · · θαj −1

j · · · · · θαk−1
k dθ

= α + 1

αj + 1
. (3.3)
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Example 3.2 (Questioned Documents—Continued) Recall Example 3.1,
involving questioned documents on which black toner is present. Suppose
now that laboratory analyses focus on the toner’s resin component. Suppose
that the parameters of the Dirichlet prior probability distribution are elicited
as

> a=c(15,4,3,2,2,2,2)

Suppose that the rather common resin group Epoxy-A (category j = 2 in
Table 3.1) is observed on both the questioned and known documents. The
Bayes factor in (3.3) can be computed straightforwardly as

> j=2
> BF=(sum(a)+1)/(a[j]+1)
> BF

[1] 6.2

The Bayes factor provides, again, weak support for the proposition H1
according to which the questioned document has been printed with the
printing device of interest, rather than with an unknown printing device (H2).

Suppose that a database of the resin type of samples of black toner from
N machines is available, n1 (n2, . . . ) of which belong to category 1 (2, . . . ),
as in Table 3.1. These data can be used to elicit the Dirichlet prior probability
distribution. Following the methodology proposed by Zapata-Vazquez et al. (2014),
the hyperparameters α1, . . . , αk can be assessed by starting from expert judgments
(e.g., a vector of quantiles) about proportions of items belonging to each category.
Tools for eliciting prior probability distributions from experts’ opinions are also
available in the R package SHELF. An example will be presented in Sect. 4.2.2.

3.2.3 Poisson Model

Some forensic science applications focus on the number of occurrences of particular
events or observations that take place at given intervals of time or space. Practical
examples are the number of gunshot residue particles (GSR) collected on the surface
of the hands of individuals suspected to be involved in the discharge of a firearm
(Cardinetti et al., 2006), or the number of corresponding matching striations in the
comparative examination of marks left by firearms on fired bullets (Bunch, 2000).

Consider the following hypothetical case. A fired bullet is found at a crime scene,
and a person of interest is apprehended, carrying a gun. The following propositions
are of interest:
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H1 : The bullet found at the crime scene was fired with the seized gun.
H2 : The bullet found at the crime scene was fired with an unknown gun.

The recovered bullet and bullets fired with the seized gun are compared.Consecutive
matching striations (CMS) is a simple concept to quantify the extent of agreement
between marks. The number of observed consecutively matching striations can
be interpreted as a score. Let Δ(x, y) be the maximum CMS count for a given
comparison. For the evaluation of a CMS count, data on comparisons made between
pairs of bullets test-fired with the seized gun and between pairs of bullets test-fired
with different guns are needed. The (score-based) Bayes factor therefore is

sBF = g(Δ(x, y) | H1)

g(Δ(x, y) | H2)
.

A statistical model commonly used in the forensic science literature for the type
of data encountered in the example here assumes that counts follow a Poisson
distribution Pn(λ)

g(Δ(x, y) | λi) = e−λi λ
Δ(x,y)
i

Δ(x, y)! , Δ(x, y) = 0, 1, . . . ; λi ≥ 0,

where parameter λi , i = 1, 2, represents the weighted average maximum CMS
count.

Suppose that two datasets are compiled. The first relates to pairs of bullets fired
with the seized gun, and the second to pairs of bullets fired with different guns.
Such data can be used to inform the probability distribution g(·) at the score value
Δ(x, y) as discussed in Sect. 1.5.2 and to compute the Bayes factor as

sBF = ĝ(Δ(x, y) | x,H1)

ĝ(Δ(x, y) | H2)
.

Bunch (2000) describes a likelihood ratio procedure for inference about compet-
ing propositions. This account is based on a frequentist perspective because it uses
the maximum likelihood estimates λ̂1 and λ̂2 for parameters λ1 and λ2, calculated
under the assumption that either proposition H1 or proposition H2 is true. Using
these two estimates in the component Poisson likelihoods leads to the following
likelihood ratio:

LR = e−λ̂1 λ̂
Δ(x,y)

1

e−λ̂2 λ̂
Δ(x,y)

2

.

In Bayesian statistics, the most common prior distribution for λi is the gamma
distribution Ga(αi, βi) with shape parameter α and rate parameter β (e.g. Bernardo
and Smith, 2000):
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f (λi | αi, βi) = β
αi

i

Γ (αi)
λ

αi−1
i e−βiλi , λi > 0 ; αi, βi > 0.

Since the Poisson and gamma distributions are conjugate (Sect. 1.10), the posterior
distribution of λ is still in the family of gamma distributions, with parameters α

and β updated according to well-known updating rules (see, e.g., Lee, 2012). When
we have a realization of a random sample from a Poisson distribution, Pn(λ), say
(z1, . . . , zn), we end up with a Ga(α′, β ′), where α′ = α+∑n

i=1 zi and β ′ = β +n.
Note that in this case there is only one observation, Δ(x, y); therefore, α′ = α +
Δ(x, y) and β ′ = β + 1. See also Biedermann et al. (2011b) for further illustrations
of the Poisson–gamma model in forensic science applications.

The marginal distribution in the numerator and denominator of the Bayes factor
is known in closed form here. It is a Poisson–gamma distribution:

g(Δ(x, y)|αi, βi) =
∫

λi

g(Δ(x, y)|λi)f (λi |αi, βi)dλi

= 1

Δ(x, y)!
β

αi

i

Γ (αi)

Γ (αi + Δ(x, y))

(βi + 1)αi+Δ(x,y)
. (3.4)

The score-based Bayes factor then becomes

sBF = β
α1
1 Γ (α2)Γ (α1 + Δ(x, y))(β2 + 1)α2+Δ(x,y)

β
α2
2 Γ (α1)Γ (α2 + Δ(x, y))(β1 + 1)α1+Δ(x,y)

. (3.5)

Another example of the use of the Poisson distribution for data in the form
of independent counts can be found in Aitken and Gold (2013). These authors
considered the number of occurrences of selected characteristics of speech recorded
in a succession of time periods. In this application, a feature-based Bayes factor
is used to assess findings with respect to the proposition according to which
recorded and control speeches originate from the same source versus the alternative
proposition that they originate from different sources.

Example 3.3 (Firearm Examination) Consider a case involving a questioned
bullet. During comparison with a reference bullet, the examiner counts four
CMS, i.e., Δ(x, y) = 4. Suppose that the assumptions made in Bunch (2000)
are suitable for the case here so that for bullets fired from the same gun
(proposition H1 holds), the weighted average maximum CMS is taken to be
equal to 3.91. For bullets fired from different guns (proposition H2 holds), the
weighted average maximum CMS count is taken to be equal to 1.32. These
values are used in the Poisson likelihoods underH1 andH2, and the likelihood
ratio can easily obtained as

> s=4
> lambda1=3.91

(continued)
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Example 3.3 (continued)
> lambda2=1.32
> LR=dpois(s,lambda1)/dpois(s,lambda2)
> LR

[1] 5.775487

The evidence provides weak support in favor of the proposition according to
which the recovered bullet passed through the barrel of the seized gun, rather
than through the barrel of an unknown gun.

Consider now the Bayesian perspective. Suppose that the available knowl-
edge allows one to set the hyperparameters of the gamma distribution equal
to {α1 = 125, β1 = 32} for the numerator and to {α2 = 7, β2 = 5} for the
denominator. This amounts to using a gamma prior distribution for λ1 with
mean equal to 3.91 and standard deviation equal to 0.35 and a gamma prior
distribution for λ2 with mean equal to 1.4 and standard deviation equal to
0.53. The two prior distributions are shown in Fig. 3.1.

> an=125
> bn=32
> ad=7
> bd=5
> plot(function(x) dgamma(x,an,bn),0,8,
+ xlab=expression(paste(lambda)),ylab='Probability
+ density')
> plot(function(x) dgamma(x,ad,bd),0,8,add=TRUE,
+ lty=2)
> leg=expression(paste('Ga(125,32)'),paste(
+'Ga(7,5)'))
> legend(4.85,1.15,leg,lty=c(1,2))

First, we write a short function poisg that computes the marginal distribu-
tion in (3.4)

> poisg=function(a,b,x)
+ {(b^a)/gamma(a)*gamma(a+x)/((b+1)^(a+x))}

Next, the Bayes factor can be computed as follows:

> BF=poisg(an,bn,s)/poisg(ad,bd,s)
> BF

[1] 4.248019

Note that the introduction of a prior probability distribution reflecting uncer-
tainty about the population parameters λ1 and λ2 has slightly lowered the
value of the evidence. The result still represents weak evidence in favor of the

(continued)
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Fig. 3.1 Gamma prior for the
Poisson parameter λ under
H1 (solid line) and H2
(dashed line)
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Example 3.3 (continued)
proposition that the recovered bullet was fired with the seized gun, rather than
with an unknown gun.

Note that Example 3.3 involves a non-anchored approach at the numerator. The
probability distribution of the score value is solely conditioned on the hypothesis of
interest, that is ĝ(Δ(x, y) | H1). As mentioned at the beginning of this section, and
in Sect. 1.5.2, other anchoring approaches may be considered.

3.2.3.1 Choosing the Parameters of the Gamma Prior

An evaluator who, initially, would like to give the same weight to all possible values
of λ may consider to use a non-informative prior distribution, that is

f (λi) = λ
−1/2
i ; λi > 0 and i = 1, 2.

The posterior probability distribution given the observations (z1, . . . , zn) will be
of type gamma with shape parameter α′ = ∑n

i=1 zi + 1/2 and rate parameter
β ′ = n. Note that in the type of case considered here, there is only one observation;
therefore, α′ = Δ(x, y) + 1/2 and β ′ = 1.

However, the choice of a non-informative prior distribution may be questioned.
Take, for instance, the case example discussed earlier in this section (Example 3.3).
It is difficult to imagine that no suitable information is available to express prior
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uncertainty about the unknown weighted average maximum count CMS, and
hence that the same non-informative prior distribution should apply under each
proposition.

In Example 3.3, an informative prior distribution has been used. This raises the
question of how to translate prior knowledge into a prior distribution. As illustrated
in Sect. 1.10, one way to elicit prior parameters is to express prior beliefs in terms of
a measure of location and a measure of dispersion and then equate these values with
the prior moments of the distribution. In the case of a gamma distribution Ga(α, β),
this amounts to equate a value for the mean, m, with the prior mean α/β, and a value
for the variance, s2, with the prior variance α/β2, that is,

m = α

β
; s2 = α

β2 .

Solving for α and β gives

α = m2

s2
(3.6)

β = m

s2
. (3.7)

If the shape of the prior distribution resulting from the choice of α and β as
in (3.6) and (3.7) does not reflect one’s prior beliefs suitably, then one should adjust
the numerical values of m and s. However, this may not be enough to ensure that
the resulting prior distribution is reasonable. One should also inquire about whether
the information that is conveyed by the prior is realistically attainable. Consider a
random sample of size ne, providing the same amount of information as conveyed by
the elicited prior. The sample mean should have, at least roughly, the same location
and the same dispersion as the prior. The equivalent sample size ne can then be
found by matching the moments of the gamma distribution to the corresponding
moments characterizing a sample of size ne from a Poisson distributed random
variable located at λ:

α

β
= λ

α

β2
= λ

ne

.

If the mean λ is set equal to the prior mean α/β, the equivalent sample size ne is
equal to β.
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Example 3.4 (Elicitation of a Gamma Prior) In Example 3.3, a Ga(125, 32)
was used for λ1 (the weighted average maximum CMS count under proposi-
tion H1), and a Ga(7, 5) for λ2 (the weighted average maximum CMS count
under proposition H2). For the prior means of λ1 and λ2, the values 3.91
and 1.4 were used following Bunch (2000). For the dispersion of the two
distributions, the values 0.35 and 0.53 have been assigned to the standard
deviation under propositions H1 and H2, respectively. Parameters (α1 =
125, β1 = 32) and (α2 = 7, β2 = 5) have then been obtained as in (3.6)
and (3.7). This amounts to an equivalent sample size equal to 32 for the prior
density of λ1, and 5 for λ2.

3.2.3.2 Sensitivity to Prior Probabilities of Competing Propositions

It is important to emphasize that the analyses presented here make no direct
probabilistic statement about the truth of the propositions put forward by opposing
parties at trial. A Bayes factor of approximately 4.25, as obtained in Example 3.3,
only means that the evidence is approximately 4 times more probable if proposition
H1 is true than if the alternative proposition H2 is true. As noted earlier, this does
not mean that proposition H1 is more probable than H2. This depends on the prior
probabilities of the competing propositions, which can vary considerably among
recipients of expert information, and which are beyond the area of competence of
scientists.

However, it may be of interest to show the impact of different prior probability
assignments on the posterior probability of the competing propositions. To do so,
recall that the posterior odds are given by the product of the prior odds and the
Bayes factor

Pr(H1 | ·)
Pr(H2 | ·) = BF × Pr(H1)

Pr(H2)
.

Using this expression, one can then investigate how the posterior probability of
proposition H1, i.e., α1, varies for values of π1, i.e., Pr(H1), ranging from 0.01
until 0.99, and for a Bayes factor equal to 4.25, as in Example 3.3.

> pi1=seq(0.01,0.99,0.01)
> prior_odds=pi1/(1-pi1)
> BF=4.25
> post_odds=prior_odds*BF
> alpha1=post_odds/(1+post_odds)
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Fig. 3.2 Posterior
probability α1 of proposition
H1 for values of prior
probabilities π1 ranging from
0.01 to 0.99, and a Bayes
factor equal to 4.25 (solid
line), 1 (dashed line), and 100
(dotted line)
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The solid line in Fig. 3.2 shows the value of α1, the posterior probability of the
proposition H1, as a function of the prior probability, π1, for BF = 4.25. The plot
also shows results for BF = 1 (dashed line) and for BF = 100 (dotted line).

> plot(pi1,alpha1,type='l',xlab=expression(pi[1]),
+ ylab=expression(alpha[1]))
> BF=1
> post_odds=prior_odds*BF
> alpha1=post_odds/(1+post_odds)
> lines(pi1,alpha1,lty=2)
> BF=100
> post_odds=prior_odds*BF
> alpha1=post_odds/(1+post_odds)
> lines(pi1,alpha1,lty=3)

More generally, it can be observed that the higher the value of the Bayes factor,
the smaller the impact of the prior probabilities on posterior probabilities.

3.3 Evidence Evaluation for Continuous Data

The previous section considered the evaluation of scientific evidence as given
by discrete data. However, for many types of evidence, measurements result in
continuous data.
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3.3.1 Normal Model with Known Variance

In some applications, the distribution of measurements exhibits enough regularity
to be captured by standard parametric models, such as the Normal distribution.
One example, introduced earlier in Sect. 1.5.1, is the analysis of magnetism of
black toner on printed documents. Due to the wide distribution and availability
of printing machines, forensic document examiners are commonly requested to
examine documents produced by electrophotographic printing processes that use
dry toner. A question that forensic scientists may be asked to help with is whether
or not two or more documents were printed with the same laser printer. This task
involves the comparison of analytical features of a questioned document with those
of control documents. One such analytical feature is the magnetic flux of toner. It is
thought to be largely influenced by individual settings of the printing device, so that
detectable differences may be expected on documents printed at different instances
using the same or different machines (Biedermann et al., 2016a).

Suspected page substitution is a commonly encountered problem in forensic
document examination. Imagine a case involving a contract consisting of three
pages where the allegation is that the second page has been substituted. It may be of
interest, thus, to investigate the extent to which available measurements of magnetic
flux can be informative in this case.

Consider the following pair of propositions:

H1 : Page two has been printed by the device used for printing pages one and three
(i.e., the three pages have been printed with the same device).

H2 : Page two has been printed by a different device.

Denote by y = (y1, . . . , yn) the measurements of magnetic flux obtained for
the questioned page. Measurements are assumed to be normally distributed with
unknown mean θ and known variance σ 2. The likelihood of the normal random
sample (y1, . . . , yn) can therefore be expressed as

f (y | θ) =
n∏

i=1

(2πσ 2)−1/2 exp

{
− 1

2σ 2 (yi − θ)2
}

. (3.8)

It can be shown, (e.g., Bolstad and Curran, 2017), that the likelihood of a normal
random sample is proportional to the likelihood of the sample mean ȳ = 1

n

∑n
i=1 yi .

The sample mean is normally distributed with mean θ and variance σ 2/n

f (ȳ | θ) = (2πσ 2/n)−1/2 exp

{
− 1

2σ 2/n
(ȳ − θ)2

}
. (3.9)

In other words, it is possible to reduce the problem to one where a single normal
observation ȳ is available.

Next, denote the measurements on uncontested pages by {xl} = (xlj , j =
1, . . . , n and l = 1, 2), where the subscript l refers to the page number and j to
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the number of measurements of magnetic flux obtained for the page l. A normal
distribution with mean θ and variance σ 2 is assumed for x, analogously to what
has been assumed for y. A conjugate normal prior distribution is chosen for θ , say
θ ∼ N(μ, τ 2). The Bayes factor can be computed as in (1.16):

BF = f (ȳ | x1, x2,H1)

f (ȳ | H2)

=
∫

f (ȳ | θ)f (θ | x1, x2,H1)dθ∫
f (ȳ | θ)f (θ | H2)dθ

, (3.10)

where f (θ | x1, x2,H1) is the posterior distribution of θ , obtained by updating the
prior distribution N(μ, τ 2) using the measurements x1 and x2. This is a normal
distribution, (θ | x1, x2) ∼ N(μx, τ

2
x ), with posterior mean μx and posterior

variance τ 2x , computed according to the updating rules (2.13) and (2.14). Using
the result (1.21), one can easily verify that the density in the numerator is still a
normal distribution with mean equal to the posterior mean μx and variance equal to
the sum of the posterior variance τ 2x and the population variance σ 2 divided by the
sample size n, i.e., τ 2x + σ 2/n. In the same way, invoking (1.22), the density in the
denominator is still a normal distribution with mean equal to the prior mean μ and
variance equal to the sum of the prior variance τ 2 and the population variance σ 2

divided by the sample size n, i.e., τ 2 + σ 2/n.

Example 3.5 (Printed Documents) Consider the case described above where
a forensic document examiner measures the magnetic flux on two uncontested
pages 1 and 3 (Biedermann et al., 2016a). The results are x1 = (16, 15, 15)
and x2 = (16, 15, 16). The measurements for the contested page 2 are y =
(15, 16, 16). Previous experiments allow one to assign the value 0.24 for the
population standard deviation σ . Based on the available knowledge regarding
the magnetic flux of toner on printed documents, the prior mean μ and the
prior variance τ 2 for the unknown quantity of magnetic flux are set equal
to 17.5 and 3.922, respectively. This means that values of the magnetic flux
smaller than 6 and greater than 29 are considered, a priori, to be extremely
unlikely.

> mu=17.5
> tau2=3.92^2
> sigma2=0.24^2
> x=c(16,15,15,16,15,16)
> y=c(15,16,16)
> nx=length(x)
> ny=length(y)

(continued)
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Example 3.5 (continued)
The posterior distribution f (θ | x1, x2) can be obtained by a single applica-
tion of Bayes theorem with the full set of available measurements (x1, x2).
The posterior parameters μx and τ 2x can be calculated using the function
post_distr introduced in Sect. 2.3.1.

> mupost=post_distr(sigma2,nx,mean(x),mu,tau2)[1]
> mupost

[1] 15.50125

> tau2post=post_distr(sigma2,nx,mean(x),mu,tau2)[2]
> tau2post

[1] 0.009594006

The two marginal densities in the numerator and denominator of the BF
in (3.10) can be calculated at the sample mean ȳ. The exact value of the Bayes
factor is given by

> BF=dnorm(mean(y),mupost,sqrt(tau2post+sigma2/ny))/
+ dnorm(mean(y),mu,sqrt(tau2+sigma2/ny))
> BF

[1] 16.03199

This value represents moderate support for the proposition of page substitu-
tion, compared to the proposition of no page manipulation.

3.3.2 Normal Model with Both Parameters Unknown

So far, the variance of the distribution of the observations has been assumed to
be known, though in many practical situations the mean and the variance are both
unknown, and it is necessary to choose a prior distribution for the parameter vector
(θ, σ 2). The Bayes factor can be computed as in (1.16):

BF = f (y | x,H1)

f (y | H2)

=
∫

f (y | θ, σ 2)f (θ, σ 2 | x,H1)d(θ, σ 2)∫
f (y | θ, σ 2)f (θ, σ 2 | H2)d(θ, σ 2)

. (3.11)

Consider the case where a conjugate prior distribution for (θ, σ 2) of the form
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f (θ, σ 2) = f (θ | σ 2)f (σ 2) (3.12)

is chosen. In this distribution, prior beliefs about the population mean θ are
calibrated by the scale of measurements of the observations.1 The conditional
distribution f (θ | σ 2) is taken to be normal, centered at μ with variance σ 2/n0,
(θ | σ 2) ∼ N(μ, σ 2

n0
). The parameter n0 can be thought of as the prior sample

size for the distribution of θ . As pointed out in Sect. 2.3.1, it formalizes the size
of the sample from a normal population that provides an equivalent amount of
information about θ . The distribution f (σ 2) is taken to be an S times inverse chi-
squared distribution with k degrees of freedom, σ 2 ∼ S·χ−2(k). It can be shown that
this is equivalent to an inverse gamma distribution with shape parameter α = k/2
and scale parameter β = S/2, σ 2 ∼ IG(α = k/2, β = S/2). Alternatively, prior
uncertainty about dispersion can be formulated in terms of the precision λ2 = 1/σ 2.
The prior distribution of λ2 becomes a gamma distribution with shape parameter
α = k/2 and rate parameter β = S/2, λ2 ∼ Ga(α = k/2, β = S/2). For further
discussion, see e.g. Bernardo and Smith (2000), Bolstad and Curran (2017) and
Robert (2001).

Consider now the posterior distribution of the unknown parameter vector (θ, λ2)

once a vector of observations x = (x1, . . . , xn) becomes available. It takes the form
of a normal–gamma distribution

f (θ, λ2 | x,H1) = NG(μn, n
′, αn, βn),

with

μn = nx̄ + n0μ

n + n0
; n′ = n + n0

αn = α + n

2
;

βn = β + 1

2

[
(n − 1)s2 + n0n(x̄ − μ)2

n0 + n

]
,

1 Note that in (3.12) population parameters are not, a priori, independent. Whenever this condition
is felt to be too restrictive (see, e.g., Robert (2001)), it is also possible to choose a prior distribution
as the product of independent priors, f (θ, σ 2) = f (θ)f (σ 2). In this case, the derivation of the
posterior distribution can be more demanding.
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and s2 = 1
n−1

∑n
i=1(xi − x̄)2.

If uncertainty about the two unknown parameters is modeled by means of the
conjugate prior distribution in (3.12), the integrations in (3.11) have an analytical
solution and the BF can be obtained straightforwardly.

Denote by y = (y1, . . . , yny ) a vector of measurements made on questioned

material and consider the sample mean ȳ = ∑ny

i=1 yi . It can be proved that the
marginal density f (ȳ | x,H1) in the numerator is a Student t distribution with 2α+n

degrees of freedom, centered at μn, with spread parameter, denoted sn, equal to

sn = ny(n + n0)

n + n0 + ny

(
α + n

2

)
β−1

n .

This can be denoted as f1(ȳ | μn, sn, 2α + n).
The marginal density f (y | H2) in the denominator is a Student t distribution

with k degrees of freedom, centered at μ with spread parameter (precision), denoted
sd , equal to

sd = n0ny

n0 + ny

αβ−1

(Bernardo and Smith, 2000). This can be denoted as f2(ȳ | μ, sd, 2α).
The Bayes factor can then be computed as

BF = f1(ȳ | μn, sn, 2α + n)

f2(ȳ | μ, sd, 2α)
. (3.13)

Choosing the Parameters of the Normal Prior

The use of a conjugate prior distribution for the mean and the variance of a
normal distribution raises the question of how to choose the hyperparameters, as the
resulting distribution should suitably reflect available prior knowledge. The prior
distribution f (θ | σ 2) requires one to choose a value for μ, the measure of location,
and a value for n0. The ratio n0/n characterizes the relative precision of the prior
distribution compared to the precision of the observations. If this ratio is very small,
the less informative will be the prior distribution, and the closest will be the posterior
distribution to that obtained using a non-informative prior distribution. In fact,
when n0/n approaches zero, the limiting form of the marginal distribution of the
population mean θ is N(x̄, σ 2/n), which corresponds to the posterior distribution
that would be obtained using a non-informative prior distribution (Robert, 2001).
For more specific prior beliefs (i.e., concentrated on a limited range of values), a
higher value of n0 should be chosen.

Regarding the prior distribution of σ 2, consider a number of degrees of freedom
k = 20 so that the prior mass is distributed rather symmetrically. Suppose also
that, based on knowledge available from previous experiments, it is considered
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that values of σ 2 greater or smaller than 0.05 are equally plausible, so Pr(σ 2 >

0.05) = 0.5. The parameter S can be elicited by recalling that σ 2/S ∼ χ−2(k) and,
analogously, S · λ2 ∼ χ2(k) so

Pr
(
σ 2 > 0.05

)
= Pr

(
S · λ2 < S · 20

)
= 0.5,

where S · 20 is the quantile of order 0.5 of a χ2 distributed random variable with
k = 20 degrees of freedom.

> sigma2=0.05
> k=20
> p=0.5
> q=qchisq(p,k)
> q

[1] 19.33743

> S=q*sigma2

Parameter S is then equal to

S = 19.3374 × 0.05 ≈ 1.

The elicited prior distribution for σ 2 is IG( 202 , 1
2 ) and is shown in Fig. 3.3.

Fig. 3.3 Inverse Gamma
prior distribution IG( 202 , 1

2 )

for σ 2 in Example 3.6
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Example 3.6 (Printed Documents—Continued) Consider again Example 3.5
where magnetic flux was measured on uncontested and questioned pages.
The population variance σ 2 was assumed known and equal to 0.0576.
Suppose now that a new measuring device is used and that the number
of previous experiments (i.e., measurements) conducted with this device is
limited. A conjugate prior distribution as in (3.12) is introduced to model
prior uncertainty about θ and σ 2.

The prior distribution for θ | σ 2 can be centered at μ = 17.5 as in
Example 3.5 with n0 = 0.004 reflecting a very weak prior belief with respect
to the precision of the observations, θ ∼ N(17.5, σ 2/0.004).

> mu=17.5
> n0=0.004

The prior distribution about σ 2 has been elicited above, with k = 20 degrees
of freedom, and S = 1, σ 2 ∼ IG( 202 , 1

2 ), shown in Fig. 3.3.

> library(extraDistr)
> S=1
> k=20
> plot(function(x) dinvgamma(x,k/2,S/2),0,0.2,
+ xlab=expression(paste(sigma)^2),ylab='')

Note that the function dinvgamma is available in the package extraDistr
(Wolodzko, 2020). Measurements are the same as in Example 3.5.

> x=c(16,15,15,16,15,16)
> y=c(15,16,16)
> n=length(x)
> ny=length(y)

Let us first consider the marginal density in the numerator of the Bayes factor
in (3.13). It is a Student t distribution with 2α + n = k + n = 26 degrees of
freedom, centered at μn = 15.5 with spread parameter sn = 20.6724.

> mun=(n*mean(x)+n0*mu)/(n+n0)
> mun

[1] 15.50133

> s2=sum((x-mean(x))^2)
> bn=S/2+(s2+n0*n*(mean(x)-mu)^2*(n0+n)^(-1))/2
> sn=ny*(n+n0)/(n+n0+ny)*(k+n)/2*bn^(-1)
> sn

[1] 20.6724

(continued)
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Example 3.6 (continued)
The marginal density at the denominator of the Bayes factor in (3.13) is a
Student t distribution with 2α = k = 20 degrees of freedom, centered at
μ = 17.5 with spread parameter sd = 0.0799.

> sd=ny*n0/(n0+ny)*k/S
> sd

[1] 0.07989348

The density of a non-central Student t distributed random variable can be cal-
culated using the function dstp, available in the package LaplacesDemon
(Hall et al., 2020). The Bayes factor can be obtained as

> library(LaplacesDemon)
> BF=dstp(mean(y),mun,sn,k+n)/dstp(mean(y),mu,sd,k)
> BF

[1] 13.88188

The Bayes factor represents moderate support for the proposition according
to which page two has been printed by the same device as the one used for
printing pages one and three, compared to the proposition according to which
page two has been printed by a different device.

It is worth emphasizing that the BF is highly sensitive to the choice of the prior
(see Sect. 1.11). A sensitivity analysis should therefore be conducted.

3.3.3 Normal Model for Inference of Source

Consider again a case as described in Sect. 3.3.1, involving the analysis of toner on
printed documents. Magnetic flux was considered as a feature of interest because it
is largely influenced by the settings of the printing device. Suppose now that more
than one potential source (i.e., printing device) is available for examination. The
issue of interest is which of two machines has been used to print a questioned
document (e.g., a contested contract). The propositions of interest can be defined
as follows:

H1 : The questioned document has been printed with machine A.
H2 : The questioned document has been printed with machine B.

The two potential sources, i.e., machines A and B, are used to print documents
under controlled conditions. The measurements made on documents printed by
the two devices are denoted {xp} = (xpi, p = A,B and i = 1, . . . , m), with
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xpi = (xpi1, . . . , xpin) denoting the vector of n measurements for each analyzed
page, i = 1, . . . , m, from each printer p = A,B. Measurements are assumed to
be normally distributed with unknown mean θp, p = A,B, and variance σ 2. The
variance is assumed to be known and equal for the two devices. A conjugate normal
prior distribution is taken for the unknownmean θp, say θp ∼ N(μp, τ 2p), p = A,B.

Measurements on the questioned document are denoted by y = (y1, . . . , yq),
with yj = (yj1, . . . , yjn) denoting the vector of n measurements from each
contested page j = 1, . . . , q. For cases in which q > 1, it is assumed that all
pages have been printed with a single device. The distribution of measurements
on the questioned document is also taken to be normal. The sample mean ȳ =
1
nq

∑q

j=1

∑n
k=1 yjk has a normal distribution with mean θp and variance σ 2/nq,

(Ȳ | θp, σ 2/nq) ∼ N(θp, σ 2/nq).
The Bayes factor can be computed as

BF =
∫

f (ȳ | θA)f (θA | xA)dθA∫
f (ȳ | θB)f (θB | xB)dθB

= f (ȳ | xA,H1)

f (ȳ | xB,H2)
. (3.14)

The marginal probability density in the numerator can be obtained in closed
form. It is a normal distribution with mean equal to the posterior mean μA,x and
variance equal to the sum of the posterior variance τ 2A,x and population variance

σ 2
A/nq (where nq is the total number of observations), that is, f (ȳ | xA,H1) =

N(μA,x, τ
2
A,x + σ 2/nq). In the same way, one can obtain the marginal probability

density in the denominator, f (ȳ | xB,H2) = N(μB,x, τ
2
B,x + σ 2/nq). As observed

in Sect. 3.3.1, the numerator and the denominator of (3.14) can be calculated as the
densities of two normally distributed random variables, N(μA,x, τ

2
A,x + σ 2/nq)

and N(μB,x, τ
2
B,x + σ 2/nq), at the sample mean ȳ of the measurements on the

questioned document.

Example 3.7 (Printed Documents) Consider a type of case and propositions
as introduced above, and suppose that there is only one contested page, that is,
q = 1. Measurements of the magnetic flux lead to the following results: y =
(20, 20, 21) (i.e., n = 3 measurements are taken). Two pages are printed with
each printing device. The results are as follows (Biedermann et al., 2016a):

Printer A Printer B

Page 1 20 20 19 21 20 21

Page 2 20 21 20 21 22 21

(continued)
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Example 3.7 (continued)
The available data thus are

> xa=c(20,20,19,20,21,20)
> xb=c(21,20,21,21,22,21)
> y=c(20,20,21)
> n=length(y)

The population standard deviation σ is taken to be equal to 0.24, as in
Example 3.5. We also choose the same prior distribution as used in Example
3.5 to describe uncertainty about the magnetic flux of toner printed by the two
printing devices. Thus, μA = μB = 17.5 and τ 2A = τ 2B = 3.922.

> sigma2=0.24^2
> na=length(xa)
> nb=length(xb)
> mu=17.5
> tau2=3.92^2

The posterior distributions f (θA | xA) and f (θB | xB) can be obtained
by a single application of Bayes theorem using the full set of available
measurements for each printer. The posterior parameters μA,x , μB,x , τ 2A,x

and τ 2B,x can be calculated using the function post_distr:

> muapost=post_distr(sigma2,na,mean(xa),mu,tau2)[1]
> tauapost=post_distr(sigma2,na,mean(xa),mu,tau2)[2]
> mubpost=post_distr(sigma2,nb,mean(xb),mu,tau2)[1]
> taubpost=post_distr(sigma2,nb,mean(xb),mu,tau2)[2]

The two marginal densities in the numerator and denominator of the BF
in (3.14) can be calculated at the observed value ȳ. The BF can thus be
computed as the ratio of two marginal densities:

> BF=dnorm(mean(y),muapost,sqrt(sigma2/n+tauapost))/
+ dnorm(mean(y),mubpost,sqrt(sigma2/n+taubpost))
> BF

[1] 304.7886

This value represents moderately strong support for the proposition according
to which the questioned page been printed using device A, rather than using
device B.

Consider a “0−li” loss function as in Table 1.4. The optimal decision is to accept
the view according to which the questioned page was printed by the device A (as
stated by proposition H1), rather than by device B, whenever
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BF >
l1/l2

π1/π2
.

If the odds are evens, and a symmetric loss function is felt to be appropriate, the
Bayes decision is to accept the view according to which the questioned document
has been printed with machine A (B) whenever the BF is greater (smaller) than 1.

When available information is limited, one may choose a non-informative prior
distribution for (θ, σ 2) that can be specified as

f (θ, σ 2) = 1

σ 2 . (3.15)

In this case, the marginal distribution in the numerator of the BF is proportional to a
Student t distribution with nA − 1 degrees of freedom, centered at the sample mean
x̄A with spread parameter sn equal to

sn = nAnq

(nA + nq)s2A

,

where sA = 1
nA−1

∑nA

i=1(xA − x̄A)2, nA is the total number of observations from
device A, and nq is the total number of measurements from the q contested
pages (i.e., n measurements for each contested page). This can be denoted as
f1(ȳ | x̄A, sn, nA − 1).

Vice versa, the marginal distribution in the denominator of the BF is proportional
to a Student t distribution with nB − 1 degrees of freedom, centered at the sample
mean x̄B with spread parameter sd equal to

sd = nBnq

(nB + nq)s2B

,

where sB = 1
nB−1

∑nB

i=1(xB − x̄B)2 and nB is the total number of observations from
device B. This can be denoted as f2(ȳ | x̄B, sd , nB − 1).

The Bayes factor can then be obtained as

BF = f1(ȳ | x̄A, sn, nA − 1)

f2(ȳ | x̄B, sd , nB − 1)
. (3.16)

Example 3.8 (Printed Documents—Continued) In Example 3.7, a normal
prior distribution has been used for (θ, σ 2). Consider now a non-informative
prior distribution as in (3.15). In order to compute the Bayes factor, one must
first obtain the spread parameters sn and sd under the competing propositions.

(continued)
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Example 3.8 (continued)
> s2a=var(xa)
> sn=na*n/((na+n)*s2a)
> s2b=var(xb)
> sd=nb*n/((nb+n)*s2b)

Note that in this case the number of contested pages q is set equal to 1. The
density of a non-central Student t distributed random variable can be obtained
using the function dstp available in the package LaplacesDemon (Hall
et al., 2020). The Bayes factor can be obtained as follows:

> library(LaplacesDemon)
> BF=dstp(mean(y),mean(xa),sn,na-1)/
+ dstp(mean(y),mean(xb),sd,nb-1)
> BF

[1] 2.197

The Bayes factor represents weak support for the proposition according to
which the questioned document has been printed with machine A, rather than
with machine B.

More Than Two Propositions

Consider now the case where more than two devices are available. As in Sect. 1.6,
the question is how to evaluate measurements made on questioned and known items
(i.e., documents), as the BF involves pairwise comparisons. A scaled version of the
marginal likelihood may be reported as in (1.27).

Example 3.9 (Printed Documents, More Than Two Propositions) Recall
Example 3.7, and assume that a third printer, machine C, is available for
comparative examinations. The propositions of interest are therefore:

H1 : The questioned document has been printed with machine A.
H2 : The questioned document has been printed with machine B.
H3 : The questioned document has been printed with machine C.

Two pages are printed with the additional printing device C. All results,
including those from machines A and B, are as follows:

(continued)
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Example 3.9 (continued)

Printer A Printer B Printer C

Page 1 20 20 19 21 20 21 21 20 21

Page 2 20 21 20 21 22 21 20 21 20

Let the prior distribution describing uncertainty about the magnetic flux
characterizing machine C be the same as introduced previously, that is μC =
17.5 and τ 2C = 3.922. First, the posterior distribution f (θC | xC) is calculated:

> xc=c(21,20,21,20,21,20)
> nc=length(xc)
> mucpost=post_distr(sigma2,nc,mean(xc),mu,tau2)[1]
> taucpost=post_distr(sigma2,nc,mean(xc),mu,tau2)[2]

Next, consider the marginal likelihoods of the sample mean that can be
obtained as

> mla=dnorm(mean(y),muapost,sqrt(sigma2/n+tauapost))
> mlb=dnorm(mean(y),mubpost,sqrt(sigma2/n+taubpost))
> mlc=dnorm(mean(y),mucpost,sqrt(sigma2/n+taucpost))

The scaled version of the marginal likelihoods then is

> smla=mla/(mla+mlb+mlc)
> smlb=mlb/(mla+mlb+mlc)
> smlc=mlc/(mla+mlb+mlc)
> round(c(smla,smlb,smlc),5)

[1] 0.18593 0.00061 0.81346

Recall from Sect. 1.6 that this is equivalent to reporting the posterior prob-
ability of competing propositions with equal prior probabilities. Therefore,
if Pr(H1) = Pr(H2) = Pr(H3) = 1

3 , then proposition H3 has received the
greatest evidential support.

Alternatively, the analyst may also consider the possibility of aggregating
propositions H1 and H2 and consider:

H1 : The questioned document has been printed with machine C.
H̄1 : The questioned document has been printed with machine A or B.
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Example 3.10 (Printed Documents, More Than Two Propositions—
Continued) When considering a single proposition H1 compared to a
composite proposition H̄1 as defined above, the Bayes factor can be obtained
as in (1.28), with Pr(H1) = 1/3 and Pr(H̄1) = 2/3.

> p=1/3
> mlc*(1-p)/(mla*p+mlb*p)

[1] 8.72179

3.3.4 Score-Based Bayes Factor

As mentioned previously in Sect. 1.5.2, it may not be possible to specify a
probability model for some types of forensic evidence and data. An example was
given in Sect. 3.2.3 for discrete data regarding consecutive matching striations, used
to quantify the extent of agreement between marks on bullets.

Consider now a case where a saliva trace is collected at the crime scene. The
salivary microbiome is analyzed as well as that of traces originating from a known
source, Mr. X, with the aim of discriminating between the following competing
propositions:

H1 : The saliva trace comes from Mr. X.
H2 : The saliva trace comes from the twin brother of Mr. X.

Note that the proposition H2 represents an extreme case of relatedness. To
investigate this type of case, consider the data collected by Scherz (2021). This
longitudinal study involving 30 monozygotic twins has shown the potential of
salivary microbiome profiles to discriminate between closely related individuals
(Scherz et al., 2021). This may represent an alternative method when standard DNA
profiling analyses yield no useful results.

In the study by Scherz (2021), four salivary samples have been collected from
each participant. The first at the beginning of the study, and the others after 1, 12,
and 13 months. Given the complex composition of microbiota, a distance can be
calculated to compare microbiota profiles. One possibility is the Jaccard distance,
obtained by dividing the number of amplicon sequence variants (AVSs) shared by
the two samples by the number of distinct AVSs in the two compared samples.
This measure has shown good discriminatory power. Other distances (e.g., Jensen–
Shannon) can be calculated (Scherz, 2021).

The intra-individual variability was studied by comparing all four samples of
each individual. The intra-pair variability was evaluated by comparing pairs of
samples from related individuals (here: homozygous twins). The inter-individual
variability was studied by comparing samples of unrelated individuals (Fig. 3.4).
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Fig. 3.4 Jaccard distances
for salivary microbiota
compositions of pairs of
samples from individual
persons (intra-individual),
pairs of related persons
(intra-pair), and pairs of
unrelated persons (unrelated)
[Source of data: (Scherz
et al., 2021)]
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Let δ(y, x) denote the distance between the analytical features of questioned
material (i.e., a saliva trace of unknown origin) and control material (i.e., a saliva
sample from Mr. X). A score-based Bayes factor (sBF) can be defined as follows:

sBF = g(δ(x, y) | H1)

g(δ(x, y) | H2)
. (3.17)

To obtain a value for this sBF, it is necessary to study the probability distribution
of the calculated score under the competing propositions. However, the limited
number of samples per individual, available for pairwise comparison, might make it
difficult to assess the numerator, which is specific for a given person of interest. To
address this problem, Davis et al. (2012) propose the use of a database of simulated
samples to help with the construction of probability distributions for scores.

In the example studied here, a maximum number of 6 intra-volunteer com-
parisons are available for each participant. A viable alternative is to perform
a so-called common-source comparison,2 and use the limited number of items
from all participants, provided that one is willing to assume a generic probability
distribution for all individuals in the numerator. In the same way, a generic
probability distribution is used at the denominator in all cases where a twin is
assumed as the alternative source of the salivary trace (Bozza et al., 2022).

Denote by {Z1
ij , i = 1, . . . , m1, j = 1, . . . , n1} the intra-individual distances

and by {Z2
ij , i = 1, . . . , m2, j = 1, . . . , n2} the intra-pair distances, wherem1 (m2)

are the number of distinct individuals (couples of twin brothers) and n1 (n2) are the
number of distances calculated for each individual (couple). A normal distribution is
used for both the numerator and denominator to model the within-source variation

2 See Sect. 1.5.2 on the difference between specific-source and common-source propositions.



3.3 Evidence Evaluation for Continuous Data 107

(i.e., the variation between distances characterizing materials originating from the
same individual and from the same couple of twins, respectively), Zp

ij ∼ N(θp, σ 2
p),

where p = {1, 2}. Different distributions can be used to describe the between-source
variation (i.e., the variation between distances characterizing materials originating
from different individuals and from different couples of twins, respectively). Here, a
normal distribution is retained, θp ∼ N(μp, τ 2p). The mean vector between sources

μp, the within-source variance σ 2
p , and the between-source variance τ 2p can be

estimated from the background data:

μ̂p = z̄p = 1

mpnp

mp∑
i=1

np∑
j=1

z
p
ij (3.18)

σ̂ 2
p = 1

mp(np − 1)

mp∑
i=1

np∑
j=1

(z
p
ij − z̄i )

2 (3.19)

τ̂ 2p = 1

mp − 1

mp∑
i=1

(z̄
p
i − z̄p)2 − σ̂ 2

p

np

, (3.20)

where z̄
p
i = ∑np

j=1 zij .

Example 3.11 (Saliva Traces) Consider a case where a saliva trace is
recovered at a crime scene and a sample is taken from a person of interest
for comparative purposes. The Jaccard distance between the microbiota
composition of recovered and control sample is equal to 0.51.

> d=0.51

The propositions are H1, the compared items come from the same source,
and H2, the compared items come from different sources (twins). Suppose
that the estimated means between sources in (3.18) are 0.454 and 0.769;
the estimated within-source variances in (3.19) are 0.0057 and 0.00067; the
estimated between-source variances in (3.20) are 0.0028 and 0.0024 (Source
of data: Scherz (2021)).

> mu1=0.454
> mu2=0.769
> sigma1=0.0057
> sigma2=0.00067
> tau1=0.0028
> tau2=0.0024

The Bayes factor can then be obtained straightforwardly as in (3.17)

(continued)
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Example 3.11 (continued)
> BF=dnorm(d,mu1,sqrt(tau1+sigma1))/
+ dnorm(d,mu2,sqrt(tau2+sigma2))
> BF

[1] 27766.33

The Bayes factor provides very strong support for the proposition that the
saliva traces originate from the same individual rather than from two different
individuals (twins).

Note that a higher value of the BF is expected whenever the alternative
proposition H2 involves unrelated individuals. The inspection of Fig. 3.4 highlights
that higher distances are recorded in this type of case.

The between-source variability can also be modeled by a kernel density distri-
bution, as presented in Bozza et al. (2022). See also Sect. 3.4.1.2, where a detailed
description of the kernel density approach is given for two-level multivariate data.

3.4 Multivariate Data

Forensic scientists encounter multivariate data in contexts where the examined
objects and materials can be described by several variables. Examples are glass
fragments that are searched and recovered on the clothing of a person of interest
and on a crime scene, or seized materials supposed to contain illicit substances. Such
materials may be analyzed and compared on the basis of their chemical compounds
as well as their physical characteristics. Multivariate data also arise in other forensic
science disciplines, such as handwriting examination. Handwritten characters can,
in fact, be described by means of several variables, such as the width, the height,
the surface, the orientation of the strokes, or by Fourier descriptors (Marquis et al.,
2005). In addition, an emerging topic that forensic document examiners nowadays
encounter is handwriting (e.g., signatures) on digital tablets. Such electronic devices
provide several static (e.g., length of a signature) and dynamic features (e.g.,
speed) that can be used as variables to describe signatures (Linden et al., 2018).
These developments have led to substantial databases that often present a complex
dependence structure, a large number of variables, and multiple sources of variation.



3.4 Multivariate Data 109

3.4.1 Two-Level Models

Denote by p the number of characteristics (variables) observed on items of a
particular evidential type. Suppose that continuous measurements of these variables
are available on a random sample of m sources with n items from each source. For
handwriting evidence, a source is a single writer, with n characters from each writer
and p observed characteristics that pertain to the shape of handwritten characters.
For glass evidence, a source is a window, with n replicate measurements from a
glass fragment originating from each window and p observed characteristics given
by concentrations in elemental composition. The background data can be denoted
by zij = (zij1, . . . , zijp), where i = 1, . . . , m denotes the number of sources (e.g.,
windows), j = 1, . . . , n denotes the number of items for each source (e.g., replicate
measurements from a glass fragment), and p is the number of variables.

This data structure suggests a two-level hierarchy, accounting for two sources of
variation: the variation between replicate measurements within the same source (the
so-called within-source variation) and the variation between sources (the so-called
between-source variation).

3.4.1.1 Normal Distribution for the Between-Source Variability

In some applications, data exhibit regularity that can reasonably be described
using standard probabilistic models. For example, the within-source variability
and the between-source variability may be modeled by a normal distribution.
A Bayesian statistical model for the evaluation of trace evidence for two-level
normally distributed multivariate data was proposed by Aitken and Lucy (2004) in
the context of evaluating the elemental composition of glass fragments. To illustrate
this model, denote the mean vector within source i by θ i . Denote by W the matrix
of within-source variances and covariances. The distribution of Zij for the within-
source variation is taken to be normal, Zij ∼ N(θ i ,W). For the between-source
variation, the mean vector between sources is denoted by μ, and the matrix of
between-source variances and covariances by B. The distribution of the θ i is taken
to be normal, θ i ∼ N(μ, B).

Measurements are available on items from an unknown source (recovered
material) as well as measurements on items from a known source (control material).
The examined items may or may not come from the same source. Competing
propositions may be formulated as follows:

H1 : The recovered and the control item originate from the same source.
H2 : The recovered and the control item originate from different sources.

Denote the measurements on recovered and control items by, respectively,
y = (y1, . . . , yny ) and x = (x1, . . . , xnx ), where yj = (yj1, . . . , yjp), xj =
(xj1, . . . , xjp), j = 1, . . . , ny(x). A Bayes factor can be derived as in (1.15):
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BF = f (y, x | H1)

f (y, x | H2)
. (3.21)

The distribution of the measurements on the recovered and control materials is taken
to be normal, with vector means θy and θx , and covariance matrices Wy and Wx .
Thus,

(Y | θy,Wy) ∼ N(θy,Wy) ; (X | θx,Wx) ∼ N(θx,Wx). (3.22)

The Bayes factor is the ratio of two probability densities of the form f (y, x | Hi) =
fi(y, x | μ,W,B), i = 1, 2. The probability density in the numerator is given by

f1(y, x | μ,W,B) =
∫

θ

f (y | θ ,W)f (x | θ,W)f (θ | μ, B)dθ , (3.23)

where

f (y | θ ,W) = |2π |−pny/2|W |−ny/2 exp

⎡
⎣−1

2

ny∑
j=1

(
yj − θ

)′
W−1 (

yj − θ
)
⎤
⎦ , (3.24)

f (x | θ,W) has the same probabilistic structure as f (y | θ,W), and

f (θ | μ, B) = |2π |−p/2|B|−1/2 exp

[
−1

2
(θ − μ)′ B−1 (θ − μ)

]
. (3.25)

In the denominator, where y and x are taken to be independent, the probability
density is given by

f2(y, x | μ,W,B) = f2(y | θ,W,B) × f2(x | θ ,W,B) (3.26)

=
∫

θ

f (y | θ ,W)f (θ | μ, B)dθ

∫
θ

f (x | θ ,W)f (θ | μ, B)dθ .

This is equivalent to the algebraic expression of the Bayes factor in (1.23). In the
numerator, under proposition H1, the source means θy and θx are assumed equal,
say θy = θx = θ . In the denominator, under proposition H2, the source means θy

and θx are assumed to be different.
The integrals in (3.23) and (3.26) have an analytical solution. A proof is given by

Aitken and Lucy (2004). The numerator can be shown to be equal to

f (y, x | H1) =| 2πW |−(ny+nx)/2| 2πB |−1/2| 2π
[
(ny + nx)W

−1 + B−1
]−1 | 12

× exp

{
−1

2

[
F1 + F2 + tr

(
SyW

−1
)

+ tr
(
SxW

−1
)]}

, (3.27)
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where:

F1 = (w̄ − μ)′
(

W
ny+nx

+ B
)−1

(w̄ − μ),

F2 = (ȳ − x̄)′
(

W
ny

+ W
nx

)−1
(ȳ − x̄),

w̄ = 1
ny+nx

(∑ny

j=1 yj + ∑nx

j=1 xj

)
, ȳ = 1

ny

∑ny

j=1 yj and x̄ = 1
nx

∑nx

j=1 xj ,

Sy = ∑ny

j=1

(
yj − ȳ

) (
yj − ȳ

)′, Sx = ∑nx

j=1

(
xj − x̄

) (
xj − x̄

)′.

Consider the first factor in the denominator, f2(y | θ ,W,B). It can be obtained as

f2(y | μ,W,B) =| 2πW |−ny/2| 2πB |−1/2| 2π(nyW
−1 + B−1)−1 |1/2

×exp

{
−1

2

[
(ȳ − μ)′(n−1

y W +B)−1(ȳ − μ) + tr
(
SyW

−1
)]}

.

(3.28)

The second factor f2(x | θ ,W,B) can be obtained analogously as

f2(x | μ,W,B) =| 2πW |−nx/2| 2πB |−1/2| 2π(nxW
−1 + B−1)−1 |1/2

×exp

{
−1

2

[
(x̄ − μ)′(n−1

x W +B)−1(x̄ − μ) + tr
(
SxW

−1
)]}

.

(3.29)

The Bayes factor in (3.21) then is the ratio between (3.27) and the product
between (3.28) and (3.29), respectively. After some manipulation, the BF can be
obtained as the ratio between

| 2π
[
(ny + nx)W

−1 + B−1
]−1 |1/2 exp

{
−1

2
(F1 + F2)

}
(3.30)

and

| 2πB |−1/2| 2π(nyW
−1 + B−1)−1 |1/2| 2π(nxW

−1 + B−1)−1 |1/2

× exp

{
−1

2
(F3 + F4)

}
, (3.31)

where:

F3 = (μ − μ∗)′
{(

W
ny

+ B
)−1 +

(
W
nx

+ B
)−1

}
(μ − μ∗),

F4 = (ȳ − x̄)′
(

W
ny

+ W
nx

+ 2B
)−1

(ȳ − x̄),

μ∗ =
{(

W
ny

+ B
)−1 +

(
W
nx

+ B
)−1

}−1

×
{(

W
ny

+ B
)−1

ȳ +
(

W
nx

+ B
)−1

x̄
}
.
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The mean vector between sources μ, the within-source covariance matrix W ,
and the between-source covariance matrix B can be estimated using the available
background data:

μ̂ = z̄ = 1

mn

m∑
i=1

n∑
j=1

zij , (3.32)

Ŵ = 1

m(n − 1)

m∑
i=1

n∑
j=1

(zij − z̄i )(zij − z̄i )
′, (3.33)

B̂ = 1

m − 1

m∑
i=1

(z̄i − z̄)(z̄i − z̄)′ − Ŵ

n
, (3.34)

where z̄i = 1
n

∑n
j=1 zij .

Example 3.12 (Glass Evidence) Consider a case in which two glass frag-
ments are recovered on the jacket of an individual who is suspected to be
involved in a crime. Two glass fragments are collected at the crime scene for
comparative purposes. The competing propositions are:

H1 : The recovered and known glass fragments originate from the same
source (broken window at the crime scene).

H2 : The recovered and known glass fragments originate from different
sources.

For each fragment, three variables are considered: the logarithmic trans-
formation of the ratios Ca/K , Ca/Si, and Ca/Fe (Aitken and Lucy, 2004).
Two replicate measurements are available for each fragment. Measurements
on the two recovered fragments are

y1 =
⎛
⎝ 3.77379

−0.89063
2.62038

⎞
⎠ , y2 =

⎛
⎝ 3.93937

−0.89343
2.63860

⎞
⎠ .

Measurements on the two control fragments are

x1 =
⎛
⎝ 3.84396

−0.91010
2.65437

⎞
⎠ , x2 =

⎛
⎝ 3.72493

−0.89811
2.61933

⎞
⎠ .

Consider the database named glass-data.txt. This database is part
of the supplementary material of Aitken and Lucy (2004) and contains n = 5
replicate measurements of the elemental concentration of glass fragments

(continued)
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Example 3.12 (continued)
from several windows (m = 62). The variables of interest (i.e., the logarithmic
transformation of the ratios Ca/K , Ca/Si, and Ca/Fe) are displayed in
columns 6, 7 and 8, while the object (window) identifier is in column 9.

> population=read.table("glass-data.txt", header=T)
> variables=c(6,7,8)
> grouping.item=9

Measurements from the recovered fragments, y = (y1, y2), and measure-
ments from the control fragments, x = (x1, x2), were selected from the
available replicate measurements for the first group (window). The first two
replicate measurements were selected to act as recovered data, while the last
two replicate measurements were selected to act as control data

> item=1
> recovered=population[which(population[,grouping.
+ item]==item),][1:2,variables]
> recovered

logCaK logCaSi logCaFe
1 3.77379 -0.89063 2.62038
2 3.93937 -0.89343 2.63860

> control=population[which(population[,grouping.
+ item]==item),][4:5,variables]
> control

logCaK logCaSi logCaFe
4 3.72493 -0.89811 2.61933
5 3.66573 -0.89693 2.76393

Data concerning measurements from the first window were then excluded
from the database

> pop.back <- population[-which(population[,grouping.
+ item]==item),]

The database named pop.back will serve as background data and can be
used to estimate the model parameters μ, W and B as in (3.32), (3.33),
and (3.34) by means of the function two.level.mv.WB contained
in the routines file two_level_functions.r. This file is part of
the supplementary materials available on the website of this book (on

(continued)



114 3 Bayes Factor for Evaluative Purposes

Example 3.12 (continued)
http://link.springer.com/) and can be run in the R console by
inserting the command

> source('two_level_functions.r')

The mean vector between sources, the within-source covariance matrix, and
the between-source covariance matrix can therefore be obtained as follows:

> WB <- two.level.mv.WB(pop.back,variables,
+ grouping.item)
> mu <- WB$all.means
> W <- WB$W
> B <- WB$B
> mu

logCaK logCaSi logCaFe
[1,] 4.20495 -0.7425402 2.770238

> W

logCaK logCaSi logCaFe
logCaK 1.688046e-02 2.792714e-05 2.783344e-04
logCaSi 2.792714e-05 6.545540e-05 8.362677e-06
logCaFe 2.783344e-04 8.362677e-06 1.294188e-03

> B

logCaK logCaSi logCaFe
logCaK 0.71485025 0.099343866 -0.047824106
logCaSi 0.09934387 0.062724678 -0.007360187
logCaFe -0.04782411 -0.007360187 0.102438334

The Bayes factor can be calculated as the ratio between (3.27)
and (3.28) using the function two.level.mvn.BF available in the
routines file two_level_functions.r. This function is part of the
supplementary materials available on the website of this book (on
http://link.springer.com/). First, it is necessary to calculate the
sample means ȳ and x̄ and to determine the sample size ny and nx

> ybar=as.vector(colMeans(recovered))
> xbar=as.vector(colMeans(control))
> ny=dim(recovered)[1]
> nx=dim(control)[1]

(continued)
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Example 3.12 (continued)
The Bayes factor can be obtained as

> BF=two.level.mvn.BF(W, B, mu, xbar, ybar, nx, ny)
> BF

[1] 157.6265

This Bayes factor represents moderately strong support for the proposition
according to which the recovered and the control fragments originate from
the same source, rather than from different sources. This is expected because
the compared measurements refer to the same fragment.

3.4.1.2 Non-normal Distribution for the Between-Source Variability

The two-level random effect model presented in the previous section is based
on the assumption of normality of the between-source variability. However, in
many practical applications, observations or measurements do not exhibit (enough)
regularity for standard parametric models to be used. For example, a multivariate
normal distribution for the mean vector θ may be difficult to justify. It can be
replaced by a kernel density estimate, which is sensitive to multimodality and
skewness, and which may provide a better representation of the available data.

Starting from a database {zij = (zij1, . . . , zij1); i = 1, . . . , m and j =
1, . . . , n)}, the estimate of the probability density distribution for the between-
source variability can be obtained as follows:

f (θ | z̄1, . . . , z̄m,B, h) = 1

m

m∑
i=1

K(θ | z̄i , B, h), (3.35)

where the kernel density function K(θ | z̄i , B, h) is taken to be a multivariate
normal distribution centered at the group mean z̄i , with covariance matrix h2B.
The smoothing parameter h can be estimated as

ĥ =
(

4

2p + 1

) 1
p+4

m−1/(p+4). (3.36)

See also Silverman (1986) and Scott (1992).
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We first write a function hopt that computes the estimate of the smoothing
parameter.

> hopt=function(p,m){
+ h=(4/(2*p+1))^(1/(p+4))*m^(-1/(p+4))
+ return(h)}

Thus, if the number p of variables is set equal to 4 and the number of sources
m is set equal to 30, the smoothing parameter h can be estimated as in (3.36)

> p=4
> m=30
> hopt(p,m)

[1] 0.5906593

The BF can be obtained as in (3.21), where a multivariate normal distribution
is used for the control and the recovered measurements as in (3.22), and a kernel
distribution for the between-source variability, as in (3.35). The numerator and the
denominator of the BF, f1(y, x | μ,W,B) and f2(y, x | μ,W,B), can be obtained
analytically (Aitken and Lucy, 2004). The BF is the ratio between

| B |1/2 mhp | nyW
−1

+ nxW
−1 + (h2B)−1 |−1/2 exp

{
−1

2
F2

} m∑
i=1

exp

{
−1

2
Fi

}
(3.37)

and

| nyW
−1 + (h2B)−1 |−1/2

m∑
i=1

exp

{
−1

2
Fyi

}

× | nxW
−1 + (h2B)−1 |−1/2

m∑
i=1

exp

{
−1

2
Fxi

}
, (3.38)

where:

Fi = (w∗ − z̄i )
′
{(

nyW
−1 + nxW

−1
)−1 + (

h2B
)}−1

(w∗ − z̄i ),

w∗ = (
nyW

−1 + nxW
−1

)−1 (
nyW

−1ȳ + nxW
−1x̄

)
,

Fyi = (ȳ − z̄i )
′
(

W
ny

+ h2B
)−1

(ȳ − z̄i ),

Fxi = (x̄ − z̄i )
′
(

W
nx

+ h2B
)−1

(x̄ − z̄i ).
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Example 3.13 (Glass Evidence—Continued) Consider the case examined in
Example 3.12, and suppose a kernel distribution is used to model the between-
source variability (Aitken and Lucy, 2004). Start from the same database,
glass-data.txt, covering n replicate measurements of p variables for
each of m = 62 different sources. The smoothing parameter can be estimated
using the function hopt, for p = 3.

> p=3
> m=62
> h=hopt(p,m)
> h

[1] 0.5119462

First, the group means z̄i must be obtained. They are an output of the function
two.level.mv.WB, previously used to estimate the model parameters.

> group.means=WB$group.means

Here we show only the first six rows of the (m × p) matrix, where each row
represents the means of the measurements z̄i = 1

n

∑n
i=1 zij .

> head(group.means)

logCaK logCaSi logCaFe
2 4.895500 -0.346682 2.445828
3 2.581000 -0.890684 2.922228
4 4.092612 -0.801742 2.761072
5 4.290912 -0.267606 2.665930
6 4.594812 -0.405718 2.674566
7 2.543280 -0.893428 2.898054

The Bayes factor can then be calculated as the ratio between (3.37)
and (3.38) using the function two.level.mvk.BF contained in
the routines file two_level_functions. This function is part of
the supplementary materials available on the website of this book (on
http://link.springer.com/).

> source('two_level_functions.r')
> BF=two.level.mvk.BF(xbar,ybar,nx,ny,W,B, group.

means, h)
> BF

[1] 151.6001

The Bayes factor represents moderately strong support for the proposition
according to which the recovered and the control fragments originate from
the same source, rather than from different sources.
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A detailed comparison and discussion of the performance of these two multivari-
ate random effect models can be found in Aitken and Lucy (2004). An alternative
approach to the kernel density estimation is presented by Franco-Pedroso et al.
(2016), modeling the between-source distribution by means of a Gaussian mixture
model.

Note that a third level of variability could be considered. In fact, one may wish
to model separately the variability between replicate measurements from a given
item originating from a given source (e.g., replicate measurements from a glass
fragment originating from a given window) and the variability between different
items originating from a given source (e.g., different glass fragments originating
from the same window). This aspect will be tackled in Sect. 3.4.4 where three-level
models will be introduced.

3.4.1.3 Non-constant Within-Source Variability

The two-level random effect models presented in Sects. 3.4.1.1 and 3.4.1.2 are
characterized by the assumption of a constant within-source variability. In other
words, it was assumed that every single source has the same intra-variability.
While for some type of trace evidence this assumption is acceptable (e.g., for
measurements of the elemental composition of glass fragments), a constant within-
source variation may be more difficult to justify in other forensic domains. Consider,
for example, the case of handwriting on questioned documents where it is largely
recognized that intra-variability may vary between writers (Marquis et al., 2006).

Suppose that a handwritten document of unknown source is available for
comparative examinations. Handwritten items from a person who is suspected to
be the writer are collected and analyzed. Multiple characters are analyzed on the
questioned document and on the known writings of the person of interest. The
following propositions are defined:

H1: The person of interest wrote the questioned document.
H2: An unknown person wrote the questioned document.

The distribution of the vector of means within group (source) θi is treated
as explained in Sect. 3.4.1.1, i.e., (θ i | μ, B) ∼ N(μ, B). An inverse Wishart
distribution is chosen to model the uncertainty about the within-group covariance
matrix,

(Wi | Ω, ν) ∼ W−1(Ω, ν), (3.39)

where Ω is the scale matrix and ν are the degrees of freedom (Bozza et al., 2008).
The scale matrix Ω is elicited in a way such that the prior mean of Wi is taken
to be equal to the within-group covariance matrix estimated from the available
background data as in (3.33), while μ is estimated as in (3.32) and the between-
group covariance matrix is estimated as
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B̂ = 1

m − 1

m∑
i=1

n(z̄i − z̄)(z̄i − z̄)′.

A two-level multivariate random effect model with an inverse Wishart distribu-
tion, modeling the uncertainty about the within-source covariance matrix, has also
been proposed by Ommen et al. (2017).

First, consider the numerator of the Bayes factor in (3.21). If proposition H1
holds, then θy = θx = θ and Wy = Wx = W , and the marginal likelihood is as
follows:

f (y, x | H1) = f1(y, x | μ, B,Ω, ν)

=
∫

f (y | θ ,W)f (x | θ ,W)f (θ | μ, B)f (W | Ω, ν)d(θ ,W),

(3.40)

where f (θ | μ, B) is as in (3.25), and

f (W | Ω, ν) = c | Ω |ν−p−1 /2

| W |ν/2 exp

{
−1

2
tr(W−1Ω)

}
,

where c is the normalizing constant (e.g., Press, 2005).
If propositionH2 holds, then θy �= θx andWy �= Wx , and the marginal likelihood

takes the following form:

f (y, x | H2) = f2(y, x | μ, B,Ω, ν) (3.41)

=
∫

f (y | θ ,W)f (θ,W | μ, B,Ω, ν)d(θ ,W)

×
∫

f (x | θ,W)f (θ ,W | μ, B,Ω, ν)d(θ ,W).

The Bayes factor is the ratio between the marginal likelihoods in (3.40) and (3.41).
However, these distributions are not available in closed form as the integrals do
not have an analytical solution. Several approaches are available to deal with this
problem. Chib (1995) estimates the marginal likelihood f (y, x | Hi) by a direct
application of Bayes theorem, since the marginal likelihood can be seen as the
normalizing constant of the posterior density f (θ ,W | y, x,Hi). The marginal
likelihood can therefore be obtained as

f (y, x | Hi) = f (y, x | θ,W)f (θ ,W | Hi)

f (θ ,W | y, x,Hi)
. (3.42)

While the likelihood function f (y, x | θ,W) and the prior density f (θ ,W | Hi)

can be easily evaluated at any parameter point (θ∗,W ∗), this is not the case for the
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posterior density f (θ ,W | y, x,Hi), which is not known in closed form. A Gibbs
sampling algorithm (Sect. 1.8) can be applied to the set of the complete conditional
densities f (θ | W, y, x,Hi) and f (W | θ, y, x,Hi), and the posterior density
f (θ,W | y, x,Hi) can be approximated from the output of the Gibbs sampling
algorithm as f̂ (θ ,W | y, x,Hi) (Chib, 1995; Bozza et al., 2008; Aitken et al., 2021).

The marginal likelihood in (3.42) can be estimated at a given parameter point
(θ∗,W ∗) as

f̂ (y, x | Hi) = f (y, x | θ∗,W ∗)f (θ∗,W ∗ | Hi)

f (θ∗,W ∗ | y, x,Hi)
.

The Bayes factor is then calculated as

BF = f̂ (y, x | H1)

f̂ (y, x | H2)
. (3.43)

As mentioned in Sect. 1.8, many other approaches are available, and their efficiency
should be studied and compared.

Example 3.14 (Handwriting Evidence) Consider a hypothetical case involv-
ing a handwritten document. Handwritten items from a person of interest
are available for comparative examinations. The propositions of interest are
therefore:

H1 : The person of interest wrote the questioned document.
H2 : An unknown person wrote the questioned document.

Suppose that n1 = 8 characters of type a are collected from the questioned
document and that n2 = 8 characters of the same type are extracted from
a document originating from the person of interest, taken for comparative
purposes. The contour shape of loops of handwritten characters can be
described using a methodology based on Fourier analysis (Marquis et al.,
2005, 2006). In brief, the contour shape of each handwritten character loop
can be described by means of a set of variables representing the surface and a
set of harmonics. Each harmonic corresponds to a specific contribution to the
shape and is defined by an amplitude and a phase, the Fourier descriptors.

Consider the database named handwriting.txt available on the
book’s website. It contains data on p = 9 variables (i.e., the surface, the
amplitude and the phase of the first four harmonics), measured on several
characters of type a collected from m = 20 writers. The variables of interest
are displayed in columns 2 to 10. Column 1 contains the item (writer)
identifier

(continued)
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Example 3.14 (continued)
> population=read.table('handwriting.txt',
+ header=TRUE)
> names(population)=c('writer','A0','A1','B1','A2',
+'B2','A3','B3','A4','B4')
> variables=2:10
> grouping.item=1

In the current example, measurements y on the questioned document and
measurements x on the control document were randomly selected from the
available measurements on characters collected from a given writer (i.e.,
writer no. 1). Starting from a total number of, say, n available characters,
2×n1 characters have been selected: the first n1 characters serve as recovered
data, while the remaining serve as control data

> item=1
> base=population[which(population[,grouping.item]
+ ==item),]
> nr=dim(base)[1]
> n1=8
> recovered=as.matrix(base[1:n1,variables])
> control=as.matrix(base[(n1+1):(2*n1),variables])

Data concerning measurements from the selected writer were then excluded
from the database

> pop.back=population[-which(population[,grouping.
+ item]==item),]

The database pop.back will serve as background data and can be used
to estimate the model parameters as in (Bozza et al., 2008) using the function
two.level.mv.WB available in the file two_level_functions.r.

> source('two_level_functions.r')
> WB = two.level.mv.WB(pop.back,variables,
+ grouping.item,nc=TRUE)
> mu = t(WB$all.means)
> W = WB$W
> B = WB$B

The number of degrees of freedom ν of the inverse Wishart distribution is
chosen so as to reduce the variability of this distribution, centered at the
within-source covariance matrix estimated as in (3.33).

> p=9
> nu=40
> Omega=W*(nu-2*p-2)

(continued)
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Example 3.14 (continued)
The Gibbs sampling algorithm is run over 10000 iterations with a burn-in of
1000.

> n.iter=10000
> burn.in=1000

The Bayes factor in (3.43) can then be calculated using the function
two.level.mvniw.BF that is part of the supplementary materials. Note
also that this routine requires other routines that are available in the packages
MCMCpack (Martin et al., 2021) and mvtnorm (Genz et al., 2020).

> BF=two.level.mvniw.BF(recovered,control,Omega,B,mu,
+ nu,p, n.iter,burn.in)
> BF

[1] 5543330

The Bayes factor represents extremely strong support for the proposition
according to which the questioned and the recovered handwritten materials
originate from the same source, rather than from different sources. A fully
documented open-source package (Gaborini, 2019) has been developed by
Gaborini (2021).

Note that it is important to critically examine large BF values, such as the one
obtained above. For a discussion about extreme values, see Aitken et al. (2021),
Hopwood et al. (2012), and Kaye (2009). Moreover, as underlined in Sect. 1.11,
the marginal likelihood is highly sensitive to the prior assessments and so is the
BF. In particular, while the overall mean vector, the within- and the between-source
covariance matrices are estimated from the available background data, the number
of degrees of freedom of the inverse Wishart distribution are chosen so as to reduce
the dispersion of the prior. A sensitivity analysis may be performed to assess the
sensitivity of the BF to different choices of the degrees of freedom ν in (3.39).

The BF may also be sensitive to the MCMC approximation. Figure 3.5 provides
an illustration of BF variability. Results are based on 50 realizations of the BF
approximation in (3.43).

> ns=50
> BFs=matrix(0,nrow=ns,ncol=1)
> for(i in 1:ns){
+ BFs[i]=two.level.mvniw.BF(recovered,control,Omega,B,
+ mu,nu,p,n.iter,burn.in)}
> hist(log(BF),freq=F,main='',xlab='log(BF)')
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Fig. 3.5 Histogram of 50
realizations of the BF
approximation in (3.43)
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The models discussed here rely on the assumption of independence between
sources, focusing on the inherent variability of features. In the case of questioned
documents (Sect. 3.4.1.3), this amounts to assume that handwritten material has
been produced without any intention of reproducing someone else’s writing style.
The possibility of forgery and/or disguise breaks the independence assumption made
at denominator. Section 3.4.3 will address this complication.

3.4.2 Assessment of Method Performance

The results of the procedures described in the previous sections may be sensitive to
changes in the features of recovered and control materials, the available background
information, as well as to choices made during probabilistic modeling and prior
elicitation. A sensitivity analysis may be conducted in order to gain a better
understanding of the properties of the chosen method. It is fundamental to gain
an understanding of how well a method performs: if the recovered and control
data originate from the same source, the BF is expected to be greater than 1. Vice
versa, if the compared items come from different sources, a BF smaller than 1 is
expected.

Several methods exist for the assessment of the performance of the methods for
evidence evaluation. Commonly encountered measures in this context are rates of
false negatives (i.e., cases in which the Bayes factor is smaller than 1, supporting
hypothesis H2, when hypothesis H1 holds) and false positives (i.e., cases in which
the Bayes factor is greater than 1, supporting hypothesis H1, when hypothesis
H2 holds). The rate of false negatives is the number of same-source comparisons
with a Bayes factor smaller than 1 divided by the total number of same-source
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comparisons. The false positive rate is the number of different-source comparisons
with a Bayes factor greater than 1 divided by the total number of different-
source comparisons. Given a database of cases (e.g., measurements on handwriting
characters) for which the source is known, it is possible to study the behavior of the
Bayes factor as the data pertaining to control and recovered items change.

Consider again the questioned document case discussed in Sect. 3.4.1.3. There is
variability in handwriting, and the reported Bayes factor is sensitive to variability
of the shape of handwritten characters. This is not surprising as no one writes
the same word exactly the same way twice. Consider measurements of features of
handwritten characters of a given writer taken from the available database. These
measurements are organized into a (n × p) matrix, where n is the number of
available handwritten characters and p represents the number of features (variables).
Denote this matrix base. Suppose that, among the n characters, we select a certain
number 2 × n1 < n of characters, forming a group. Repeating this a certain number
of times leads to multiple groups. On each member (character) within a group, p

variables are measured. Then we take pairs of groups (i.e., measurements on the
group members), taken to represent recovered and control data. Then, the Bayes
factor is calculated for each couple. Here, each couple represents a same-source
comparison.

Example 3.15 (Two-Level Model for Handwriting—Assessment of Model Per-
formance) Recall Example 3.14 where a total number of 16 characters have
been randomly selected from the available characters collected from a given
writer (writer no. 1), extracted from the database handwriting.txt. A
Bayes factor equal to 5543330 was obtained. If different sets of characters
are extracted, the Bayes factor will be influenced (also) by the within-writer
variability.

Suppose now that, for the same writer, ns = 50 distinct groups of
characters (each of size 16) are drawn and split into groups of size 8 to act
as questioned and control data. The Bayes factor is calculated for each of the
50 groups. Clearly, since the sampled measurements originate from the same
writer, we expect Bayes factors greater than 1.

> ns=50
> n=dim(base)[1]
> n1=8
> BFs=matrix(0,nrow=ns,ncol=1)
> for (i in 1:ns){
+ ind=sample(1:n,2*n1,replace=F)
+ recovered=as.matrix(base[ind[1:n1],
+ variables])control=as.matrix(base
+ [ind[(n1+1):length(ind)],variables])

(continued)
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Example 3.15 (continued)
+ BFs[i]=two.level.mvniw.BF(recovered,
+ control,Omega,
+ B,mu,nu,p,n.iter,burn.in)
+ }

Figure 3.6 shows a histogram of the results for the ns = 50 groups of
sampled characters. No false negatives have been observed. The range of the
BF values obtained is given here below

> range(BFs)

[1] 1.709027e+02 1.438262e+29

There is also variability between writers, as no two writers write exactly
alike. Consider now measurements of features of handwritten characters from
a different writer, say writer no. 6, drawn from the same database. These
measurements are stored in a matrix denoted base2.

> item2=6
> base2=population[which(population[,grouping.item]==
+ item2),]
> n2=dim(base2)[1]

We first estimate the population parameters from the background population
where both selected writers have been eliminated.

> pop.back=population[-which(population[,grouping
+ .item]==item|population[,grouping.item]==item2),]
> WB = two.level.mv.WB(pop.back,variables,
+ grouping.item,nc=TRUE)
> mu = t(WB$all.means)
> W = WB$W
> B = WB$B
> Omega=W*(nu-2*p-2)

Next, for each of the two writers, take 50 groups of characters (from base
and base2). Each group contains 8 members, on each of which p features are
measured. Then, take a group from each writer and form a so-called known
different-source pair, and do this multiple times. These draws are taken to
represent recovered and control data. Then, the Bayes factor is calculated for
each couple.

> ns=50
> n=dim(base)[1]
> nc=dim(base2)[1]
> n1=8

(continued)
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Fig. 3.6 Histogram of
log(BF) values for 50 groups,
each containing 8 handwritten
characters, sampled from a
given writer to act as
questioned and control
datasets
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Example 3.15 (continued)

> BFs2=matrix(0,nrow=ns,ncol=1)
> for (i in 1:ns){
+ val.r=sample(1:n,n1)
+ recovered=as.matrix(base[val.r,variables])
+ val.c=sample(1:nc,n1)
+ control=as.matrix(base2[val.c,variables])
+ BFs[i]=two.level.mvniw.BF(recovered,
+ control,Omega,B,
+ mu,nu,p,n.iter,burn.in)
+ }

Figure 3.7 shows a histogram of the results. No false positives have been
observed. The range of the BF values obtained is

> range(BFs)

[1] 2.733273e-10 7.034354e-02

The variability of BF values for different samples is not surprising because of
handwriting variability. However, this should not be understood as there being a
Bayes factor distribution. See, e.g., Morrison (2016), Ommen et al. (2016), and
Taroni et al. (2016) for a discussion of issues relating to the reporting of the precision
of forensic likelihood ratios.

Over the past decade, several other approaches have been proposed in forensic
statistics literature for evaluating the performance of statistical procedures, based
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Fig. 3.7 Histogram of
log(BF) values obtained for
50 groups, each containing 8
handwritten characters,
sampled from the same
couple of writers to act as
questioned and control
datasets
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on a likelihood ratio or a Bayes factor. These methods provide a rigorous approach
to assessing and comparing the performance of evaluative methods prior to using
them in casework and forensic reporting. See, in particular, Ramos and Gonzalez-
Rodriguez (2013) and Ramos et al. (2021) for a methodology to measure calibration
of a set of likelihood ratio values and the concept of Empirical Cross-Entropy for
representing performance, illustrated using examples from forensic speech analysis.
These concepts are also discussed by Meuwly et al. (2017) who present a guideline
for the validation of evaluative methods considering source level propositions.
Zadora et al. (2014) present performance assessment for physicochemical data in
the context of trace evidence (e.g., glass). For a recent review, see also Chapter 8 of
Aitken et al. (2021).

3.4.3 On the Assumption of Independence Under H2

The models presented in Sect. 3.4.1 are based on the assumption of independence
between the questioned and known materials under hypothesis H2. This may be
reasonable for certain types of evidence and cases, but less for others. In fact, while
a physical feature (e.g., the elementary composition of glass fragments) requires
external constraint to be altered, a behavioral or biometric feature such as signature
can be modified intentionally.

Consider handwriting as an example. When evaluating results of comparative
handwriting examination, the case circumstances may be such that there is no issue
of handwriting features being disguised or the result of an attempt to imitate the
handwriting of another person. The approach suggested in Sect. 3.4.1.3 may thus
be applicable. In turn, in case of alleged forgery of signatures, the (unknown)
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writer specifically intends to reproduce features of a target signature. The allegation,
then, is that a signature is either simulated or disguised, rather than presenting a
correspondence or similarity with a genuine signature by mere chance alone (Linden
et al., 2021). In such cases, the Bayes factors previously developed in Sect. 3.4.1
cannot be used to approach the question of interest here because the assumption of
independence between sources at the denominator cannot be maintained. It follows
that one must compute

BF = f (y | x,H1)

f (y | x,H2)
, (3.44)

as f (y | x,H2), following the above argument, does not simplify to f (y | H2) (see
also Sect. 1.5.1).

Consider the following competing propositions:

H1 : The person of interest (POI) produced the questioned signature.
H2 : An unknown person produced the questioned signature, trying to simulate the

POI’s signature.

If proposition H2 is true, the forensic document examiner has to deal with a
signature written by someone who has knowledge of the POI’s signature.

Consider the two-level model in Sect. 3.4.1.3 where the distribution of the
measurements on the recovered and control data is taken to be Normal, with vector
means θy and θx , and covariance matrices Wy and Wx

(Y | θy,Wy) ∼ N(θy,Wy) ; (X | θx,Wx) ∼ N(θx,Wx). (3.45)

The probability densities at the numerator and denominator of the BF in (3.44) can
be obtained as

f (y, x | Hi) = fi(y, x | μi , Bi,Ωi, νi)

=
∫

f (y | θ,W)f (θ ,W | x,μi , Bi,Ωi, νi), (3.46)

where (μi , Bi) and (Ωi, νi) are the hyperparameters of the prior distributions
under the competing propositions (i.e., a normal prior and an inverse Wishart prior
distribution). The Bayes factor can thus be calculated as

BF = f1(y, x | μ1, B1,Ω1, ν1)

f2(y, x | μ2, B2,Ω2, ν2)
. (3.47)

Two different background databases are needed to inform model parameters
under the competing propositions: a database of genuine signatures (zij ) and a
database of imitated signatures (sij ). Someone who imitates a signature needs to
work outside their writing habits and movement patterns. Thus, simulated signatures
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do not reflect the same movements and writing features as genuine signatures.
Model parameter μi can be estimated as in (3.32), and Bi as explained in Sect.
3.4.1.3. The scale matrix Ωi can be chosen so as to center the prior distribution at
the within-group covariance matrix Wi that can be estimated as in (3.33).

The probability densities in (3.46) are not available in closed form but can
be estimated from the output of a MCMC algorithm following, for example, the
ideas described in Sect. 3.4.1.3. A Gibbs sampling algorithm is implemented here.
The routine is different from that developed in Sect. 3.4.1.3 because it calculates
the BF in (3.47). In this formula, no assumption of independence is made at the
denominator, and two different databases are used.

Example 3.16 (Digitally Captured Signatures) Consider a case involving a
questioned signature on a contract signed on a digital tablet. The person
of interest denies having signed the contract. Among the multiple features
that are captured by the digital tablet, the average speed and writing time
are considered here. See Linden et al. (2021) for a detailed description
of the experimental conditions. Measurements on the questioned signature
are y = (4639, 380.42), while measurements on the control signature are
x = (4460, 323.4787). Note that the first value is the average speed and the
second is the writing time.

> quest=c(4639,380.42)
> ref=c(4460,323.4787)

Model parameters under hypothesis H1 (i.e., the mean vector μ1, the within-
group covariance matrix W1, and the between-group covariance matrix B1)
are estimated from an available database of genuine signatures (zij ) and are
given here below.

> mug=matrix(c(2754.767,511.284),ncol=1)
> Wg=matrix(c(95755.861,-4214.939,-4214.939,
+ 2857.975),byrow=T,nrow=2)
> Bg=matrix(c(3377136,30548.24,30548.24,20335.10),
+ byrow=T,nrow=2)

The trace matrix of the inverse Wishart distribution is then obtained as

> p=2
> nu=10
> Omegag=Wg*(nu-2*p-2)

In the same way, model parameters under hypothesis H2 are estimated from
an available database of simulated signatures (sij ) and are given here below.

(continued)
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Example 3.16 (continued)
> mus=matrix(c(14824.3,145.0719),ncol=1)
> Ws=matrix(c(14798844,-42412.0995,-42412.0995,
+ 940.0561), byrow=T,nrow=2)
> Bs=matrix(c(37657528.8,-157142.437,-157142.437,
+ 3691.482), byrow=T,nrow=2)
> Omegas=Ws*(nu-2*p-2)

A Gibbs sampling algorithm is run over 10000 iterations, with a burn-in of
1000.

> n.iter=10000
> burn.in=1000

The Bayes factor in (3.44) can then be calculated using the function
two.level.mvniw2.BF (see supplementary materials).

> source('two_level_functions.r')
> BF=two.level.mvniw2.BF(quest,ref,Wg,Bg,mug,Ws,Bs,
+ mus,nu,p,n.iter,burn.in)
> BF

[1] 40846.87

The BF represents very strong support for the proposition according to
which the questioned signature originates from the person of interest rather
than from an unknown person who attempted to imitate the target signature.

3.4.4 Three-Level Models

So far, two-level models have been considered, taking into account the within-source
and the between-source variability. However, it is not uncommon to encounter
situations in which the hierarchical ordering shows an additional level of variability,
e.g., in relation to measurement error.

Denote again by p the number of variables observed on items of a given
evidential type. Suppose that continuous measurements of these variables are
available on a random sample from m sources with s items for each source and
n replicate measurements on each of the N = ms items. The background data can
be denoted by zikj = (zikj1, . . . , zikjp)′, where i = 1, . . . , m denotes the number of
sources (e.g., windows, writers), k = 1, . . . , s denotes the number of items for each
source (e.g., glass fragments, handwritten characters), and j = 1, . . . , n denotes the
number of replicate measurements for each item.
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A Bayesian statistical model for the evaluation of evidence for three-level
normally distributed multivariate data was proposed by Aitken et al. (2006),
focusing on the elemental composition of glass fragments. Denote the mean vector
within item k in group i as θ ik and the covariance matrix of replicate measurements
as W . For the variability of replicate measurements, the distribution of Zikj is taken
to be normal, Zikj ∼ N(θ ik,W).

Denote by μi the mean vector within group i and by V the within-group
covariance matrix. The distribution of θ ik for the within-group variability is taken
to be normal, θ ik ∼ N(μi , B).

Denote by φ the mean vector between groups. Let U denote the between-group
covariance matrix. For the between-group variability, the distribution of the μi is
taken to be normal, μi ∼ N(φ, V ).

Consider the case described in Sect. 3.4.1, where measurements are available
on ny items from an unknown origin as well as measurements on nx items from
a known origin. These two groups of items may or may not come from the same
source. Competing propositions may be formulated as follows:

H1 : The recovered and the control items originate from the same source.
H2 : The recovered and the control items originate from different sources.

There are n1 replicate measurements available on each of the recovered ny items.
Denote the measurement vector by y, where the vector components are denoted
by ykj (for k = 1, . . . , ny and j = 1, . . . , n1) and ykj = (ykj1, . . . , ykjp)′. For
each of the nx control items, n2 replicate measurements are available. Denote the
measurement vector by x, where the vector components are denoted (xkj , k =
1, . . . , nx and j = 1, . . . , n2) and xkj = (xkj1, . . . , xkjp)′.

The Bayes factor is the ratio of two probability densities of the form f (y, x |
Hi) = fi(y, x | φ,W,B, V ), i = 1, 2. The probability density in the numerator is
given by

f1(y, x | φ,W,B, V )

=
∫ ∫

f (y | θ ,W)f (x | θ,W)f (θ | μ, B)f (μ | φ, V )dμdθ , (3.48)

where all probability densities are multivariate normal.
In the denominator, the probability density is given by

f2(y, x | φ,W,B.V ) =
∫ ∫

f (y | θ ,W)f (θ | μ, B)f (μ | φ, V )dμdθ

×
∫ ∫

f (x | θ,W)f (θ | μ, B)f (μ | φ, V )dμdθ ,

(3.49)

where all probability densities are multivariate normal.
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As shown by Aitken et al. (2006), the value of the evidence is the ratio of

| B + V |1/2| [(nyn1 + nxn2)W
−1

+(B + V )−1] |−1/2 exp

{
−1

2
(F1 + F2)

}
(3.50)

to

| (nyn1W
−1 + (B + V )−1) |−1/2| nxn2W

−1 + (B + V )−1 |−1/2

× exp

{
−1

2
(F3 + F4)

}
, (3.51)

where:

F1 = (ȳ − x̄)′
(

nyn1nxn2W
−1

nyn1+nxn2

)
(ȳ − x̄),

F2 = (w̄ − φ)′
(
(nyn1 + nxn2)

−1W + B + V
)−1

(w̄ − φ),

F3 = (ȳ − φ)′
[
(nyn1)

−1W + B + V
]−1

(ȳ − φ),

F4 = (x̄ − φ)′
[
(nxn2)

−1W + B + V
]−1

(x̄ − φ),

and w̄ = nyn1ȳ+nxn2x̄
nyn1+nxn2

.
The overall mean φ, the measurement error covariance matrix W , the within-

group covariance matrix B, and the between-group covariance matrix V can be
estimated using the available background data:

φ̂ = 1

m

1

s

1

n

m∑
i=1

s∑
k=1

n∑
j=1

zikj , (3.52)

Ŵ = 1

ms(n − 1)

m∑
i=1

s∑
k=1

n∑
j=1

(zikj − z̄ik.)(zikj − z̄ik.)
′, (3.53)

B̂ = 1

m(s − 1)

m∑
i=1

s∑
k=1

(z̄ik. − z̄i..)(z̄ik. − z̄i..)
′ − Ŵ

n
, (3.54)

V̂ = 1

m − 1

m∑
i=1

(z̄i.. − z̄...)(z̄i.. − z̄...)
′ − B̂

s
− Ŵ

sn
, (3.55)

where z̄ik. = 1
n

∑n
j=1 zikj , z̄i.. = 1

s

∑s
k=1 zik. and z̄i... = 1

m

∑m
i=1 z̄i...

Example 3.17 (Glass Evidence—Continued) Consider again the case
described in Example 3.12 where two glass fragments are recovered on the
jacket of an individual who is suspected to be involved in a crime. Two glass
fragments are collected at the crime scene for comparative purposes. The
competing propositions are:

(continued)



3.4 Multivariate Data 133

Example 3.17 (continued)
H1 : The recovered and known glass fragments originate from the same

source (e.g., a broken window).
H2 : The recovered and known glass fragments originate from different

sources.

A database named glass-database.txt is available as part of the
supplementary material of Zadora et al. (2014). It contains measurements
of the elemental concentration of glass fragments from several windows
(m = 200). For each source, there are s = 12 fragments with n = 3
replicate measurements. For each fragment, five variables are considered: the
logarithmic transformation of the ratios Na/O, Mg/O, Al/O, Si/O, Ca/O.
The variables of interest are displayed in columns 3, 4, 5, 6, and 8, while
the object (window) identifier is in column 1. The fragment identifier is in
column 2.

> population=read.table('glass-database.txt',
+ header=T)
> variables=c(3,4,5,6,8)
> grouping.item=1
> grouping.fragment=2

Three replicate measurements are available for each fragment. Using the
notation introduced above

> ny=2
> nx=2
> n1=3
> n2=3

Measurements for the recovered fragments, y, and measurements for the
control fragments, x, were selected from the available data for the first
and second group (window) and the first two items (fragments) from these
windows. Therefore, a BF smaller than 1 is expected.

> recovered.item=1
> control.item=2
> base_c=population[which(population[,grouping.item]
+ ==control.item),]
> base_r=population[which(population[,grouping.item]
+ ==recovered.item),]
> recovered=base_r[which(base_r[,grouping.fragment]
+ ==1|base_r[,grouping.fragment]==2),
+ c(2,variables)]
> recovered

(continued)
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Example 3.17 (continued)
fragment logNaO logMgO logAlO logSiO

1 1 -0.6603 -1.4683 -1.4683 -0.1463
2 1 -0.6658 -1.4705 -1.4814 -0.1429
3 1 -0.6560 -1.4523 -1.4789 -0.1477
4 2 -0.6309 -1.4707 -1.5121 -0.1823
5 2 -0.6332 -1.4516 -1.4996 -0.1792
6 2 -0.6315 -1.4641 -1.4883 -0.1710

logCaO
1 -1.1096
2 -1.1115
3 -1.1118
4 -1.1306
5 -1.1332
6 -1.1291

> control=base_c[which(base_c[,grouping.fragment]==1|
+ base_c[,grouping.fragment]==2),c(2,variables)]
> control

fragment logNaO logMgO logAlO logSiO
13 1 -0.6231 -1.3641 -1.6540 -0.0964
14 1 -0.6122 -1.3589 -1.6622 -0.0886
15 1 -0.6108 -1.3742 -1.6935 -0.1205
16 2 -0.6135 -1.3686 -1.7202 -0.1381
17 2 -0.6205 -1.3844 -1.6831 -0.1273
18 2 -0.6204 -1.3692 -1.7269 -0.1199

logCaO
13 -0.9993
14 -0.9836
15 -1.0524
16 -1.0830
17 -1.0721
18 -1.0392

Next, the means of measurements ȳ, x̄, and w̄ are obtained.

> bary=colMeans(recovered[,-1])
> barx=colMeans(control[,-1])
> barw=colMeans(rbind(recovered,control)[,-1])

(continued)
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Example 3.17 (continued)
Data concerning measurements from the first two windows were then

excluded from the database

> pop.back <- population[-which(population[,
+ grouping.item]==1|population[,grouping.item]==2),]

The database named pop.backwill serve as background data. It can be used
to estimate the model parameters φ, W , B, and V as in (3.52), (3.53), (3.54)
and (3.55) by means of the function three.level.mv.WBV contained in
the routines file three_level_functions.r. This file is part of the
supplementary materials available on the book’s website and can be run in
the R console with the command

> source('three_level_functions.r')

The overall mean, the measurement error covariance matrix, the within-
source covariance matrix, and the between-source covariance matrix can be
estimated as follows:

> WBV=three.level.mv.WBV(pop.back,variables,
+ grouping.item,grouping.fragment)
> psi=WBV$overall.means
> W=WBV$W
> B=WBV$B
> V=WBV$V

The Bayes factor can be calculated as the ratio between (3.50) and (3.51)
using the function three.level.mvn.BF available in the routines file
three_level_functions.r. This function is part of the supplementary
materials available on the book’s website.

> BF=three.level.mvn.BF(bary,barx,barw,ny,nx,n1,n2,
+ psi,W,B,V)
> BF

[1] 0.000083299

The Bayes factor represents extremely strong support for the proposition
according to which the recovered and the control fragments originate from
different sources, rather than from the same source.

Note that the above development does not take into account the topic of variable
selection. See Aitken et al. (2006) for a proposal for dimensionality reduction based
on a probabilistic structure, determined by a graphical model obtained from a scaled
inverse covariance matrix.
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3.5 Summary of R Functions

The R functions outlined below have been used in this chapter.

Functions Available in the Base Package
colMeans: Forms column means for numeric arrays (or data frames)

d <name of distribution>, p <name of distribution> (e.g.,
dpois, pnorm): Calculate the density and the cumulative probability for
many parametric distributions.

More details can be found in the Help menu, help.start().

Functions Available in Other Packages
dinvgamma in package extraDistr: calculates the density of an inverse gamma

distribution.

dstp in package LaplacesDemon: calculates the density of a non-central
Student t distribution.

Functions Developed in the Chapter
hopt: Calculates the estimates ĥ of the smoothing parameter h.
Usage: hopt(p,m).
Arguments: p, the number of variables: m, the number of sources.
Output: A scalar value.

poisg: Computes the density of a Poisson–gamma distribution Pg(α, β, 1) at x.
Usage: poisg(a,b,x).
Arguments: a, the shape parameter α; b, the rate parameter β; x, a scalar value x.
Output: A scalar value.

post_distr: Computes the posterior distribution N(μx, τ
2
x ) of a normal mean θ ,

with X ∼ N(θ, σ 2) and θ ∼ N(μ, τ 2).
Usage: post_distr(sigma,n,barx,pm,pv).
Arguments: sigma, the variance σ 2 of the observations; n, the number of observa-

tions; barx, the sample mean x̄ of the observations; pm, the mean μ of the prior
distribution N(μ, τ 2); pv, the variance τ 2 of the prior distribution N(μ, τ 2).

Output: A vector of values, the first is the posterior mean μx , the second is the
posterior variance τ 2x .

two.level.mv.WB: Computes the estimate of the overall mean μ, the group
means z̄i , the within-group covariance matrix W , and the between-group covari-
ance matrix B for the two-level model in Sect. 3.4.1.

Usage: two.level.mv.WB(population, variables, grouping.
variable,nc=FALSE).

Arguments: population, a data frame with N rows and k columns for measure-
ments on m sources with n items for each source; variables, a vector con-
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taining the column indices of the variables to be used; grouping.variable,
a scalar specifying the variable that is to be used as the grouping factor. By
default (nc = FALSE), the between-group covariance matrix is estimated as in
Sect. 3.4.1.1. If nc = TRUE, the between-group covariance matrix is estimated
as in Sect. 3.4.1.3.

Output: The group means z̄i , the estimated overall mean μ̂, the estimated within-
group covariance matrix Ŵ , the estimated between-group covariance matrix B̂.

two.level.mvn.BF: Computes the BF for a two-level random effect model
where both the within-source variability and the between-source variability
are normally distributed, and the within-source covariance matrix is constant
between sources.

Usage: two.level.mvn.BF(W,B,mu,xbar,ybar,nx,ny).
Arguments: W, the within-source covariance matrix; B, the between-source covari-

ance matrix; mu, the mean vector between sources; xbar, the vector of means
for the control item; ybar, the vector of means for the recovered item; nx,
the number of measurements for the control material; ny, the number of
measurements for the recovered material.

Output: A scalar value.

two.level.mvk.BF: Computes the BF for a two-level random effect model
where the within-source variability is normally distributed, the normal distribu-
tion for the between-source variability is replaced by a kernel density distribu-
tion, and the within-source covariance matrix is constant between sources.

Usage: two.level.mvk.BF(xbar,ybar,nx,ny,W,B,group.means,h).
Arguments: xbar, the vector of means for the control item; ybar, the vector

of means for the recovered item; nx, the number of measurements for the
control material; ny, the number of measurements for the recovered material; W,
the within-source covariance matrix; B, the between-source covariance matrix;
group.means, a (m × p) matrix, where each row represents the vector of
means z̄i = 1

n

∑n
j=1 zij ; h, the smoothing parameter.

Output: A scalar value.

two.level.mvniw.BF: Computes the BF for a two-level random effect model
where both the within-source variability and the between-source variability are
normally distributed, and the uncertainty about the within-source covariance
matrix is modeled by an inverse Wishart distribution.

Usage: two.level.mvniw.BF(quest,ref,O,B,mu,nw,p,n.iter,
burn.in).

Arguments: quest, a (n × p) matrix containing measurements on the questioned
material; ref, a (n×p)matrix containing measurements on the control material;
O, the trace matrix of the inverse Wishart distribution; B, the between-source
covariance matrix; mu, the mean vector between sources; nw, the number
of degrees of freedom of the inverse Wishart distribution; p, the number of
variables; n.iter, the number of iterations of the Gibbs sampling algorithm;
burn.in, the number of discarded iterations.
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Output: A scalar value.

two.level.mvniw2.BF: Computes the BF for a two-level random effect model
where both the within-source variability and the between-source variability are
normally distributed, the uncertainty about the within-source covariance matrix is
modeled by an inverse Wishart distribution with no assumption of independence
between questioned and known materials at the denominator (i.e., under H2).

Usage: two.level.mvniw2.BF(quest,ref,Og,Bg,mug,Os,Bs,mus,
nu,p,n.iter,burn.in).

Arguments: quest, a (n × p) matrix containing measurements on the questioned
material; ref, a (n×p)matrix containing measurements on the control material;
Og, the trace matrix of the inverse Wishart distribution from the database
of genuine (handwritten) material; Bg, the between-source covariance matrix
from the database of genuine (handwritten) material; mug, the mean vector
between sources from the database of genuine (handwritten) material; Os, the
trace matrix of the inverse Wishart distribution from the database of simulated
(handwritten) material; Bs, the between-source covariance matrix from the
database of simulated (handwritten) material; mus, the mean vector between
sources from the database of simulated (handwritten) material; nw, the number
of degrees of freedom of the inverse Wishart distribution; p, the number of
variables; n.iter, the number of iterations of the Gibbs sampling algorithm;
burn.in, the number of discarded iterations.

Output: A scalar value.

three.level.mv.WBV: Computes the estimate of the overall mean φ, the
measurement error covariance matrix W , the within-group covariance matrix B,
and the between-group covariance matrix V for the three-level model presented
in Sect. 3.4.4.

Usage: three.level.mv.WBV(population,variables,grouping.
item,grouping.fragment).

Arguments: population, a data frame with msn rows and k columns collecting
measurements on m sources with s items for each source and n replicate
measurements for each item; variables, a vector containing the column
indices of the variables to be used; grouping.item, a scalar specifying the
variable that is to be used as the grouping item; grouping.fragment, a
scalar specifying the variable that is to be used for the grouping fragment.

Output: The estimated overall mean φ̂, the estimated measurement error covariance
matrix Ŵ , the estimated within-group covariance matrix B̂, the estimated
between-group covariance matrix V̂ .

three.level.mvn.BF: Computes the BF for a three-level random effect model
where the variation at all three levels is normally distributed.

Usage: three.level.mvn.BF(bary,barx,barw,ny,nx,n1,n2,psi,
W,B,V).

Arguments: bary, the mean vector of measurements on recovered items; barx,
the mean vector of measurements on control items; barw, the mean vector of
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measurements; ny, the number of recovered items; nx, the number of control
items; n1, the number of replicate measurements on each of the recovered items;
n2, the number of replicate measurements on each of the control items; psi,
the overall mean vector; W, the replicate measurements covariance matrix; B, the
within-group covariance matrix; V, the between-source covariance matrix.

Output: A scalar value.

Published with the support of the Swiss National Science Foundation (Grant no.

10BP12_208532/1).

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.



6756 15475 a 6756 15475 a
 
http://creativecommons.org/licenses/by/4.0/

	3 Bayes Factor for Evaluative Purposes
	3.1 Introduction
	3.2 Evidence Evaluation for Discrete Data
	3.2.1 Binomial Model
	3.2.2 Multinomial Model
	3.2.3 Poisson Model
	3.2.3.1 Choosing the Parameters of the Gamma Prior
	3.2.3.2 Sensitivity to Prior Probabilities of Competing Propositions


	3.3 Evidence Evaluation for Continuous Data
	3.3.1 Normal Model with Known Variance
	3.3.2 Normal Model with Both Parameters Unknown
	Choosing the Parameters of the Normal Prior

	3.3.3 Normal Model for Inference of Source
	More Than Two Propositions

	3.3.4 Score-Based Bayes Factor

	3.4 Multivariate Data
	3.4.1 Two-Level Models
	3.4.1.1 Normal Distribution for the Between-Source Variability
	3.4.1.2 Non-normal Distribution for the Between-Source Variability
	3.4.1.3 Non-constant Within-Source Variability

	3.4.2 Assessment of Method Performance
	3.4.3 On the Assumption of Independence Under H2
	3.4.4 Three-Level Models

	3.5 Summary of R Functions


