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Abstract This paper presents an efficient variational inference framework for a
family of structured Gaussian process regression network (SGPRN) models. We
incorporate auxiliary inducing variables in latent functions and jointly treat both
the distributions of the inducing variables and hyper-parameters as variational pa-
rameters. Then we take advantage of the collapsed representation of the model and
propose structured variational distributions, which enables the decomposability of a
tractable variational lower bound and leads to stochastic optimization. Our inference
approach is able to model data in which outputs do not share a common input set, and
with a computational complexity independent of the size of the inputs and outputs
to easily handle datasets with missing values. Finally, we illustrate our approach on
both synthetic and real data.

Keywords: stochastic optimization, Gaussian process, variational inference, multi-
variate time series, time-varying correlation

1 Introduction

Multi-output regression problems arise in various fields. Often, the processes that
generate such datasets are nonstationary. Modern instrumentation has resulted in
increasing numbers of observations, as well as the occurrence of missing values.
This motivates the development of scalable methods for forecasting in such datasets.

Multi-ouput Gaussian process models or multivariate Gaussian process models
(MGP) generalise the powerful Gaussian process predictive model to vector-valued
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randomfields [1]. Thosemodels demonstrate improved prediction performance com-
pared with independent univariate Gaussian processes (GP) because MGPs express
correlations between outputs. Since the correlation information of data is encoded in
the covariance function, modeling the flexible and computationally efficient cross-
covariance function is of interest. In the literature of multivariate processes, many
approaches are proposed to build valid cross-covariance functions including the
linear model of coregionalization (LMC) [2], kernel convolution techniques [3], B-
spline based coherence functions [4]. However, most of these models are designed
for modelling low-dimensional stationary processes, and require Monte Carlo sim-
ulations, making inference in large datasets computationally intractable.

Modelling the complicated temporal dependencies across variables is addressed in
[5, 6] by several adaptions of stochastic LMC. Such models can handle input-varying
correlation across multivariate outputs. Especially for multivariate time series, [6]
propose a SGPRN that captures time-varying scale, correlation, and smoothness.
However, the inference in [6] is difficult to handle in applications where either the
number of observations and dimension size are large or where missing data exist.

Here, we propose an efficient variational inference approach for the SGPRN by
employing the inducing variable framework on all latent processes [7], taking ad-
vantage of its collapsed representation where nuisance parameters are marginalized
out [8] and proposing a tractable variational bound amenable to doubly stochastic
variational inference. We call our approach variational SGPRN (VSGPRN). This
variational framework allows the model to handle missing data without increasing
the computational complexity of inference. We numerically provide evidence of the
benefits of simultaneously modeling time-varying correlation, scale and smoothness
in both a synthetic experiment and a real-world problem.

The main contributions of this work are threefold:

• Learning structured Gaussian process regression networks using inducing vari-
ables on both mixing coefficients and latent functions.

• Employing doubly stochastic variational inference for structured Gaussian pro-
cess regression networks by taking advantage of its collapsed representation and
constructing a tractable lower bound of the loglikelihood, making it suitable for
mini-batching learning.

• Demonstrating that our proposed algorithm succeeds in handling time-varying
correlation on missing data under different scenarios in both synthetic data and
real data.

2 Model

Assume y(x) ∈ R� is a vector-valued function of x ∈ R% , where � is the di-
mension size of the outputs and % is the dimension size of the inputs. SGPRN
assumes that noisy observations y(x) are the linear combination of latent variables
g(x) ∈ R� , corrupted by Gaussian noise n (x). The coefficients L(x) ∈ R�×�
of the latent functions are assumed to be a stochastic lower triangular matrix with
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Fig. 1 Graphical model of VSGPRN. Left: Illustration of the generative model. Right: Illustration
of the variational structure. The dashed (red) block means that we marginalize out those latent
variables in the variational inference framework.

positive values on the diagonal for model identification [9, 6]. Thus, SGPRN is
defined in the generative model of Figure 1 and it is y(x) = f (x) + n (x), f (x) =
L(x)g(x) with independent white noise n (x) 883∼ N(0, f2

4AA �). We note that
each latent function 63 in g is independently sampled from a GP with a non-
stationary kernel  6 and the stochastic coefficients are modeled via a struc-
tured GP based prior as proposed in [9] with a stationary kernel  ; such that

63
883∼ GP(0,  6) , 3 = 1, . . . , � , and ;8 9 ∼

{
GP(0,  ;) , 8 > 9 ,

logGP(0,  ;) , 8 = 9 ,
where logGP

denotes the log Gaussian process [10].  6 is modelled as a Gibbs correlation func-
tion  6 (x,x′) =

√
2ℓ (x)ℓ′ (x)
ℓ (x)2+ℓ (x′)2 exp

(
− ‖x−x′ ‖2
ℓ (x)2+ℓ (x′)2

)
, ℓ ∼ logGP(0,  ℓ) , where ℓ

determines the input-dependent length scale of the shared correlations in  6 for all
latent functions 63 . The varying length-scale process ℓ plays an important role in
modelling nonstationary time series as illustrated in [11, 6].

Let X = {x8}#8=1 be the set of observed inputs and Y = {y8}#8=1 be the set
of observed outputs. Denote [ as the concatenation of all coefficients and all log
length-scale parameters, i.e., [ = (l, ℓ̃) evaluated at training inputs X. Here, l is a
vector including the entries below the main diagonal and the entries on the diagonal
in the log scale and ℓ̃ = log ℓ is the length-scale parameters in log scale. Also,
denote \ = (\; , \ℓ , f2

4AA ) as all hyper-parameters, where \; and \ℓ are the hyper-
parameters in kernel  ; and  ℓ . We note that directly inferring the posterior of the
latent variables ?([ |Y, \) ∝ ?(Y |[, f2

4AA )?([ |\; , \ℓ) is computationally intractable
in general because the computational complexity of ?([ |Y, \) is O(#3�3). To
overcome this issue, we propose an efficient variational inference to significantly
reduce the computational burden in the next section.
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3 Inference

We introduce a shared set of inducing inputs Z = {z<}"<=1 that lie in the same space
as the inputs X and a set of shared inducing variables w3 for each latent function
63 evaluated at the inducing inputs Z. Likewise, we consider inducing variables u88
for the function log !88 when 8 = 9 , u8 9 for function !8 9 when 8 > 9 , and inducing
variables v for function log ℓ(x) evaluated at inducing inputs Z. We denote those
collective variables as l = {l8 9 }8≥ 9 , u = {u8 9 }8≥ 9 , g = {g3}�3=1, w = {w3}�3=1, ℓ
and v. Then we redefine the model parameters [ = (l,u,g,w, ℓ,v), and the prior
of those model parameters is ?([) = ?(l|w)?(w)?(g|u, ℓ,v)?(u)?(ℓ |v)?(v).

The core assumption of inducing point-based sparse inference is that the inducing
variables are sufficient statistics for the training and testing data in the sense that the
training and testing data are conditionally independent given the inducing variables.
In the context of our model, this means that the posterior processes of !, 6 and ℓ are
sufficiently determined by the posterior distribution of u, w and v. We propose a
structured variational distribution and its corresponding variational lower bound.Due
to the nonconjugacy of this model, instead of doing expectation in the evidence lower
bound (ELBO), as is normally done in the literature, we perform the marginalization
on inducing variables u, w and g, and then use the reparameterization trick to
apply end-to-end training with stochastic gradient descent. We will also discuss a
procedure for missing data inference and prediction.

To capture the posterior dependency between the latent functions, we propose a
structured variational distribution of the model parameters [ used to approximate its
posterior distribution as @([) = ?(l|u)?(g|w, ℓ,v)?(ℓ |v)@(u,w,v) . This varia-
tional structure is illustrated in Figure 1. The variational distribution of the inducing
variables @(u,w,v) fully characterizes the distribution of q([). Thus, the inference
of @(u,w,v) is of interest. We assume the parameters u, w, and v are Gaussian
and mutually independent.

Given the definition of Gaussian process priors for the SGPRN, the conditional
distributions ?(l|u), ?(g|w, ℓ̃,v), and ?(ℓ |v) have closed-form expressions and all
are Gaussian, except for ?(ℓ |v), which is log Gaussian. The ELBO of the log like-
lihood of observations under our structured variational distribution @([) is derived
using Jensen’s inequality as:

log ?(Y) ≥ �@ ([)
[
log

(
?(Y |g, l)?(u)?(w)?(v)

@(u,w,v)

)]
= ' + � , (1)

where ' =
∑#
==1

∑�
3=1 �@ (g= ,l=) log(?(H=3 |g=, l=)) is the reconstruction term and

� = KL(@(u) | |?(u)) + KL(@(w) | |?(w)) + KL(@(v) | |?(v)) is the regularization
term. g= = {63= = (g3)=}�3=1 and l= = {;8 9= = (l8 9 )=}8≥ 9 are latent variables.

The structured decomposition trick for @([) has also been used by [12] to derive
variational inference for the multivariate output case. The benefit of this structure
is that all conditional distributions in @([) can be cancelled in the derivation of the
lower bound in (1), which alleviates the computational burden of inference. Because
of the conditional independence of the reconstruction term in (1) given g and l, the
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lower bound decomposes across both inputs and outputs and this enables the use
of stochastic optimization methods. Moreover, due to the Gaussian assumption in
the prior and variational distributions of the inducing variables, all KL divergence
terms in the regularization term � are analytically tractable. Next, instead of directly
computing expectation, we leverage stochastic inference [13].

Stochastic inference requires sampling of l and g from the joint variational
posterior @([). Directly sampling them would introduce much uncertainty from
intermediate variables and thus make inference inefficient. To tackle this is-
sue, we marginalize unnecessary intermediate variables u and w and obtain the
marginal distributions @(l) = ∏

8= 9 logN(l88 | ˜̀;88 , Σ̃;88)
∏
8> 9 N(l8 9 | ˜̀;8 9 , Σ̃;8 9 ) and

@(g|ℓ,v) = ∏�
3=1N(g3 | ˜̀

6

3
, Σ̃
6

3
) with a joint distribution @(ℓ,v) = ?(ℓ |v)@(v),

where the conditional mean and covariance matrix are easily derived. The corre-
sponding marginal distributions @(l=) and @(g= |ℓ,v) at each = are also easy to
derive. Moreover, we conduct collapsed inference by marginalizing the latent vari-
ables g=, so then the individual expectation is

E@ (g= ,l=) log(?(H=3 |g=, l=)) =
∫
(!=3)@(ℓ=,v)@(l3 ·=)3 (l3 ·=, ℓ=,v)), (2)

where !=3 = logN(H=3 |
∑�
9=1 ;3 9= ˜̀6

9=
, f2
4AA ) − 1

2f2
4AA

∑�
9=1 ;

2
3 9=

f̃
62
9=

measure the
reconstruction performance for observations y=3 .

Directly evaluating the ELBO is still challenging due to the non-linearities in-
troduced by our structured prior. Recent progress in black box variational inference
[13] avoids this difficulty by computing noisy unbiased estimates of the gradient of
ELBO, via approximating the expectations with unbiasedMonte Carlo estimates and
relying on either score function estimators [14] or reparameterization gradients [13]
to differentiate through a sampling process. Here we leverage the reparameterization
gradients for stochastic optimization for model parameters. We note that evaluating
ELBO (1) involves two sources of stochasticity from Monte Carlo sampling in (2)
and from data sub-sampling stochasticity [15]. The prediction procedure is based on
Bayes’ rule and replaces the posterior distribution by the inferred variational distribu-
tion. In the case of missing data, the only modification in (1) is in the reconstruction
term, where we sum up the likelihoods of observed data instead of complete data.

4 Experiments

This section illustrates the performance of our model on multivariate time series. We
first show that our approach can model the time-varying correlation and smoothness
of outputs on 2D synthetic datasets in three scenarioswith respect to different types of
frequencies but the samemissing data mechanism. Then, we compare the imputation
performance on missing data with other inducing-variable based sparse multivariate
Gaussian process models on a real dataset.
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We conduct experiments on three synthetic time series with low frequency
(LF), high frequency (HF) and varying frequency (VF) respectively. They are
generated from the system of equations H1 (C) = 5 cos(2c|CB) + n1 (C) , H2 (C) =
5(1− C) cos(2c|CB) − 5C cos(2c|CB) + n2 (C), where {n8 (C)}28=1 are independent stan-
dard white noise processes. The value of | refers to the frequency and the value of
B characterizes the smoothness. The LF and HF datasets use the same B = 1, imply-
ing the smoothness is invariant across time. But they employ different frequencies,
| = 2 for LF and | = 5 for HF (i.e., two periods and five periods in a unit time
interval respectively). The VF dataset takes B = 2 and | = 5, so that the frequency
of the function is gradually increasing as time increases. For all three datasets, the
system shows that as time C increases from 0 to 1, the correlation between H1 (C) and
H2 (C) gradually varies from positive to negative. Within each dataset, we randomly
select 200 training data points, in which 100 time stamps are sampled on the interval
(0, 0.8) for the first dimension and the other 100 time stamps sampled on the interval
(0.2, 1) for the second dimension. For the test inputs, we randomly select 100 time
stamps on the interval (0, 1) for each dimension.

Table 1 Prediction measurements on three synthetic datasets and different models. LF, HF and VF
refer to low-frequency, high-frequency, and time-varying datasets. Three prediction measures are
root mean square error (RMSE), average length of confidence interval (ALCI), and coverage rate
(CR). All three measurements are summarized by the mean and standard deviation across 10 runs
with different random initializations.

Data Model RMSE ALCI CR

LF

IGPR [16] 2.25(1.33e-13) 2.18(1.88e-13) 0.835(0)
ICM [17] 2.26(2.54e-5) 2.18(1.22e-5) 0.835(0)

CMOGP [12] 1.43(6.12e-2) 1.36(1.98e-1) 0.651(3.00e-2)
VGPRN [18] 1.01(0.31) - -
VSGPRN 1.00(1.43e-1) 2.21(6.56e-2) 0.892(1.63e-2)

HF

IGPR [16] 1.51(6.01e-14) 3.17(1.30e-13) 0.915(2.22e-16)
ICM [17] 1.52(1.01e-5) 3.17(1.19e-5) 0.910(0)

CMOGP [12] 1.29(3.04e-2) 2.34(3.31e-1) 0.729(3.07e-2)
VGPRN [18] 1.11(0.25) - -
VSGPRN 1.10(1.98e-1) 2.74(7.94e-2) 0.930(1.14e-2)

VF

IGPR [16] 1.64(8.17e-14) 3.19(3.02e-13) 0.875(0)
ICM [17] 1.66(2.37e-3) 3.16(1.49e-3) 0.880(1.50e-3)

CMOGP [12] 2.24(3.08e-1) 2.56(9.29e-1) 0.697(1.56e-1)
VGPRN [18] 1.04(0.67) - -
VSGPRN 1.24(1.33e-1) 2.92(1.21e-1) 0.887(9.80e-3)

We quantify the model performance in terms of root mean square error (RMSE),
average length of confidence interval (ALCI), and coverage rate (CR) on the test set.
A smaller RMSE corresponds to better predictive performance of the model, and
a smaller ALCI implies a smaller predictive uncertainty. As for CR, the better the
model prediction performance is, the closer CR is to the percentile of the credible
band. Those results are reported by the mean and standard deviation with 10 differ-
ent random initializations of model parameters. Quantitative comparisons relating
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to all three datasets are in Table 1. We compare with independent Gaussian process
regression (IGPR) [16], the intrinsic coregionalization model (ICM) [17], Collab-
orative Multi-Output Gaussian Processes (CMOGP) [12] and variational inference
of Gaussian process regression networks [18] on three synthetic datasets. In both
CMOGP and VSGPRN approaches, we use 20 inducing variables. We further exam-
ined model predictive performance on a real-world dataset, the PM2.5 dataset from
the UCI Machine Learning Repository [19]. This dataset tracks the concentration of
fine inhalable particles hourly in five cities in China, along with meteorological data,
from Jan 1st, 2010 to Dec 31st, 2015. We compare our model with two sparse Gaus-
sian process models, i.e., independent sparse Gaussian process regression (ISGPR)
[20] and the sparse linear model of corregionalization (SLMC) [17]. In the dataset,
we consider six important attributes and use 20% of the first 5000 standardized mul-
tivaritate for training and use the others for testing. The RMSEs on the testing data
are shown in Table 2, illustrating that VSGPRN had better prediction performance
compared with ISGPR and SLMC, even when using fewer inducing points.

Table 2 Empirical results for PM2.5 dataset. Each model’s performance is summarized by its
RMSE on the testing data. The number of equi-spaced inducing points is given in parentheses.

Data ISGPR (100) [20] SLMC (100) [17] VSGPRN (50) VSGPRN (100) VSGPRN (200)
PM2.5 0.994 0.948 0.840 0.708 0.625

5 Conclusions

We propose a novel variational inference approach for structured Gaussian process
regression networks named the variational structured Gaussian process regression
network, VSGPRN.We introduce inducing variables and propose a structured varia-
tional distribution to reduce the computational burden. Moreover, we take advantage
of the collapsed representation of our model and construct a tractable lower bound of
the log likelihood to make it suitable for doubly stochastic inference and easy to han-
dle missing data. In our method, the computation complexity is independent of the
size of the inputs and the outputs. We illustrate the superior predictive performance
for both synthetic and real data.

Our inference approach, VSGPRN can be widely used for high dimensional time
series to model complicated time-varying dependence across multivariate outputs.
Moreover, due to its scalability and flexibility, it can be widely applied for irregu-
larly sampled incomplete large datatsets that widely exist in various research fields
including healthcare, environmental science and geoscience.
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Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
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