Skip to main content

Biodegradable Polymers in Biomedical Applications: A Focus on Skin and Bone Regeneration

  • Reference work entry
  • First Online:
Handbook of Biodegradable Materials

Abstract

Natural biodegradable polymers have attracted a lot of attention over the past decade because of their outstanding physical, chemical, mechanical, and physiological properties. Consequently, they are widely employed in many biomedical applications including wound healing, skin regeneration, and bone regeneration as bioscaffolds that mimic the complex 3D environment of cells in vivo. Thus, these natural polymer–based bioscaffolds enhance cell adhesion, proliferation, and differentiation, to replace the dead or damaged parts of the body without inducing inflammation or immune response. In addition, according to their biodegradability, they are promising candidates for short-term implants. This book chapter covers the features of many natural biodegradable polymers and the standards that should be considered upon designing 3D-based bioscaffolds for biomedical applications. Then, various synthetic routes of these polymers with their properties are also summarized, Finally, four common applications (wound healing, skin regeneration, bone regeneration, and implants) are disused in the light of future trends.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AT:

Aniline tetramer

CMC:

Carboxymethylcellulose

D.W.:

Distilled water

ECM:

Extracellular matrix

FXIIIa:

Activated factor XIII

GLcA:

Glucosamine

GLcNAc:

N-acetyl-glucosamine

HA:

Hyaluronic acid

MSCs:

Mesenchymal stromal cells

OHA/CEC:

Oxidized hyaluronic acid/N-carboxyethyl chitosan

OHA-AT:

Oxidized hyaluronic acid-graft-aniline tetramer

OHA-AT10/CEC:

Oxidized hyaluronic acid-graft-aniline tetramer 10/N-carboxyethyl chitosan

PCL:

Polycaprolactone

PEG:

Polyethylene glycol

PGA:

Polyglycolic acid

PLA-DX-PEG:

Poly-d, l-lactic acid–p-dioxanone polyethylene glycol block copolymer

PLGA:

Poly(lactide-co-glycolide)

PLLA:

Poly(l-lactic acid)

PP:

Polypropylene

PVA:

Poly(vinyl alcohol)

rhBMP-2:

Bone morphogenetic protein 2

SEM:

Scanning electron microscope

UDP:

Uridine diphosphate

VEGF:

Vascular endothelial growth factor

References

  1. Rai P, Mehrotra S, Priya S, Gnansounou E, Sharma SK (2021) Recent advances in the sustainable design and applications of biodegradable polymers. Bioresour Technol 325:124739

    Article  CAS  Google Scholar 

  2. Balaji AB, Pakalapati H, Khalid M, Walvekar R, Siddiqui H (2018) Natural and synthetic biocompatible and biodegradable polymers. Biodegradable and Biocompatible Polymer Composites. Duxford: Woodhead Publishing, 3–32

    Google Scholar 

  3. Gross RA, Kalra B (2002) Biodegradable polymers for the environment. Science (80- ) 297:803–807

    Google Scholar 

  4. Irastorza A, Zarandona I, Andonegi M, Guerrero P, de la Caba K (2021) The versatility of collagen and chitosan: from food to biomedical applications. Food Hydrocoll 116:106633

    Article  CAS  Google Scholar 

  5. Peng X, Dong K, Wu Z, Wang J, Wang ZL (2021) A review on emerging biodegradable polymers for environmentally benign transient electronic skins. J Mater Sci 56:1–25

    Article  Google Scholar 

  6. Vroman I, Tighzert L (2009) Biodegradable polymers. Materials (Basel) 2:307–344

    Article  CAS  Google Scholar 

  7. Caillol S (2021) Natural Polymers and Biopolymers II. MDPI

    Google Scholar 

  8. Chan BP, Leong KW (2008) Scaffolding in tissue engineering: General approaches and tissue-specific considerations. Eur Spine J 17:467–479. https://doi.org/10.1007/s00586-008-0745-3

    Article  CAS  Google Scholar 

  9. Henkel J, Hutmacher DW (2013) Design and fabrication of scaffold-based tissue engineering. BioNanoMaterials 14:171–193. https://doi.org/10.1515/bnm-2013-0021

    Article  Google Scholar 

  10. Chocholata P, Kulda V, Babuska V (2019) Fabrication of scaffolds for bone-tissue regeneration. Materials (Basel) 12: 568. https://doi.org/10.3390/ma12040568

    Article  CAS  Google Scholar 

  11. Yu J, Xia H, Ni Q-Q (2018) A three-dimensional porous hydroxyapatite nanocomposite scaffold with shape memory effect for bone tissue engineering. J Mater Sci 53:4734–4744. https://doi.org/10.1007/s10853-017-1807-x

    Article  CAS  Google Scholar 

  12. Zhang F, King MW (2020) Biodegradable Polymers as the Pivotal Player in the Design of Tissue Engineering Scaffolds. Adv Healthc Mater 9:1901358. https://doi.org/10.1002/adhm.201901358

    Article  CAS  Google Scholar 

  13. Ge Z, Jin Z, Cao T (2008) Manufacture of degradable polymeric scaffolds for bone regeneration. Biomed Mater 3:22001. https://doi.org/10.1088/1748-6041/3/2/022001

    Article  CAS  Google Scholar 

  14. Roseti L, Parisi V, Petretta M, Cavallo C, Desando G, Bartolotti I, Grigolo B (2017) Scaffolds for Bone Tissue Engineering: State of the art and new perspectives. Mater Sci Eng C 78:1246–1262. https://doi.org/10.1016/j.msec.2017.05.017

    Article  CAS  Google Scholar 

  15. Talikowska M, Fu X, Lisak G (2019) Application of conducting polymers to wound care and skin tissue engineering: A review. Biosens Bioelectron 135:50–63. https://doi.org/10.1016/j.bios.2019.04.001

    Article  CAS  Google Scholar 

  16. Chaudhari AA, Vig K, Baganizi DR, Sahu R, Dixit S, Dennis V, Singh SR, Pillai SR (2016) Future Prospects for Scaffolding Methods and Biomaterials in Skin Tissue Engineering: A Review. Int J Mol Sci 17: 1974. https://doi.org/10.3390/ijms17121974

    Article  CAS  Google Scholar 

  17. Koide T, Nagata K (2005) Collagen biosynthesis. Collagen 85–114

    Google Scholar 

  18. Muthukumar T, Sreekumar G, Sastry TP, Chamundeeswari M (2018) Collagen as a potential biomaterial in biomedical applications. Rev Adv Mater Sci 53:29–39

    Article  CAS  Google Scholar 

  19. Petcharat T, Benjakul S, Karnjanapratum S, Nalinanon S (2021) Ultrasound-assisted extraction of collagen from clown featherback (Chitala ornata) skin: yield and molecular characteristics. J Sci Food Agric 101:648–658

    Article  CAS  Google Scholar 

  20. Choi W-S, Ahn K-J, Lee D-W, Byun M-W, Park H-J (2002) Preparation of chitosan oligomers by irradiation. Polym Degrad Stab 78:533–538

    Article  CAS  Google Scholar 

  21. Abhinaya M, Parthiban R, Kumar PS, Vo D-VN (2021) A review on cleaner strategies for extraction of chitosan and its application in toxic pollutant removal. Environ Res 196:110996

    Article  CAS  Google Scholar 

  22. Younes I, Hajji S, Frachet V, Rinaudo M, Jellouli K, Nasri M (2014) Chitin extraction from shrimp shell using enzymatic treatment. Antitumor, antioxidant and antimicrobial activities of chitosan. Int J Biol Macromol 69:489–498

    Article  CAS  Google Scholar 

  23. Lertwattanaseri T, Ichikawa N, Mizoguchi T, Tanaka Y, Chirachanchai S (2009) Microwave technique for efficient deacetylation of chitin nanowhiskers to a chitosan nanoscaffold. Carbohydr Res 344:331–335

    Article  CAS  Google Scholar 

  24. El Knidri H, El Khalfaouy R, Laajeb A, Addaou A, Lahsini A (2016) Eco-friendly extraction and characterization of chitin and chitosan from the shrimp shell waste via microwave irradiation. Process Saf Environ Prot 104:395–405

    Article  Google Scholar 

  25. Solomon C, Rahe-Meyer N, Schöchl H, Ranucci M, Görlinger K (2013) Effect of haematocrit on fibrin-based clot firmness in the FIBTEM test. Blood Transfus 11:412

    Google Scholar 

  26. Huang L, Lord ST (2013) The isolation of fibrinogen monomer dramatically influences fibrin polymerization. Thromb Res 131:e258–e263

    Article  CAS  Google Scholar 

  27. Stabenfeldt SE, Gourley M, Krishnan L, Hoying JB, Barker TH (2012) Engineering fibrin polymers through engagement of alternative polymerization mechanisms. Biomaterials 33:535–544

    Article  CAS  Google Scholar 

  28. Huang G, Chen J (2019) Preparation and applications of hyaluronic acid and its derivatives. Int J Biol Macromol 125:478–484

    Article  CAS  Google Scholar 

  29. Prehm P (1980) Induction of hyaluronic acid synthesis in teratocarcinoma stem cells by retinoic acid. FEBS Lett 111:295–298

    Article  CAS  Google Scholar 

  30. Mohammed A, Rivers A, Stuckey DC, Ward K (2020) Alginate extraction from Sargassum seaweed in the Caribbean region: Optimization using response surface methodology. Carbohydr Polym 245:116419

    Article  CAS  Google Scholar 

  31. Byrom D (1991) Biomaterials: novel materials from biological sources. Springer

    Book  Google Scholar 

  32. Larsen B, Salem DMSA, Sallam MAE, Mishrikey MM, Beltagy AI (2003) Characterization of the alginates from algae harvested at the Egyptian Red Sea coast. Carbohydr Res 338:2325–2336

    Article  CAS  Google Scholar 

  33. Mohammed A, Bissoon R, Bajnath E, Mohammed K, Lee T, Bissram M, John N, Jalsa NK, Lee K-Y, Ward K (2018) Multistage extraction and purification of waste Sargassum natans to produce sodium alginate: an optimization approach. Carbohydr Polym 198:109–118

    Article  CAS  Google Scholar 

  34. Fertah M, Belfkira A, Taourirte M, Brouillette F (2017) Extraction and characterization of sodium alginate from Moroccan Laminaria digitata brown seaweed. Arab J Chem 10:S3707–S3714

    Article  CAS  Google Scholar 

  35. Carpita NC, Kanabus J (1987) Extraction of starch by dimethyl sulfoxide and quantitation by enzymatic assay. Anal Biochem 161:132–139

    Article  CAS  Google Scholar 

  36. Lee HC, Htoon AK, Paterson JL (2007) Alkaline extraction of starch from Australian lentil cultivars Matilda and Digger optimised for starch yield and starch and protein quality. Food Chem 102:551–559

    Article  CAS  Google Scholar 

  37. Gómez-Guillén MC, Giménez B, Montero P (2005) Extraction of gelatin from fish skins by high pressure treatment. Food Hydrocoll 19:923–928

    Article  Google Scholar 

  38. Yamaoka T, Tabata Y, Ikada Y (1994) Body distribution of intravenously administered gelatin with different molecular weights. J Control release 31:1–8

    Article  CAS  Google Scholar 

  39. Hokugo A, Ozeki M, Kawakami O, Sugimoto K, Mushimoto K, Morita S, Tabata Y (2003) Poster 27-Potentiality of gelatin hydrogel in promoting the bone repairing activity of platelet-rich plasma (PRP); An experimental study in rabbit. J Oral Maxillofac Surg 8:95a – 96

    Google Scholar 

  40. Ulery BD, Nair LS, Laurencin CT (2011) Biomedical Applications of Biodegradable Polymers. J Polym Sci B Polym Phys 49:832–864. https://doi.org/10.1002/polb.22259

    Article  CAS  Google Scholar 

  41. MacNeil S (2008) Biomaterials for tissue engineering of skin. Mater Today 11:26–35. https://doi.org/10.1016/S1369-7021(08)70087-7

    Article  CAS  Google Scholar 

  42. Sen CK, Gordillo GM, Roy S, Kirsner R, Lambert L, Hunt TK, Gottrup F, Gurtner GC, Longaker MT (2009) Human skin wounds: a major and snowballing threat to public health and the economy. Wound repair Regen 17:763–771

    Article  Google Scholar 

  43. Kim B-S, Park I-K, Hoshiba T, Jiang H-L, Choi Y-J, Akaike T, Cho C-S (2011) Design of artificial extracellular matrices for tissue engineering. Prog Polym Sci 36:238–268. https://doi.org/10.1016/j.progpolymsci.2010.10.001

    Article  CAS  Google Scholar 

  44. Groeber F, Holeiter M, Hampel M, Hinderer S, Schenke-Layland K (2011) Skin tissue engineering - In vivo and in vitro applications. Adv Drug Deliv Rev 63:352–366. https://doi.org/10.1016/j.addr.2011.01.005

    Article  CAS  Google Scholar 

  45. O’Connor N, Mulliken J, Banks-Schlegel S, Kehinde O, Green H (1981) GRAFTING OF BURNS WITH CULTURED EPITHELIUM PREPARED FROM AUTOLOGOUS EPIDERMAL CELLS. Lancet 317:75–78. https://doi.org/10.1016/S0140-6736(81)90006-4

    Article  Google Scholar 

  46. Jarman-Smith ML, Bodamyali T, Stevens C, Howell JA, Horrocks M, Chaudhuri JB (2004) Porcine collagen crosslinking, degradation and its capability for fibroblast adhesion and proliferation. J Mater Sci Mater Med 15:925–932. https://doi.org/10.1023/B:JMSM.0000036281.47596.cc

    Article  CAS  Google Scholar 

  47. Marston WA, Hanft J, Norwood P, Pollak R (2003) The efficacy and safety of Dermagraft in improving the healing of chronic diabetic foot ulcers: results of a prospective randomized trial. Diabetes Care 26:1701–1705. https://doi.org/10.2337/diacare.26.6.1701

    Article  Google Scholar 

  48. Boyce ST, Kagan RJ, Meyer NA, Yakuboff KP, Warden GD (1999) THE 1999 CLINICAL RESEARCH AWARD Cultured Skin Substitutes Combined With Integra Artificial Skin to Replace Native Skin Autograft and Allograft for the Closure of Excised Full–Thickness Burns. J Burn Care Rehabil 20:453–461. https://doi.org/10.1097/00004630-199920060-00006

    Article  CAS  Google Scholar 

  49. Agrawal P, Soni S, Mittal G, Bhatnagar A (2014) Role of polymeric biomaterials as wound healing agents. Int J Low Extrem Wounds 13:180–190. https://doi.org/10.1177/1534734614544523

    Article  CAS  Google Scholar 

  50. Dhivya S, Padma VV, Santhini E (2015) Wound dressings - a review. BioMedicine 5:22. https://doi.org/10.7603/s40681-015-0022-9

    Article  Google Scholar 

  51. Gharibi R, Yeganeh H, Gholami H, Hassan ZM (2014) Aniline tetramer embedded polyurethane/siloxane membranes and their corresponding nanosilver composites as intelligent wound dressing materials. RSC Adv 4:62046–62060. https://doi.org/10.1039/C4RA11454J

    Article  CAS  Google Scholar 

  52. Balint R, Cassidy NJ, Cartmell SH (2013) Electrical stimulation: a novel tool for tissue engineering. Tissue Eng Part B Rev 19:48–57. https://doi.org/10.1089/ten.TEB.2012.0183

    Article  CAS  Google Scholar 

  53. Qu J, Zhao X, Liang Y, Xu Y, Ma PX, Guo B (2019) Degradable conductive injectable hydrogels as novel antibacterial, anti-oxidant wound dressings for wound healing. Chem Eng J 362:548–560. https://doi.org/10.1016/j.cej.2019.01.028

    Article  CAS  Google Scholar 

  54. Basu P, Narendra Kumar U, Manjubala I (2017) Wound healing materials - A perspective for skin tissue engineering. Curr Sci 112:2392–2404. 10.18520/cs/v112/i12/2392-2404

    Google Scholar 

  55. Ciardelli G, Chiono V, Vozzi G, Pracella M, Ahluwalia A, Barbani N, Cristallini C, Giusti P (2005) Blends of poly-(epsilon-caprolactone) and polysaccharides in tissue engineering applications. Biomacromolecules 6:1961–1976. https://doi.org/10.1021/bm0500805

    Article  CAS  Google Scholar 

  56. Waghmare VS, Wadke PR, Dyawanapelly S, Deshpande A, Jain R, Dandekar P (2018) Starch based nanofibrous scaffolds for wound healing applications. Bioact Mater 3:255–266. https://doi.org/10.1016/j.bioactmat.2017.11.006

    Article  Google Scholar 

  57. Rodriguez-Gonzalez FJ, Ramsay BA, Favis BD (2004) Rheological and thermal properties of thermoplastic starch with high glycerol content. Carbohydr Polym 58:139–147. https://doi.org/10.1016/j.carbpol.2004.06.002

    Article  CAS  Google Scholar 

  58. Ahmed S, Ikram S (2016) Chitosan Based Scaffolds and Their Applications in Wound Healing. Achiev Life Sci 10:27–37. https://doi.org/10.1016/j.als.2016.04.001

    Article  Google Scholar 

  59. Ulubayram K, Aksu E, Gurhan SID, Serbetci K, Hasirci N (2002) Cytotoxicity evaluation of gelatin sponges prepared with different cross-linking agents. J Biomater Sci Polym Ed 13:1203–1219. https://doi.org/10.1163/156856202320892966

    Article  CAS  Google Scholar 

  60. Solchaga LA, Dennis JE, Goldberg VM, Caplan AI (1999) Hyaluronic acid-based polymers as cell carriers for tissue-engineered repair of bone and cartilage. J Orthop Res Off Publ Orthop Res Soc 17:205–213. https://doi.org/10.1002/jor.1100170209

    Article  CAS  Google Scholar 

  61. Sfeir C, Ho L, Doll BA, Azari K, Hollinger JO (2005) Fracture repair. Bone Regen Repair Biol Clin Appl 21–44. https://doi.org/10.1385/1-59259-863-3:021

  62. Ansari M (2019) Bone tissue regeneration: biology, strategies and interface studies. Prog Biomater 8:223–237. https://doi.org/10.1007/s40204-019-00125-z

    Article  CAS  Google Scholar 

  63. Goldberg VM (2000) Selection of bone grafts for revision total hip arthroplasty. Clin Orthop Relat Res 68–76. https://doi.org/10.1097/00003086-200012000-00008

  64. Eltom A, Zhong G, Muhammad A (2019) Scaffold Techniques and Designs in Tissue Engineering Functions and Purposes: A Review. Adv Mater Sci Eng 2019: . https://doi.org/10.1155/2019/3429527

  65. Sheikh Z, Najeeb S, Khurshid Z, Verma V, Rashid H, Glogauer M (2015) Biodegradable materials for bone repair and tissue engineering applications. Materials (Basel) 8:5744–5794. https://doi.org/10.3390/ma8095273

    Article  CAS  Google Scholar 

  66. Castells-sala C, Ribes MA, Children B, Recha L (2015) Current Applications of Tissue Engineering in Biomedicine. J Biochips Tissue Chips s2: 1. https://doi.org/10.4172/2153-0777.s2-004

  67. Banigo AT, Iwuji SC, Iheaturu NC (2019) Application of Biomaterials in Tissue Engineering : A Review. Journal of Chemical and Pharmaceutical Research 11:1–16

    CAS  Google Scholar 

  68. Caldwell S (2018) 12 - Bone Grafting Complications. In: Resnik RR, Misch CE (eds) Misch’s Avoiding Complications in Oral Implantology. Mosby, pp. 440–498

    Chapter  Google Scholar 

  69. Amiryaghoubi N, Fathi M, Pesyan NN, Samiei M, Barar J, Omidi Y (2020) Bioactive polymeric scaffolds for osteogenic repair and bone regenerative medicine. Med Res Rev 40:1833–1870. https://doi.org/10.1002/med.21672

    Article  CAS  Google Scholar 

  70. Thomson RC, Wake MC, Yaszemski MJ, Mikos AG (1995) Biodegradable polymer scaffolds to regenerate organs. Adv Polym Sci 122:218–274. https://doi.org/10.1007/3540587888_18

    Article  Google Scholar 

  71. Nie L, Chen D, Suo J, Zou P, Feng S, Yang Q, Yang S, Ye S (2012) Physicochemical characterization and biocompatibility in vitro of biphasic calcium phosphate/polyvinyl alcohol scaffolds prepared by freeze-drying method for bone tissue engineering applications. Colloids Surfaces B Biointerfaces 100:169–176. https://doi.org/10.1016/j.colsurfb.2012.04.046

    Article  CAS  Google Scholar 

  72. Kroeze RJ, Helder MN, Govaert LE, Smit TH (2009) Biodegradable polymers in bone tissue engineering. Materials (Basel) 2:833–856. https://doi.org/10.3390/ma2030833

    Article  CAS  Google Scholar 

  73. Kumar A, Nune KC, Murr LE, Misra RDK (2016) Biocompatibility and mechanical behaviour of three-dimensional scaffolds for biomedical devices: process–structure–property paradigm. Int Mater Rev 61:20–45. https://doi.org/10.1080/09506608.2015.1128310

    Article  CAS  Google Scholar 

  74. Shor L, Darling A, Starly B, Sun W, Guceri S (2005) Precision extruding deposition of composite polycaprolactone/hydroxyapatite scaffolds for bone tissue engineering. In: Proceedings of the IEEE 31st Annual Northeast Bioengineering Conference, 2005. pp 172–173

    Google Scholar 

  75. Zhou H, Qian J, Wang J, Yao W, Liu C, Chen J, Cao X (2009) Enhanced bioactivity of bone morphogenetic protein-2 with low dose of 2-N, 6-O-sulfated chitosan in vitro and in vivo. Biomaterials 30:1715–1724. https://doi.org/10.1016/j.biomaterials.2008.12.016

    Article  CAS  Google Scholar 

  76. Pérez-Moreno A, Reyes-Peces MV, Vilches-Pérez JI, Fernández-Montesinos R, Pinaglia-Tobaruela G, Salido M, De la Rosa-Fox N, Piñero M (2021) Effect of Washing Treatment on the Textural Properties and Bioactivity of Silica/Chitosan/TCP Xerogels for Bone Regeneration. Int J Mol Sci 22:8321

    Article  Google Scholar 

  77. Lee E-J, Jun S-H, Kim H-E, Kim H-W, Koh Y-H, Jang J-H (2010) Silica xerogel-chitosan nano-hybrids for use as drug eluting bone replacement. J Mater Sci Mater Med 21:207–214. https://doi.org/10.1007/s10856-009-3835-9

    Article  CAS  Google Scholar 

  78. Lee E-J, Shin D-S, Kim H-E, Kim H-W, Koh Y-H, Jang J-H (2009) Membrane of hybrid chitosan-silica xerogel for guided bone regeneration. Biomaterials 30:743–750. https://doi.org/10.1016/j.biomaterials.2008.10.025

    Article  CAS  Google Scholar 

  79. Hou J, Wang J, Cao L, Qian X, Xing W, Lu J, Liu C (2012) Segmental bone regeneration using {rhBMP}-2-loaded collagen/chitosan microspheres composite scaffold in a rabbit model. Biomed Mater 7:35002. https://doi.org/10.1088/1748-6041/7/3/035002

    Article  CAS  Google Scholar 

  80. Arul KT, Manikandan E, Ladchumananandasivam R (2019) Chapter 17 - Polymer-based calcium phosphate scaffolds for tissue engineering applications. In: Grumezescu AM (ed) Nanoarchitectonics in Biomedicine. William Andrew Publishing, pp 585–618

    Google Scholar 

  81. Kang Z, Zhang X, Chen Y, Akram MY, Nie J, Zhu X (2017) Preparation of polymer/calcium phosphate porous composite as bone tissue scaffolds. Mater Sci Eng C 70:1125–1131. https://doi.org/10.1016/j.msec.2016.04.008

    Article  CAS  Google Scholar 

  82. Levengood SKL, Polak SJ, Wheeler MB, Maki AJ, Clark SG, Jamison RD, Johnson AJW (2010) Multiscale osteointegration as a new paradigm for the design of calcium phosphate scaffolds for bone regeneration. Biomaterials 31:3552–3563

    Article  Google Scholar 

  83. Du M, Chen J, Liu K, Xing H, Song C (2021) Recent advances in biomedical engineering of nano-hydroxyapatite including dentistry, cancer treatment and bone repair. Compos Part B Eng 215:108790. https://doi.org/10.1016/j.compositesb.2021.108790

    Article  CAS  Google Scholar 

  84. Malda J, Rouwkema J, Martens DE, Le Comte EP, Kooy FK, Tramper J, Van Blitterswijk CA, Riesle J (2004) Oxygen Gradients in Tissue-Engineered PEGT/PBT Cartilaginous Constructs: Measurement and Modeling. Biotechnol Bioeng 86:9–18. https://doi.org/10.1002/bit.20038

    Article  CAS  Google Scholar 

  85. Wernike E, Montjovent M-O, Liu Y, Wismeijer D, Hunziker EB, Siebenrock K-A, Hofstetter W, Klenke FM (2010) Vegf incorporated into calcium phosphate ceramics promotes vascularisation and bone formation in vivo. Eur Cells Mater 19:30–40

    Article  CAS  Google Scholar 

  86. Kempen DHR, Lu L, Heijink A, Hefferan TE, Creemers LB, Maran A, Yaszemski MJ, Dhert WJA (2009) Effect of local sequential VEGF and BMP-2 delivery on ectopic and orthotopic bone regeneration. Biomaterials 30:2816–2825. https://doi.org/10.1016/j.biomaterials.2009.01.031

    Article  CAS  Google Scholar 

  87. Rabie AB, Wong RW, Hägg U (2000) Composite autogenous bone and demineralized bone matrices used to repair defects in the parietal bone of rabbits. Br J Oral Maxillofac Surg 38:565–570. https://doi.org/10.1054/bjom.2000.0464

    Article  CAS  Google Scholar 

  88. Goodrich JT, Sandler AL, Tepper O (2012) A review of reconstructive materials for use in craniofacial surgery bone fixation materials, bone substitutes, and distractors. Child’s Nerv Syst ChNS Off J Int Soc Pediatr Neurosurg 28:1577–1588. https://doi.org/10.1007/s00381-012-1776-y

    Article  Google Scholar 

  89. Song R, Murphy M, Li C, Ting K, Soo C, Zheng Z (2018) Current development of biodegradable polymeric materials for biomedical applications. Drug Des Devel Ther 12:3117–3145. https://doi.org/10.2147/DDDT.S165440

    Article  CAS  Google Scholar 

  90. Wuisman PIJM, Smit TH (2006) Bioresorbable polymers: heading for a new generation of spinal cages. Eur spine J Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc 15:133–148. https://doi.org/10.1007/s00586-005-1003-6

    Article  CAS  Google Scholar 

  91. Schaschke C, Audic J-L (2014) Editorial: biodegradable materials. Int. J. Mol. Sci. 15:21468–21475

    Article  Google Scholar 

  92. Ye WP, Du FS, Jin WH, Yang JY, Xu Y (1997) In vitro degradation of poly(caprolactone), poly(lactide) and their block copolymers: influence of composition, temperature and morphology. React Funct Polym 32:161–168. https://doi.org/10.1016/S1381-5148(96)00081-8

    Article  CAS  Google Scholar 

  93. Saito N, Okada T, Horiuchi H, Murakami N, Takahashi J, Nawata M, Ota H, Nozaki K, Takaoka K (2001) A biodegradable polymer as a cytokine delivery system for inducing bone formation. Nat Biotechnol 19:332–335. https://doi.org/10.1038/86715

    Article  CAS  Google Scholar 

  94. Brodie JC, Goldie E, Connel G, Merry J, Grant MH (2005) Osteoblast interactions with calcium phosphate ceramics modified by coating with type I collagen. J Biomed Mater Res A 73:409–421. https://doi.org/10.1002/jbm.a.30279

    Article  CAS  Google Scholar 

  95. Wong HM, Yeung KWK, Lam KO, Tam V, Chu PK, Luk KDK, Cheung KMC (2010) A biodegradable polymer-based coating to control the performance of magnesium alloy orthopaedic implants. Biomaterials 31:2084–2096. https://doi.org/10.1016/j.biomaterials.2009.11.111

    Article  CAS  Google Scholar 

  96. Zou C, Weng W, Deng X, Cheng K, Liu X, Du P, Shen G, Han G (2005) Preparation and characterization of porous β-tricalcium phosphate/collagen composites with an integrated structure. Biomaterials 26:5276–5284. https://doi.org/10.1016/j.biomaterials.2005.01.064

    Article  CAS  Google Scholar 

  97. Dong Z, Li Y, Zou Q (2009) Degradation and biocompatibility of porous nano-hydroxyapatite/polyurethane composite scaffold for bone tissue engineering. Appl Surf Sci 255:6087–6091. https://doi.org/10.1016/j.apsusc.2009.01.083

    Article  CAS  Google Scholar 

  98. Wang H, Li Y, Zuo Y, Li J, Ma S, Cheng L (2007) Biocompatibility and osteogenesis of biomimetic nano-hydroxyapatite/polyamide composite scaffolds for bone tissue engineering. Biomaterials 28:3338–3348. https://doi.org/10.1016/j.biomaterials.2007.04.014

    Article  CAS  Google Scholar 

  99. Liuyun J, Yubao L, Chengdong X (2009) Preparation and biological properties of a novel composite scaffold of nano-hydroxyapatite/chitosan/carboxymethyl cellulose for bone tissue engineering. J Biomed Sci 16:65. https://doi.org/10.1186/1423-0127-16-65

    Article  CAS  Google Scholar 

  100. Chanlalit C, Shukla DR, Fitzsimmons JS, An K-N, O’Driscoll SW (2012) Stress shielding around radial head prostheses. J Hand Surg Am 37:2118–2125. https://doi.org/10.1016/j.jhsa.2012.06.020

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mai Abdelgawad or Waleed M. A. El Rouby .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Abdelgawad, M., Elkodous, M.A., El Rouby, W.M.A. (2023). Biodegradable Polymers in Biomedical Applications: A Focus on Skin and Bone Regeneration. In: Ali, G.A.M., Makhlouf, A.S.H. (eds) Handbook of Biodegradable Materials. Springer, Cham. https://doi.org/10.1007/978-3-031-09710-2_45

Download citation

Publish with us

Policies and ethics