l‘)

Check for
updates

T-RAID: TEE-based Remote Attestation
for IoT Devices

Roland Nagy®, Marton Bak®, Dorottya Papp®, and Levente Buttyan(®)
Laboratory of Cryptography and System Security (CrySyS Lab),
Department of Networked Systems and Services,
Budapest University of Technology and Economics, Budapest, Hungary
buttyan@crysys.hu
https://www.crysys.hu/

Abstract. The Internet of Things (IoT) consists of network-connected
embedded devices that enable a multitude of new applications, but also
create new risks. In particular, embedded IoT devices can be infected
by malware. Operators of IoT systems not only need malware detection
tools, but also scalable methods to reliably and remotely verify malware
freedom of their IoT devices. In this paper, we address this problem by
proposing T-RAID, a remote attestation scheme for IoT devices that
takes advantage of the security guarantees provided by a Trusted Exe-
cution Environment running on each device.

Keywords: Internet of things - Embedded systems - Malware -
Remote attestation * Trusted Execution Environment

1 Introduction

The Internet of Things (IoT) consists of network-connected embedded devices
that enable a multitude of new applications in various domains, such as industrial
automation, transportation, building automation, healthcare, and agriculture —
just to mention a few of them. The use of IoT technologies can make applications
smarter: they provide the technological foundations for transforming buildings
into smart buildings, cities into smart cities, transportation systems into intelli-
gent transportation systems, healthcare into personalized healthcare, agriculture
into precision agriculture, and factories into smart factories.

However, as usual, new technologies also create new risks. In particular, due
to the increasing levels of automation and connectedness, our new, smart and
intelligent applications are now exposed to cyberattacks. To address the problem,
academic researchers and industry alliances are actively working on IoT security
solutions [1,12,13], standards [8,10], and guidelines [7,16,17], and regulatory

The presented work was carried out within the SETIT Project (2018-1.2.1-NKP-2018-
00004), which has been implemented with the support provided from the National
Research, Development and Innovation Fund of Hungary, financed under the 2018-
1.2.1-NKP funding scheme.

© The Author(s) 2022

E. Gelenbe et al. (Eds.): EuroCybersec 2021, CCIS 1596, pp. 76-88, 2022.
https://doi.org/10.1007/978-3-031-09357-9_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-09357-9_7&domain=pdf
http://orcid.org/0000-0003-2305-3271
http://orcid.org/0000-0002-1847-6758
http://orcid.org/0000-0002-9976-614X
http://orcid.org/0000-0003-4233-2559
https://doi.org/10.1007/978-3-031-09357-9_7

T-RAID: TEE-based Remote Attestation for IoT Devices 77

bodies are also making steps' to ensure that those solutions, standards, and
guidelines are indeed used and followed in practice.

One particular security issue is that IoT devices can be infected by mal-
ware [2,4], which can alter their behavior, endangering the integrity and the
availability of IoT systems, and undermining the trustworthiness of the smart
applications based on them. Hence, system operators need malware detection
solutions adapted to the constraints of IoT systems [20]. In addition, they also
need scalable methods to reliably verify malware freedom of IoT devices in their
systems. In this paper, we address this problem by proposing a remote attes-
tation scheme for IoT devices that takes advantage of the security guarantees
provided by a Trusted Execution Environment (TEE) running on the device.

Attestation is meant to be a process whereby a trusted verifier reliably checks
the state of an untrusted prover, and remote attestation is when this verification
is done remotely via a network. In our case, the prover is (a process running
on) an IoT device, and it is untrusted, because the device may be compromised
by a malware. The verifier is a trusted remote server operated by the system
operator. We use remote attestation to prove the malware-free state of the IoT
devices to the system operator. Doing this remotely means that the operator
does not need physical access to the devices, allowing for large scale, automated
verification of all devices in an entire IoT system.

The structure of the paper is the following: We start by giving a brief overview
on different approaches to remote attestation in Sect.2, serving as a review of
relevant related work and also providing technical background for our proposal.
Next, we introduce T-RAID, our TEE-based solution to secure remote attesta-
tion for IoT devices, by first providing a general overview of it in Sect. 3, and
then presenting its protocols in more details in Sects. 4 and 5. Finally, we eval-
uate T-RAID and discuss its properties in Sect. 6, and conclude the paper in
Sect. 7.

2 Approaches to Remote Attestation

There exist three general approaches to attestation: hardware-based, software-
based, and hybrid attestation. Hardware-based attestation relies on a secure
co-processor (e.g., a TPM chip?) that can produce a digitally signed summary
of the hardware and software state of the device being verified. The summary is
typically a hash computed by progressively combining the hashes of the system
components and software modules started during the boot process. The key
used to sign the summary is kept in the co-processor and protected by its logical
access control and physical tamper resistance features. As this approach requires
a co-processor, it is typically considered to be too expensive for embedded IoT
devices.

! The California IoT cybersecurity law SB-327 became effective Jan 1, 2020.
2 https://trustedcomputinggroup.org/work-groups/trusted-platform-module/ Last
visited: Sep 12, 2021.

https://trustedcomputinggroup.org/work-groups/trusted-platform-module/

78 R. Nagy et al.

In contrast to the hardware-based approach, software-based attestation does
not require any additional hardware in the prover device. Solutions following this
approach (e.g., [18,19]) are typically based on executing a protocol in which the
verifier probes the prover and the response of the prover to the probe convinces
the verifier that the prover is in a malware-free state. To generate the response,
the prover runs a checksum function, which traverses memory locations in a
pseudo-random manner (seeded by the verifier’s probe). The verifier checks the
correctness of the prover’s response by computing the same checksum function on
the expected memory content of the device. If malware is hiding in the memory,
either the checksum of the prover will differ from that computed by the verifier,
or the response time of the prover will be longer than expected, as the malware
needs to check and redirect memory accesses that refer to locations holding the
malware code itself. So besides checking the correctness of the checksum, in this
case, the verifier also checks the response time of the prover.

The main problem of software-based attestation is that, in practice, it does
not really work over a network due to network jitter, which makes it practically
impossible to remotely measure the exact checksum computation time of the
prover [14]. Another problem is that a compromised prover can actually dele-
gate checksum computation to a much faster attacker device, which cannot be
detected by a remote verifier. In addition, even if we do not consider such del-
egation attacks, this approach assumes that the checksum computation on the
prover cannot be performed faster than the speed of the actual implemention of
the checksum function. Unfortunately, this assumption does not always hold [3],
leading to attacks where a tricky faster way of computing the checksum leaves
time for the malware to check and redirect memory references that would reveal
its presence.

Given all these problems, hybrid approaches were proposed (e.g., [5,6]) that
are largely software-based, but also require minimal hardware support. For exam-
ple, in [6], the authors propose a scheme, applicable to attestation purposes, that
uses a ROM-based checksum routine and relies on a secret key for authenticating
the computed checksum that is kept in memory accessible only by ROM-based
code. This latter property is provided by a hardware-based memory access logic,
which verifies that the instruction pointer is in the ROM region when the secret
key is being accessed. This actually ensures that the confidentiality of the key is
preserved, even if the device is infected by a malware. In addition, as the ROM
code cannot be modified, integrity of the checksum computation is also ensured.
This means that a response authenticated by the secret key must be genuine,
and such a response can be verified by a remote verifier.

At this point, a natural question could be the following: What is the minimum
hardware support needed for a hybrid remote attestation solution to be secure?
This question is investigated in [9], where the authors conclude that the following
set of requirements is sufficient and necessary (hence minimal) for secure remote
attestation of embedded devices:

1. Custom hardware to enforce exclusive access to a secret key;
2. Reliable and secure memory erasure;

T-RAID: TEE-based Remote Attestation for IoT Devices 79

@

Read-only-memory (ROM);

Instructions for enabling and atomically disabling interrupts;

5. Custom hardware to enforce that the attestation (checksum) routine can only
be invoked by running its first instruction;

6. Secure reset mechanism.

e

It turns out that the guarantees provided by satisfying the requirements
above can also be achieved in another way: In [5], the authors propose a hybrid
remote attestation scheme, called HYDRA, that relies on security features pro-

vided by a formally verified sel.4 microkernel to obtain similar properties. In
HYDRA:

1. A privileged process handles the secret key and enforces proper access control
to it;

2. Reliable and secure memory erasure is required by [9] to ensure that no infor-
mation about the secret key is leaked after using it in the checksum authenti-
cation. However, the strict memory separation of the sel.4 microkernel ensures
the same property;

3. ROM is required by [9] to make sure that the checksum routine cannot be
modified. Isolated process memory and code integrity checks in sel.4 can
provide the same property;

4. Prioritized interrupt handling of the microkernel ensures uninterruptable exe-
cution of the checksum code that runs with the highest possible priority;

5. Controlled invocation is enforced by operating system support;

6. Secure reset is initiated in [9] whenever an attempt is detected to execute the
checksum function from the middle of its code. This is not needed if controlled
invocation is enforced.

The authors of [5] claim that using seL4 imposes fewer hardware requirements
on the underlying microprocessor, and building upon a formally verified software
component increases confidence in security of the overall solution.

3 Overview of T-RAID

Our main idea is to follow the approach of HYDRA [5], but instead of a secure
microkernel, we rely on a Trusted Execution Environment (TEE). A TEE pro-
vides an isolated environment for trusted processes where they can execute with-
out being interfered by normal, potentially compromised processes. In addition,
a TEE also provides secure storage for secrets that is not accessible from out-
side the TEE. Thus, checking malware-freedom can be implemented in a trusted
process running in the TEE and the key used for authenticating the result of
the check can be stored in TEE-protected secure memory.

We note that embedded devices equipped with ARM or similarly power-
ful processors are typically capable of hosting such a TEE. We also note that
TEEs usually rely on hardware support to provide their security guarantees.

80 R. Nagy et al.

loT device

secure channel ~

Prover TA Tt m

,_attestation protocol
N Detector TA

C — (i)
network g . Y,
3 () L_SDI

s, invoke L___J

7N
v

Verifier

Attestation
Service

REE

Fig. 1. Overview of the T-RAID architecture.

For example, TrustZone® enabled ARM processors support TEEs by offering
hardware-enforced memory isolation. A special register in the processor keeps
track whether it runs in the so called Normal World or in the Secure World.
In the Normal World, access to certain memory regions and peripherals associ-
ated with the Secure World is denied, and this is enforced by the memory bus
fabric. On the other hand, processes running in the Secure World have virtually
unlimited access to any resources of the embedded device. In addition, switching
between Worlds is possible only by invoking a special instruction that guarantees
a proper context switch. TEE implementations usually take advantage of this
low level support built into the processor itself.

The architecture of our TEE-based remote attestation scheme designed for
IoT devices (T-RAID) is illustrated in Fig. 1. In T-RAID, the Verifier is assumed
to be a remote entity that interacts with the Prover via a network. The Prover
is a trusted application (TA) running in the TEE hosted by the processor of the
IoT device. An Attestation Service is running as a normal (untrusted) process in
the Rich Execution Environment (REE), also hosted by the processor. The term
“rich” refers to the fact that the REE may be provided by a full-blown operating
system (OS), such as Linux, that offers an abundance of services to the processes
running in the REE. The TEE typically features a much more limited OS that
provides only basic services to the trusted applications. Isolation between the
TEE and the REE is supported by the processor and its memory management
unit.

In order to initiate an attestation session, the Verifier calls the Attestation
Service, which is assumed to be always available. If it is not, then this fact
already proves that the IoT devices is not in its normal state, and it may be
compromised by a malware. The Attestation Service invokes the Prover TA via

3 https://developer.arm.com /ip-products/security-ip/trustzone Last visited: Sep 12,
2021.

https://developer.arm.com/ip-products/security-ip/trustzone

T-RAID: TEE-based Remote Attestation for IoT Devices 81

a controlled invocation mechanism provided by the TEE (and supported by the
processor). The Prover TA then establishes a secure connection to the Verifier,
which is used to execute a remote attestation protocol securely.

In the remote attestation protocol, the Verifier challenges the Prover with
a set of tasks. These tasks consists in the execution of certain integrity checks
that are implemented by a Rootkit Detector TA, also running in the TEE. The
integrity checks requested by the Verifier are invoked by the Prover TA via a
well-defined API provided by the Rootkit Detector TA, and the results are sent
back to the Verifier via the secure channel.

The Rootkit Detector TA has access to the entire memory of the IoT device
and its persistent storage. The memory includes the memory of the processes
and the OS kernel running in the REE and the persistent storage includes the file
system that they use. The integrity checks implemented by the Rootkit Detector
TA analyze this memory and file system, collect relevant data (e.g., the list of
processes currently running in the REE), compute hashes (e.g., the hash of the
text segment of the OS kernel in the REE), and try to detect anomalies that
may signal the presence of a malware (e.g., hooked function pointers).

More information about the remote attestation protocol and the integrity
checks of T-RAID is provided below in Sects. 4 and 5, respectively.

We implemented T-RAID as a prototype running in QEMU*. The target
architecture of our prototype is the ARM processor, and we use OP-TEE® as the
TEE implementation and Linux as the OS in the REE. Cryptographic functions
in our protocols use the mbedTLS cryptographic library®. In the sequel, we
assume this setup when implementation specific details are described.

4 Remote Attestation Protocol

The remote attestation protocol of T-RAID assumes a secure channel between
the Prover TA and the Verifier, thus, a prerequisite for running the protocol
is to establish such a secure channel. One can use TLS for this purpose if
the TEE implementation supports TLS-protected sockets and the resource con-
straints of the IoT device permit the use of such a complex protocol as TLS.
In our prototpye implementation, we could not use TLS, because OP-TEE does
not support TLS-based sockets in the TEE. Instead, we designed and imple-
mented a lightweight secure channel protocol over a raw socket. Our protocol
uses an authenticated version of the Diffie-Hellman protocol to establish a shared
secret between the Prover TA and the Verifier (where authentication is based
on ECDSA signatures); the PBKDF2 key derivation function to derive a 32-
byte symmetric encryption key and a 32-byte message authentication key from
the shared secret; the AES cipher in CBC mode with PKCS#7 padding to
encrypt messages; message sequence numbers to protect against replay attacks;

* https://www.qemu.org/ Last visited: Sep 12, 2021.
5 https://www.op-tee.org/ Last visited: Sep 12, 2021.
5 https://github.com/ARMmbed /mbedtls Last visited: Sep 12, 2021.

https://www.qemu.org/
https://www.op-tee.org/
https://github.com/ARMmbed/mbedtls

82 R. Nagy et al.

and HMAC with SHA-256 as the hash function to authenticate (encrypted and
numbered) messages.

The attestation protocol consists of the exchange of a single attestation
request and response. The secure channel guarantees the freshness, integrity,
authenticity, and confidentiality of these messages, and most importantly, the
Prover’s response. The request of the Verifier may contain multiple challenges,
each triggering the call of a specific integrity check function of the Rootkit Detec-
tor TA. The response of the Prover contains the results of the integrity check
functions called. The integrity check functions may return a status code (e.g., 0
for a successful check and 1 for a failure), a hash value (e.g., hash of the REE OS
kernel’s text segment or recursive hash of some part of the REE file system), or
a list of process IDs and process names extracted from various OS kernel data
structures (e.g., the process list, the process tree, and the run queues).

The Verifier must be able to verify the results of the checks received in the
response of the Prover. For this, we assume that the Verifier stores the hash
values expected in correct responses. In case of file system checks, the computed
hash value depends on what parts of the file system are actually hashed, there-
fore, we assume that the Verifier has a mirror of the file system of the IoT device
and performs the same hash computation on this mirror to obtain the expected
correct hash value. Finally, if the response contains a list of process names, the
Verifier can compare that to a pre-defined white list of process names allowed
on the IoT device.

5 Integrity Checks

Our integrity checks perform rootkit detection on the IoT device; hence, their
successful execution is an assurance of malware freedom. The software compo-
nent implementing the checks is capable of accessing components of the REE,
such as the memory and the file system. The latter is not supported by OP-
TEE, so we had to extend and slightly modify the OP-TEE kernel and the
tee-supplicant daemon (a component of OP-TEE running in the REE). More
details on this can be found in our earlier paper [15]. Using the aforementioned
capabilities, we implemented numerous checks, each aiming at detecting a dif-
ferent rootkit technique or ensuring the integrity of REE components that our
checks rely upon. In this section, we present the integrity checks that the Prover
TA can invoke.

5.1 Process Listing

The most important functionality of any kernel is to manage and schedule pro-
cesses. In order to achieve these goals, the Linux kernel uses so called tasks. A
task is approximately equivalent to a thread. Single-threaded processes consist of
one task, while multi-threaded processes have one task for each thread, sharing
the same address space. These tasks are organized into multiple dynamic data
structures. Here we present the ones used by the 5.1 version of the Linux kernel.

T-RAID: TEE-based Remote Attestation for IoT Devices 83

Our solution uses these data structures to enumerate processes on the system.
Currently, we can list process IDs and names of the processes.

The oldest and simplest data structure in the kernel holding process-related
information is the so called process list. This is a doubly-linked circular list of
task structures; each task has a next and prev pointer, pointing to the next
and previous tasks in the list, respectively. Using these pointers, we can easily
traverse the whole list, starting from the init_task; this is the first kernel thread,
started at boot.

Another data structure is the process tree. When a process starts another
process, it becomes its child, while the new process refers to the original one as
its parent. Via this relation, processes form a tree, whose root is the init_task.
The Linux kernel uses lists to implement this tree. Each process has a pointer to
its first and last child, while the children are linked into a doubly-linked circular
list. We traverse this data structure recursively in a depth-first manner.

Pid namespaces are used by the kernel as an isolation mechanism. There is an
initial pid namespace containing every process. These namespaces use radix trees
to account the process IDs in use. These radix trees store pid structures with
pointers to the tasks using the specific ID. To traverse the initial pid namespace,
we implemented a function capable of finding the corresponding pid structure
in the tree for a given ID.

Finally, we extract process related information from runqueues. These queues
are used by the scheduler, and unlike the previous data structures, not every
process is accessible from these, only the runnable ones. These are the processes
not waiting for anything and not stopped, they can continue their execution,
if assigned to a CPU core. Each core has its own runqueue, and runqueues
implement data structures for every scheduling policy. For Linux 5.1, this means
3 subschedulers, using lists, red-black trees and nested red-black trees.

5.2 Memory Integrity Checks

We check the integrity of two memory areas of the Linux kernel that are fre-
quently targeted by rootkits: the system call table and the text segment of the
kernel itself. System calls are the interface the kernel offers to user-space pro-
cesses. When processes need to perform actions that are the kernel’s responsi-
bility, they invoke the appropriate system call. Such actions include interactions
with files, network sockets, etc. The kernel uses an array of function pointers,
known as the system call table. Rootkits often replace pointers in this array and
re-implement certain system calls. Therefore, we compute the hash of the system
call table using the SHA-256 hash algorithm.

Another common and similar rootkit technique is inline hooking [11]. In this
case, the attacker modifies the code of an existing function, usually by rewriting
the first few instructions to a jump such that during execution, the code jumps
to the desired replacement. To detect inline hooks, we compute the SHA-256
hash of the entire text segment of the kernel, which contains all the code of the
Linux kernel.

84 R. Nagy et al.

5.3 File Integrity Checks

By-default OP-TEE does not provide access to the file systems of the REE,
however, it is capable of using it for Secure Storage. The API written for this
does not aim to be a general purpose API for file access, so we had to extend it
and apply some patches in order to be able to access arbitrary files. Again, for
implementation details, the reader is referred to [15].

Our implementation provides a simple interface which can be used to check
the integrity of any part of the REE file systems. This can be done invoking two
functions, namely hash_file and hash_dir. The former one expects a filename
as parameter, and an output buffer, where the computed hash of the file will be
stored. If the file exists, it opens it, reads it by 4096-byte-long blocks, and feeds
these blocks into a hash context. After reaching the end of the file, the SHA-256
hash is written to the output buffer. The latter one expects more parameters:
a directory name, an output buffer, a boolean indicating if it should hash the
directory recursively, and an optional blacklist. In case of non-recursive hash-
ing, all subdirectories will be ignored. If a blacklist is supplied, all elements are
checked against it, thereby the hashing files or directories with volatile content
can be avoided. The contents of directories are sorted alphabetically.

5.4 Network Checks

We also implemented checks targeting the network stack of the kernel. In this
subsystem, rootkits typically implement two kind of attacks: hiding open con-
nections and implementing “magic packet” functionality. In the case of rootkits,
this means performing a predefined action, when the infected system receives
a specially crafted network packet. So far, we identified one way to hide open
sockets and three mechanisms what can be abused by attackers to implement
magic packets. For these checks to work properly, we assume that every necessary
driver is compiled into the kernel.

The most common way to implement magic packets is using the Netfilter
subsystem, the backend of Linux firewall solutions. Netfilter stores firewall rules
in so-called chains. Each supported protocol (like IPv4, IPv6, ARP, etc.) has five
chains, one for each stage of packet processing. Each chain acts as an arraylist,
containing Netfilter hooks, storing function pointers. When a packet is checked
against a specific chain, all hooks in the chain are invoked, and the packet is
accepted only, if all hooks accept it. These hook functions, however, can have side
effects, so an attacker can implement a firewall rule which executes his payload,
if certain conditions are met. Our solution traverses all the hooks of every chain,
and if any of the function pointers store a value that is not pointing into the
text segment of the kernel, it is considered to be a sign of rootkit infection.

We also check structures called icmp_control. The kernel uses an array of
these to determine what handler function should be executed for different kinds
of ICMP packets. The packet’s type field is used to index this array. We check
all function pointers the same way as we did in the case of Netfilter hooks.

T-RAID: TEE-based Remote Attestation for IoT Devices 85

The kernel uses net_protocol structures to register handler functions for
different protocols, like UDP, TCP and IGMP. These structures contain handler,
error handler and demultiplexer functions, which can be hooked and used to
implement magic packet functionality. We perform the same integrity check on
these pointers as described above.

Finally, we implemented a check targeting hidden network connections. Files
in the /proc/net directory give information about open connections. The con-
tent of these files is generated on-demand using seq_ops. These objects store
function pointers to iterate a specific data structure and display information
about its elements. Rootkits often target these to hide open connections, there-
fore we check these function pointers the same way as we checked the others.

6 Evaluation and Discussion

The presented TEE-based remote attestation scheme, T-RAID, provides security
guarantees similar to those of HYDRA [5]:

1. A trusted application in the TEE, the Prover TA, handles the private key
used to set up a secure channel with the Verifier. Every message, including
the Prover’s responses to the Verifier’s challenges are authenticated by this
channel, which means that the Verifier can be sure that the responses come
from the given Prover. In addition, the private key of the Prover is stored in
the secure storage of the TEE, hence, the key remains protected and invisible
from the potentially compromised REE.

2. Strict separation of the secure memory used by the TEE from processes in
the REE prevents the leakage of the private key after it has been used.

3. TEE-based integrity protection of TAs prevents their illegitimate modification
by untrusted processes of the REE. This property ensures similar guarantees
for TAs as a ROM would ensure. Thus, neither the Prover TA nor the Rootkit
Detector TA can be modified, and hence, the integrity checks are performed
and their results are reported correctly to the Verifier.

4. Interrupts can be disabled and re-enabled in the TEE. Disabling them when
the Rootkit Detector TA is invoked ensures the uninterruptable execution of
our integrity checks, with some caveats that we discuss later in this section.

5. TEE-based invocation mechanism of TAs enforces that the execution of a TA
always begins at its entry point. This contributes to the correct execution of
the integrity checks and correct reporting of their results.

6. Secure reset is not needed, as the TEE enforces the controlled invocation of
every TA.

Unfortunately, our current prototype has two known weaknesses. The first
one is that file operations in OP-TEE are delegated to the REE side where they
can actually be interrupted. Moreover, as file operations usually take a long
time, they will almost surely be interrupted by the task scheduler of the OS.
This is a limitation of OP-TEE, other TEE implementations may implement
file operations within the TEE itself. Nevertheless, if T-RAID is implemented

86 R. Nagy et al.

using OP-TEE as the TEE, one has to be aware that property 4 may not hold.
Disabling the file system related integrity checks would make property 4 satisfied,
but then malware could clear itself from memory and hide its components in
persistent storage, from which it may be potentially reloaded later on.

The second weakness is that on multi-core processors, such as most ARM pro-
cessors, other, potentially untrusted processes may run in parallel to our TAs on
different cores. Those processes may interfer with the execution of our integrity
checks. For instance, a malware running on a different core could remove a hook
from the system call table before it is hashed by our Rootkit Detector TA and
put the hook back once the hashing is completed. The only reliable countermea-
sure to this is disabling all but one cores during the entire attestation process.
At the time of this writing, we are experimenting with the implementation of
this idea.

7 Conclusions

In this paper, we proposed T-RAID, a TEE-based remote attestation scheme
for ToT devices. T-RAID follows the hybrid approach to remote attestation: it
is mostly based on software and uses only limited hardware support. Notably,
T-RAID relies only on the hardware support provided for the TEE itself by
the processor and its memory management unit. Considering that TEEs are
already widely supported by certain classes of embedded devices, T-RAID is an
affordable solution for IoT systems built from such devices.

We showed that T-RAID has similar security properties to those of HYDRA,
a secure remote attestation scheme proposed in the past. T-RAID, however, per-
forms more complex integrity checks on the device aiming at detecting rootkits
both in memory and in persistent storage. While our integrity checks effectively
detect malware, unfortunately, our current prototype implementation of T-RAID
has some weaknesses stemming from limitations of OP-TEE, the TEE implemen-
tation that we use, and the inherent parallelism provided by multi-core processor
architectures.

References

1. Alrawi, O., Lever, C., Antonakakis, M., Monrose, F.: SoK: security evaluation of
home-based IoT deployments. In: IEEE Symposium on Security and Privacy, pp.
13621380 (2019). https://doi.org/10.1109/SP.2019.00013

2. Antonakakis, M., et al.: Understanding the Mirai botnet. In: USENIX Security
Symposium, pp. 1093-1110. USENIX Association, August 2017

3. Castelluccia, C., Francillon, A., Perito, D., Soriente, C.: On the difficulty of
software-based attestation of embedded devices. In: ACM Conference on Com-
puter and Communications Security (CCS), pp. 400-409 (2009). https://doi.org/
10.1145/1653662.1653711

4. Cozzi, E., Vervier, P.A., Dell’Amico, M., Shen, Y., Bigle, L., Balzarotti, D.: The
tangled genealogy of IoT malware. In: Annual Computer Security Applications
Conference (ACSAC) (2020)

https://doi.org/10.1109/SP.2019.00013
https://doi.org/10.1145/1653662.1653711
https://doi.org/10.1145/1653662.1653711

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

T-RAID: TEE-based Remote Attestation for IoT Devices 87

Eldefrawy, K., Rattanavipanon, N., Tsudik, G.: HYDRA: hybrid design for remote
attestation (using a formally verified microkernel). In: ACM Conference on Security
and Privacy in Wireless and Mobile Networks (WiSec), pp. 99-110 (2017). https://
doi.org/10.1145/3098243.3098261

Eldefrawy, K., Tsudik, G., Francillon, A.,; Perito, D.: SMART: Secure and minimal
architecture for (establishing a dynamic) root of trust. In: Network and Distributed
Systems Symposium (NDSS) (2012)

ENISA: Guidelines for securing the Internet of Things. ENISA study, November
2020

ETSI: CYBER; Cyber security for consumer Internet of Things: Baseline require-
ments. ETSI TS 103 645 v2.1.2, June 2020

Francillon, A., Nguyen, Q., Rasmussen, K.B., Tsudik, G.: A minimalist approach
to remote attestation. In: Conference on Design, Automation & Test in Europe
(DATE), pp. 1-6 (2014)

Global Platform: Security evaluation standard for IoT platforms v1.1 (SESIP).
Global Platform Standard, June 2021

Gu, J., Xian, M., Chen, T., Du, R.: A Linux rootkit improvement based on inline
hook. In: Proceedings of the 2nd International Conference on Advances in Mechan-
ical Engineering and Industrial Informatics, pp. 793-798. Atlantis Press (2016).
https://doi.org/10.2991 /ameii-16.2016.155

Hassija, V., Chamola, V., Saxena, V., Jain, D., Goyal, P., Sikdar, B.: A survey on
IoT security: application areas, security threats, and solution architectures. IEEE
Access 7, 82721-82743 (2019). https://doi.org/10.1109/ACCESS.2019.2924045
Kumar Jain, V., Gajrani, J.: IoT security: a survey of issues, attacks and defences.
In: Sharma, H., Saraswat, M., Kumar, S., Bansal, J.C. (eds.) CIS 2020. LNDECT,
vol. 61, pp. 219-236. Springer, Singapore (2021). https://doi.org/10.1007/978-981-
33-4582-9_18

Li, Y., Cheng, Y., Gligor, V., Perrig, A.: Establishing software-only root of trust
on embedded systems: facts and fiction. In: International Workshop on Security
Protocols, pp. 5068 (2015). https://doi.org/10.1007/978-3-319-26096-9_7

Nagy, R., Németh, K., Papp, D., Buttyan, L.: Rootkit detection on embedded IoT
devices. Acta Cybernetica, August 2021. https://doi.org/10.14232/actacyb.288834
NIST: Considerations for managing Internet of Things (IoT) cybersecurity and
privacy risks. NISTIR 8228, June 2019

NIST: Baseline security criteria for consumer IoT devices. NIST draft white paper,
August 2021

Seshadri, A., Perrig, A., van Doorn, L., Khosla, P.. SWATT: software-based attes-
tation for embedded devices. In: IEEE Symposium on Security and Privacy, pp.
272-282 (2004). https://doi.org/10.1109/SECPRI.2004.1301329

Seshadri, A., Luk, M., Shi, E., Perrig, A., van Doorn, L., Khosla, P.: Pioneer:
verifying code integrity and enforcing untampered code execution on legacy sys-
tems. ACM SIGOPS Oper. Syst. Rev. 35(5), 1-16 (2005). https://doi.org/10.1145/
1095809.1095812

Tamas, C., Papp, D., Buttyan, L.: SIMBIoTA: similarity-based malware detection
on IoT devices. In: Proceedings of the 6th International Conference on Internet of
Things, Big Data and Security - IoTBDS, pp. 58-69. SciTePress (2021). https://
doi.org/10.5220/0010441500580069

https://doi.org/10.1145/3098243.3098261
https://doi.org/10.1145/3098243.3098261
https://doi.org/10.2991/ameii-16.2016.155
https://doi.org/10.1109/ACCESS.2019.2924045
https://doi.org/10.1007/978-981-33-4582-9_18
https://doi.org/10.1007/978-981-33-4582-9_18
https://doi.org/10.1007/978-3-319-26096-9_7
https://doi.org/10.14232/actacyb.288834
https://doi.org/10.1109/SECPRI.2004.1301329
https://doi.org/10.1145/1095809.1095812
https://doi.org/10.1145/1095809.1095812
https://doi.org/10.5220/0010441500580069
https://doi.org/10.5220/0010441500580069

88 R. Nagy et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	T-RAID: TEE-based Remote Attestation for IoT Devices
	1 Introduction
	2 Approaches to Remote Attestation
	3 Overview of T-RAID
	4 Remote Attestation Protocol
	5 Integrity Checks
	5.1 Process Listing
	5.2 Memory Integrity Checks
	5.3 File Integrity Checks
	5.4 Network Checks

	6 Evaluation and Discussion
	7 Conclusions
	References

