Skip to main content

Hypercomplex Generative Adversarial Networks for Lightweight Semantic Labeling

  • Conference paper
  • First Online:
Pattern Recognition and Artificial Intelligence (ICPRAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13363))

Abstract

Following recent advances on parameterized hypercomplex multiplication [21], we explore the usefulness of hypercomplex convolutions and deconvolutions in a document labeling task. We show that the proposed Hypercomplex Generative Adversarial Networks achieve excellent results while requiring significantly less independent parameters than real-valued models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cui, Y., Jia, M., Lin, T.Y., Song, Y., Belongie, S.: Class-balanced loss based on effective number of samples. In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9268–9277 (2019)

    Google Scholar 

  2. Dimitrakopoulos, P., Sfikas, G., Nikou, C.: ISING-GAN: annotated data augmentation with a spatially constrained generative adversarial network. In: 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), pp. 1600–1603. IEEE (2020)

    Google Scholar 

  3. Dyson, F.J.: Quaternion determinants. Helv. Phys. Acta 45(2), 289 (1972)

    Google Scholar 

  4. Ell, T.A., Sangwine, S.J.: Hypercomplex Fourier transforms of color images. IEEE Trans. Image Process. 16(1), 22–35 (2007)

    Article  MATH  Google Scholar 

  5. Fraleigh, J.B.: A First Course in Abstract Algebra, 7th edn. (2002)

    Google Scholar 

  6. Giotis, A.P., Sfikas, G., Nikou, C., Gatos, B.: Shape-based word spotting in handwritten document images. In: 13th International Conference on Document Analysis and Recognition (ICDAR), pp. 561–565. IEEE (2015)

    Google Scholar 

  7. Grassucci, E., Zhang, A., Comminiello, D.: Lightweight convolutional neural networks by hypercomplex parameterization. arXiv preprint arXiv:2110.04176 (2021)

  8. Jain, A.K.: Fundamentals of Digital Image Processing. Prentice-Hall Inc., Hoboken (1989)

    MATH  Google Scholar 

  9. Kuipers, J.B.: Quaternions and Rotation Sequences: A Primer with Application to Orbits, Aerospace and Virtual Reality. Princeton University Press, Princeton (1999)

    Book  MATH  Google Scholar 

  10. Le Bihan, N., Mars, J.: Singular value decomposition of quaternion matrices: a new tool for vector-sensor signal processing. Signal Process. 84(7), 1177–1199 (2004)

    Article  MATH  Google Scholar 

  11. Parcollet, T., Morchid, M., Linarès, G.: Quaternion convolutional neural networks for heterogeneous image processing. In: ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 8514–8518. IEEE (2019)

    Google Scholar 

  12. Parcollet, T., Morchid, M., Linarès, G.: A survey of quaternion neural networks. Artif. Intell. Rev. 53(4), 2957–2982 (2019). https://doi.org/10.1007/s10462-019-09752-1

    Article  Google Scholar 

  13. Parcollet, T., et al.: Quaternion convolutional neural networks for end-to-end automatic speech recognition. arXiv preprint arXiv:1806.07789 (2018)

  14. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  15. Sangwine, S.J.: Biquaternion (complexified quaternion) roots of- 1. Adv. Appl. Clifford Algebras 16(1), 63–68 (2006). https://doi.org/10.1007/s00006-006-0005-8

    Article  MATH  Google Scholar 

  16. Sfikas, G., Giotis, A.P., Retsinas, G., Nikou, C.: Quaternion generative adversarial networks for inscription detection in byzantine monuments. In: Del Bimbo, A., et al. (eds.) ICPR 2021. LNCS, vol. 12667, pp. 171–184. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68787-8_12

    Chapter  Google Scholar 

  17. Sfikas, G., Ioannidis, D., Tzovaras, D.: Quaternion Harris for multispectral keypoint detection. In: 2020 IEEE International Conference on Image Processing (ICIP), pp. 11–15. IEEE (2020)

    Google Scholar 

  18. Sfikas, G., Nikou, C., Galatsanos, N., Heinrich, C.: MR brain tissue classification using an edge-preserving spatially variant Bayesian mixture model. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008. LNCS, vol. 5241, pp. 43–50. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85988-8_6

    Chapter  Google Scholar 

  19. Sfikas, G., Nikou, C., Galatsanos, N., Heinrich, C.: Majorization-minimization mixture model determination in image segmentation. In: CVPR 2011, pp. 2169–2176. IEEE (2011)

    Google Scholar 

  20. Vince, J.: Quaternions for Computer Graphics. Springer, Cham (2011). https://doi.org/10.1007/978-1-4471-7509-4

  21. Zhang, A., et al.: Beyond fully-connected layers with quaternions: parameterization of hypercomplex multiplications with \(1/n \) parameters. arXiv preprint arXiv:2102.08597 (2021)

  22. Zhang, F.: Quaternions and matrices of quaternions. Linear Algebra Appl. 251, 21–57 (1997)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This research has been partially co-financed by the EU and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the calls “OPEN INNOVATION IN CULTURE” (project Bessarion - T6YB\(\varPi \)-00214) and “RESEARCH - CREATE - INNOVATE” (project Culdile - T1E\(\varDelta \)K-03785).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgos Sfikas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sfikas, G., Retsinas, G., Gatos, B., Nikou, C. (2022). Hypercomplex Generative Adversarial Networks for Lightweight Semantic Labeling. In: El Yacoubi, M., Granger, E., Yuen, P.C., Pal, U., Vincent, N. (eds) Pattern Recognition and Artificial Intelligence. ICPRAI 2022. Lecture Notes in Computer Science, vol 13363. Springer, Cham. https://doi.org/10.1007/978-3-031-09037-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-09037-0_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-09036-3

  • Online ISBN: 978-3-031-09037-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics