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Abstract With the advance of modern technology, and with data being recorded
continuously, functional data analysis has gained a lot of popularity in recent years.
Working in a mixture model-based framework, we develop a flexible functional
clustering technique achieving dimensionality reduction schemes through a !1 pe-
nalization. The proposed procedure results in an integrated modelling approach
where shrinkage techniques are applied to enable sparse solutions in both the means
and the covariance matrices of the mixture components, while preserving the under-
lying clustering structure. This leads to an entirely data-driven methodology suitable
for simultaneous dimensionality reduction and clustering. Preliminary experimental
results, both from simulation and real data, show that the proposed methodology is
worth considering within the framework of functional clustering.
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1 Introduction

In recent decades, technological innovations have produced data that are increasingly
complex, high dimensional, and structured. A large amount of these data can be
characterized as functions defined on some continuous domain and their statistical
analysis has attracted the interest of many researchers. This surge of interests is
explained by the ubiquitous examples of functional data that can be found in different
application fields (see for example [2], and references therein for specific examples).
With functions as the basic units of observation, the analysis of functional data
poses significant theoretical and practical challenges to statisticians. Despite these
difficulties, methodology for clustering functional data has advanced rapidly during
the past years; recent surveys of functional data clustering are presented in [7] and
[2]. Popular approaches have extended classical clustering concepts for vector-valued
multivariate data to functional data.

In this paper, we consider a finite mixture as a flexible model for clustering.
In particular, applying a functional model-based clustering algorithm with an !1-
penalty function on a set of projection coefficients, we extend the results of [8]
and [9] for vector-valued multivariate data to a functional data framework. This
approach appears particularly appealing in all cases in which the functions are
spatially heterogeneous, meaning that some parts of the function can be smoother
than in other parts, or that theremay be distant parts of the function that are correlated
with each other. Furthermore, the introduction of a shrinkage penalty allows to look
for directions in the feature space (that is now the space of expansion/projection
coefficients) that are the most useful in separating the underlying groups without
first applying dimensionality reduction techniques.

In Section 2 we present at first the methodology along with some details on model
estimation (subsection 2.2). Secondly, in Section 3, we perform a validation study
with simulated and real data for which the classes are known a-priori.

2 Shrinkage Method for Model-based Clustering for Functional
Data

Here we consider the problem of clustering a set of = observed curves into  
homogeneous groups (or clusters). To this end, we propose a flexible model based
on a finite mixture of Gaussian distributions, with a !1 penalized likelihood, which
we name Penalized model-based Functional Clustering (PFC-!1).

2.1 Model Definition

We consider a set of = observed curves, G1, . . . , G=, that are independent realizations
of a continuous stochastic process - = {- (C)}C ∈[0,) ] taking values in !2 [0, )]. In
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practice, such curves/trajectories are available only at a discrete set of the domain
points {C8B : 8 = 1, . . . , =, B = 1, . . . , <8} and the = curves need to be reconstructed.
To this goal, it is common to assume that the curves belong to a finite dimensional
space spanned by a basis of functions, so that given a basis of functions � =

{k1, ..., k?} each curve G8 (C) admits the following decomposition:

G8 (C) =
?∑
9=1

V 9 ,8k 9 (C), 8 = 1, . . . , =; (2.1)

that is the stochastic process - admits a corresponding truncated basis expansion

- (C) =
?∑
9=1

V 9 (-)k 9 (C),

where # = {V1 (-), . . . , V? (-)} is a random vector in R? . By considering observa-
tions with a sampling error, such that

G>1B8 (C) = G8 (C) + n8 , 8 = 1, . . . , =, (2.2)

with n8 ∼ N(0, f2
n ), the realizations of the random coefficients V 9 ,8 for 9 = 1, . . . , ?

describing each curve can be obtained via least squares as #̂8 = (�
′
8�8)−1�

′
8X>1B8

where�8 = (k 9 (C8B)), 1 ≤ 9 ≤ ?, 1 ≤ B ≤ <8 contains the basis functions evaluated
at the fixed domain points and X>1B

8
= (G>1B

8
(C81), . . . , G>1B8

(C8<8 ))
′ is the vector of

observed values of the 8-th curve.
With the goal of dividing into  homogeneous groups the observed curves

G1, . . . , G=, let us assume that it exists an unobservable grouping variable Z =

(/1, ..., / ) ∈ [0, 1] indicating the cluster membership: I8,: = 1 if G8 belongs to
cluster : , 0 otherwise (and I8,: is indeed what we want to predict for each curve).

In adopting a model-based clustering approach, we denote with c: the (a-priori)
probabilities of belonging to a group:

c: = P(/: = 1), : = 1, . . . ,  ,

such that
∑ 
:=1 c: = 1 and c: > 0 for each : , and we assume that, conditionally on

/ , the random vector # follows a multivariate Gaussian distribution, that is for each
cluster

#| (/: = 1) = #: ∼ N(-: ,�: )

where -: = (`1,: , . . . , `?,: )) and �: are respectively the mean vector and
the covariance matrix of the :-th group. Then the marginal distribution of # =

{V1, . . . , V?} can be written as a finite mixture with mixing proportions c: as

?(#) =
 ∑
:=1

c: 5 (#: ; -: ,�: ),
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where 5 is the multivariate Gaussian density function. The log-likelihood function
can then be written as

; (); #) =
=∑
8=1

;>6

 ∑
:=1

c: 5 (#8; -: ,�: ),

where ) = {c1, . . . , c ; -1, . . . , - ;�1, . . . ,� } is the vector of parameters to be
estimated and #8 = (V1,8 , . . . , V?,8)) is the vector of projection coefficients of the
8-th curve.

In this modeling framework, we consider a very general situation without intro-
ducing any kind of constraints neither for cluster means nor for covariance matrices,
that can be different in each cluster. This flexibility, however, leads to overparame-
terization and, as an alternative to any kind of constraints, we consider a penalty that
allows regularized parameters’ estimation.

To define a suitable penalty term, we follow the penalized approach introduced
by Zhou et al. [8] in the high-dimensional setting, and so we consider a penalty
composed by two terms: the first one on the mean vector of each cluster -: , and
the second one on the inverse of the covariance matrix in each group W: = �−1

:
,

otherwise said “precision” matrix, with elements ,:; 9 ,; . The proposed penalized
log-likelihood function, given the projection coefficients #8 , is

;% (); #) =
=∑
8=1

;>6

 ∑
:=1

c: 5 (#8; -: ,�: ) − _1

 ∑
:=1
| |-: | |1 − _2

 ∑
:=1

?∑
9 ,;

|,:; 9 ,; |,

where | |-: | |1 =
∑?

9=1 |`:, 9 |, _1 > 0 and _2 > 0 are penalty parameters to be suitably
chosen.

The penalty term on the cluster mean vectors allow for component selection
in the functional data framework (whereas it would be variable selection in the
multivariate case), considering that when the 9-th component in the basis expansion
is not useful in separating groups it has a common mean across groups, that is
`1, 9 = . . . = ` , 9 = 0. Then to realize component selection the considered term is∑ 
:=1 | |-: | |1.
The second part of the penalty, namely

∑ 
:=1

∑?

9,;
|,:; 9 ,; |, imposes a shrinkage on

the elements of the precision matrices, thus avoiding possible singularity problems
and facilitating the estimation of large and sparse covariance matrices.

2.2 Model Estimation via E-M Algorithm

Since the membership of each observation to a cluster is unobservable, data related
to the grouping variable Z is inevitably missing and the maximum penalized log-
likelihood estimator can be obtained by means of the E-M algorithm [4], that iterates
over two steps: expectation (E) of the complete data (penalized) log-likelihood by
considering the unknown parameters equal to those obtained at the previous iteration
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(with initialization values), and maximization (M) of a lower bound of the obtained
expected value with respect to the unknown parameters.

In particular, at the 3-th iteration, given a current estimate ) (3) , the lower bound
after the E-step assumes the following form:

&% ();) (3) )=∑ :=1
∑=
8=1 g

(3)
:,8
[log c:+log 5 (#8 ;-: ,�: ) ]−_1

∑ 
:=1 | |-: | |1−_2

∑ 
:=1

∑?
9,;
|,:; 9,; |,

where g:,8 = P(/: = 1|- = G8) is the posterior probability of observation 8 to belong
to group : . The M-step maximizes the function &% in order to update the estimate
of ) .

As suggested by [9], it is possible to maximize each of the  term us-
ing a “graphical lasso” (GLASSO) algorithm (first proposed by [5]), thanks
to the close connection between fitting Gaussian mixture models and Gaus-
sian graphical models. Indeed, in GLASSO the objective function looks like
log det(W) − tr(SW) − _∑?

9,;
|, 9 ,; | so that the algorithm implemented in the R

package “glasso” can be used with W = W: , ( = S̃: and _ =
2_2∑=
8=1 g

(3)
:,8

for each :

to obtain the elements ,̂ (3+1)
:; 9 ,; of the precision matrices.

2.3 Model Selection via Silhouette Profile

A fundamental, and probably unsolved, problem in cluster analysis is determining
the “true” number of groups in a dataset. To this purpose, for simplicity, here we
approach the problem choosing the number of groups as cluster validation problem
and use the average silhouette width index as a model selection heuristic. The
silhouette value for curve 8 is given by

B(8) = 1(8) − 0(8)
max{0(8), 1(8)}

where 0(8) is the average distance of curve 8 to all other curves ℎ assigned to the
same cluster (if 8 is the only observation in its cluster, then B(8) = 0), and 1(8) is
the minimum average distance of curve 8 to observations ℎ which are assigned to
a different cluster. This definition ensures that B(8) takes values in [−1, 1], where
values close to one indicate “better”clustering solutions. Conditional on  and a pair
of values (_1, _2), we thus assess the overall cluster solution using the total average
of silhouette values

(( , _1, _2) =
1
=

=∑
8=1

B(8).

In particular, by doing a grid search for the triple ( , _1, _2), the best cluster
solution is obtained by looking for the largest value of the average silhouette width
(ASW) index. Note that, to evaluate B(8), 8 = 1, . . . , =, and then the objective function
(( , _1, _2), we need to compute a distance between pairs of curves -8 and -ℎ . One
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possibility is to compute the euclidean distance

32
� (8, ℎ) =

∫
‖-8 (C) − -ℎ (C)‖23C.

3 Experimental Results

3.1 Simulation

We present here a simulated scenario in order to investigate the effectiveness of
the !1 regularization in removing noise while preserving dominant local features,
accommodating for spatial heterogeneity of the curves.

The statistical analysis is illustrated for data simulated bymeans of a finite mixture
of multivariate Gaussian distributions. In particular, based on equation (2.1) and
(2.2), the curves are simulated using a combination of ? = 25 Fourier basis functions
defined over a one-dimensional regular grid with 100 observations. We consider a
mixture of four ( = 4) multivariate Gaussian distributions with isotropic covariance
matrices, i.e.

#: ∼ N(-: ;I: ) where n8 ∼ N(0; 0.5), : = 1, . . . , 4.

With the exclusion of 3 entries per group, the means -: are all zero mean vectors.
Under this scenario, the simulated curves (25 per group) and the non-zero group
expansion coefficients are represented in Figure 1. For this simple simulation setting,
estimation results suggest that, using euclidean distance to computed the ASW, the
grid search procedure is always able to correctly select the cluster-relevant basis
functions. This is confirmed by Figure 2 which shows both the distribution (over 100
replications) of the selected basis functions and the data projected on these bases that
clearly highlight the identification of 4 clusters. Under this scenario, the quality of
the estimated clusters thus appears very good as the analysis of the misclassification
rate suggests an 100% of accuracy in all the replicated datasets.

Similar results hold for more complex simulation designs, where we consider
different structure of the covariance matrices in the data generating process.

3.2 Performance on Real Data Sets

We evaluate the PFC-!1 model on a well-known benchmark data set, namely the
electrocardiogram (ECG) data set (data can be found at the UCR Time Series
Classification Archive [3]).

The ECG data set comprises a set of 200 electrocardiograms from 2 groups of
patients, myocardial infarction and healthy, sampled at 96 time instants in time.
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Fig. 1 Left: 25 simulated curves for each group. Right: Vector of expansion coefficients for each
group, with only three non-zero coefficients corresponding to basis functions with specific period-
icities (Hertz values).

Fig. 2 Left: Data projected on cluster specific functional subspace generated by the selected basis
functions. Right: Distribution (over 100 replications) of the selected basis functions shown for pairs
of sine and cosine basis functions, according to the Hertz values.

This data set were previously used to compare the performance of several func-
tional clustering models in [1]. The results in Table 5 of [1] show that the FunFEM
models, compared to other state of the art methodologies, achieved the best perfor-
mances in terms of accuracy. Hence, here, we limit the comparison to the results
obtained with the PFC-!1 and the FunFEMmodels. Although FunFEMmodels relay
on a mixture of Gaussian distributions describing the likelihood of the data similarly
to our proposal, they differ on facing the intrinsic high dimension of the problem
by estimating a latent discriminant subspace in parallel with the steps of an EM
algorithm.

For all the data, we reconstruct the functional form from the sampled curves
choosing arbitrarily 20 cubic spline basis of functions. We tested the PFC-!1 models
considering five different values for the number of clusters,  = {2, 3, 4, 5, 6}, and
six values for _1 = {0.5, 1, 5, 10, 15, 20}.

Considering that the GLASSO penalty parameter _ depends linearly from _2,
the choice of _2 has to provide suitable values for _. A practical approach is to
choose values avoiding convergence problems with GLASSO. Here _2 was set to
{5, 7.5, 10, 12, 15, 20} for the ECG data. Both PFC-!1 and FunFEM algorithmswere
initialized using a  -means procedure.
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The clustering accuracies, computed with respect to the known labels, are 69% for
FunFEM DFM[U: 9V: ] (choosing among 12 different model parameterizations with
BIC index), and 75% for PFC-L1 [_1 = 0.5 , _2 = 5] (values of tuning parameters
chose by ASW index) . Thus PFC-!1 achieves good performance, with an increase
in the accuracy about 9%.

4 Discussion

In this paper we tried to investigate the potential of shrinkage methods for clustering
functional data. Our numerical examples show the advantages of performing clus-
tering with features selection, such as uncover interesting structures underlying the
data while preserving good clustering accuracy. To the best of our knowledge, this is
the first proposal that considers a penalty for both means and covariances of mixture
components in functional model-based clustering. In the model selection section we
defined an heuristic criterion to choose among different model parameterizations
based on average silhouette index. It may be interesting to evaluate different dis-
tances (i.e. not euclidean) to compute this index in future research. Moreover, we
will consider more complex simulation designs to investigate the robustness of the
proposal and extend the comparison with the state of the art methodologies on more
benchmark datasets.
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statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

321Penalized Model-based Functional Clustering


	Penalized Model-based Functional Clustering: a Regularization Approach via Shrinkage Methods
	1 Introduction
	2 Shrinkage Method for Model-based Clustering for Functional Data
	2.1 Model Definition
	2.2 Model Estimation via E-M Algorithm
	2.3 Model Selection via Silhouette Profile

	3 Experimental Results
	3.1 Simulation
	3.2 Performance on Real Data Sets

	4 Discussion
	References




