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Abstract Centroids are often used for object localization tasks, supervised seg-
mentation in medical image analysis, or classification in other specific tasks. This
paper starts by contributing to the theory of centroids by evaluating the effect of
modified illumination on the weighted correlation coefficient. Further, robustness
of various centroid-based tools is investigated in experiments related to mouth lo-
calization in non-standardized facial images or classification of high-dimensional
data in a matched pairs design. The most robust results are obtained if the sparse
centroid-basedmethod for supervised learning is accompanied with an intrinsic vari-
able selection. Robustness, sparsity, and energy-efficient computation turn out not to
contradict the requirement on the optimal performance of the centroids.

Keywords: image processing, optimized centroids, robustness, sparsity, low-energy
replacements

1 Introduction

Methods based on centroids (templates, prototypes) are simple yet widely used for
object localization or supervised segmentation in image analysis tasks and alsowithin
other supervised or unsupervised methods of machine learning. This is true e.g. in
various biomedical imaging tasks [1], where researchers typically cannot afford a too
large number of available images [3]. Biomedical applications also benefit from the
interpretability (comprehensibility) of centroids [11].

This paper is focused on the question how are centroid-based methods influenced
by data contamination. Section 2 recalls the main approaches to centroid-based
object localization in images, as well as a recently proposed method of [6] for op-
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timizing centroids and their weights. The performance of these methods to data
contamination (non-standard conditions) has not been however sufficiently investi-
gated. Particularly, we are interested in the performance of low-energy replacements
of the optimal centroids and in the effect of posterior variable selection (pixel selec-
tion). Section 2.1 presents novel expressions for images with a changed illumination.
Numerical experiments are presented in Section 3. These are devoted to mouth lo-
calization over raw facial images as well as over artificially modified images; other
experiments are devoted to high-dimensional data in a matched pairs design. The
optimized centroids of [6] and especially their modification proposed here turn out
to have remarkable robustness properties. Section 4 brings conclusions.

2 Centroid-based Classification (Object Localization)

Commonly used centroid-based approaches to object localization (template match-
ing) in images construct the centroid simply as the average of the positive examples
and typically use Pearson product-moment correlation coefficient A as the most com-
mon measure of similarity between a centroid c and a candidate part of the image
(say x). While the centroid and candidate areas are matrices of size (say) � × � pixels,
they are used in computations after being transformed to vectors of length 3 := ��.
This allows us to use the notation c = (21, . . . , 23)) and x = (G1, . . . , G3)) .

Assumptions A: We assume the whole image to have size #' × #� pixels. We
assume the centroid c = (2)8, 9 with 8 = 1, . . . , � and 9 = 1, . . . , � to be a matrix of
size � × � pixels. A candidate area x and nonnegative weights w with

∑
8

∑
9 |8 9 = 1

are assumed to be matrices of the same size as c.
For a given image, E will denote the set of its rectangular candidate areas of size

� × �. The candidate area fulfilling

arg max
x∈E

A (x, c) (1)

or (less frequently)
arg min

x∈E
| |x − c| |2 (2)

are classified to correspond to the object (e.g. mouth).
Let us consider here replacing A by the weighted correlation coefficient A|

arg max
x∈E

A| (x, c; w) (3)

with given non-negative weights w = (|1, . . . , |3)) ∈ R ? with
∑=
8=1 |8 = 1,

where R denotes the set of all real numbers. Let us further use the notation Ḡ| =∑3
9=1 | 9G 9 = w) x and 2̄| = w) c. We may recall A| between x and c to be defined

as

A, (x, c; w) =
∑3
8=1 |8 (G8 − Ḡ|) (28 − 2̄|)√∑3

8=1 [|8 (G8 − Ḡ|)2]
∑3
8=1 [|8 (28 − 2̄|)2]

. (4)
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Fig. 1 The workflow of the optimization procedure of [6].

A detailed study of [2] investigated theoretical foundations of centroid-based classi-
fication, however for the rare situation when (1) is replaced by

The sophisticated centroid optimization method of [6], outlined in Figure 1,
requires tominimize a nonlinear loss function corresponding to a regularizedmargin-
like distance (exploiting A|) evaluated for the worst pair from the worst image over
the training database (i.e. the worst with respect to the loss function). Subsequently,
optimization of the weights may be also performed, ensuring many pixels to obtain
zero weights (i.e. yielding a sparse solution). The optimal centroid may be used
as such, even without any weights at all; still, optimization of the weights leads
to a further improvement of the classification performance. In the current paper,
we always consider a linear (i.e. approximate) approach to centroid optimization,
although a nonlinear optimization is also successful as revealed in the comparisons
in [6].

2.1 Centroid-Based Object Localization: Asymmetric Modification
of the Candidate Area

In the context of object localization as described above, our aim is to express
A| (x∗, c; w) under modified candidate areas (say x∗) of the image x; we stress that
the considered modification of the image does not allow to modify the centroid c and
weights w. These considerations are useful for centroid-based object localization,
when asymmetric illumination is present in the whole image or its part. The weighted
variance (2

| (x; w) of xwith weightsw and the weighted covariance (| (x, c) between
x and c are denoted as

(2
| (x) =

∑
8, 9

|8 9 (G8 9 − Ḡ|)2, (| (x, c) =
∑
8, 9

|8 9 (G8 9 − Ḡ|) (28 9 − 2̄|). (5)

Further, the notation x + 0 with x = (G8 9 )8, 9 is used to denote the matrix (G8 9 + 0)8, 9
for a given 0 ∈ R. We also use the following notation. The image x is divided to two
parts x = (x1, x2)) ∈ R3 , where

∑
� or

∑
� � denote the sum over the pixels of the

first or second part, respectively.

Theorem 1 Under Assumptions A, the following statements hold.

1. For x∗ = x + Y, it holds A| (x∗, c) = A| (x, c) for Y > 0.
2. For x∗ = :x with : > 0, it holds A| (x∗, c) = A| (x, c).
3. For x = (x1, x2)) and x∗ = (x1, x2 + Y)) , it holds A| (x∗, c) =
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=
(| (x, c) + Y

∑
� � |8 928 9 − Y{22̄|

(| (c)
√
(2
| (x) + {2 (1 − {2)Y2 + 2Y(2{2 − 1) (∑� � |8 9G8 9 − {2Ḡ|)

, (6)

where {2 =
∑
� � |8 9 and Y ∈ R.

4. For x = (x1, x2)) and x∗ = (x1, :x2)) with : > 0, it holds

A| (x∗, c) = A| (x, c)
(| (x)
(∗| (x)

+
(: − 1)∑� � |8 9G8 9 (28 9 − 2̄|)

(| (c)(∗| (x)
, (7)

where

(
(∗| (x)

)2
= (2

| (x) + (:2 − 1)
∑
� �

|8 9G
2
8 9 −

:2 − 1
=

(∑
� �

|8 9G8 9

)2

−

−2
=
(: − 1)

(∑
�

|8 9G8 9

) (∑
� �

|8 9G8 9

)
. (8)

The proofs of the formulas are technical but straightforward exploiting known
properties of A| . The theorem reveals A| to be vulnerable to the modified illumina-
tion, i.e. all the methods based on centroids of Section 2 may be too influenced by
the data modification.

3 Experiments

3.1 Data

Three datasets are considered in the experiments. In the first dataset, the task is to
localize themouth in the database containing 212 grey-scale 2D facial images of faces
of healthy individuals of size 192 × 256 pixels. The database previously analyzed
in [6] was acquired at the Institute of Human Genetics, University of Duisburg-
Essen, within research of genetic syndrome diagnostics based on facial images [1]
under the projects BO 1955/2-1 and WU 314/2-1 of the German Research Council
(DFG). We consider the training dataset to consist of the first 124 images, while the
remaining 88 images represent an independent test set acquired later but still under
the same standardized conditions fulfilling assumptions of unbiased evaluation. The
centroid described below is used with � = 26 and � = 56.

Using always raw training images, the methods are applied not only to the raw test
set, but also to the test set after being artificially modified using models inspired by
Section 2.1. On the whole, five different versions of the test database are considered;
the modifications required that we first manually localized the mouths in the test
images:

1. Raw images.
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2. Illumination. If we consider a pixel [8, 9] with intensity G8 9 in an image (say) 5 ,
then the grey-scale intensity 58 9 will be

5 ∗8 9 = 58 9 + _ | 9 − 90 |, 8 = 1, . . . , �, 9 = 1, . . . , �, (9)

where [80, 90] are the coordinates of the mouth and _ = 0.002.
3. A more severe version of the modification (ii) with _ = 0.004.
4. Asymmetry. In every test image, each true mouth x of size 26 × 56 pixels with

intensities G8 9 is replaced by

G∗8 9 =


G8 9 + 0.2, 8 = 1, . . . , 26, 9 = 1, . . . , 15,
G8 9 , 8 = 1, . . . , 26, 9 = 16, . . . , 41,
G8 9 + 0.1, 8 = 1, . . . , 26, 9 = 42, . . . , 56.

(10)

5. Rotation. Such candidate area is classified as the mouth in the given image,
which maximizes the loss (1) or (3) over the three versions of the image, namely
after rotations by +5, 0, and −5 degrees.

6. Image denoising (for raw images). The LWS-filter [5], replacing each grey
value by the least weighted squares estimate [7] computed from a circular
neighborhood with radius 4 pixels, was applied to each test image.

The optimized centroids were explained in [6] to be applicable also to classifi-
cation tasks for other data than images, if they follow a matched pairs design. We
use two datasets from [6] in the experiments and their classification accuracies are
reported in a 10-fold cross validation.

• AMI. The gene expressions of 4000 genes over 92 individuals in two versions (raw
or contaminated by outliers). The aim is to learn a classification rule allowing to
assign a new individual to one of the two given groups (controls or patients with
acute myocardial infarction (AMI)).

• Simulated data. The design mimicks a 1:1 matched case-control study with 2500
variables over 60 individuals in two versions (raw or contaminated by outliers)
and the aim is again to classify between two given groups (patients and controls).

Fig. 2 The average centroid used as the initial choice for the centroid optimization.
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3.2 Methods

The following methods are compared in the experiments; standard methods are
computed using R software and we use our own C++ implementation of centroid-
based methods. The average centroid is obtained as the average of all mouths of the
training set, or the average across all patients. The centroid optimization starts with
the average centroid as the initial one, and the optimization of weights starts with
equal weights as the initial ones:

A. Centroid-based method (2).
B. Centroid-based method (1) with average centroid (Figure 2) and equal weights.
C. Centroid-based method (1) with average centroid, replacing A| by cosine sim-

ilarity defined for x ∈ R3 and y ∈ R3 as

cos \ =
x) y

| |x| |2 | |y| |2
=

∑3
8=1 G8H8(∑3

8=1 G
2
8

)1/2
(∑3

9=1 H
2
9
)1/2

. (11)

D. Centroid-based method (1) with optimal centroid and equal weights [6].
E. Centroid-based method (1) with optimal centroid and optimal weights as in

[6] (optimizing the centroid and only after that the weights), i.e. with posterior
variable selection (pixel selection).

F. Centroid-based method (1) as in [6], where however the weights are optimized
first, and then the centroid is optimized.

G. Centroid-based method (1) as in [6], where however each step of centroid
optimization is immediately followed by optimization of the weights; this method
performs (in contrary to [6]) intrinsic variable selection.

H. Centroid-based method (1) as in [6], where however each optimization step
proceeds over 10 worst images (instead of the very worst image).

I. Centroid-based method (1) with average centroid, where A| is used as ALWS [7]
with weight function

k1 (C) = exp
{
− C2

2g2

}
1
[
C <

3
4

]
, C ∈ [0, 1], (12)

corresponding to a (trimmed) density of the Gaussian N(0, 1) distribution; 1 de-
notes an indicator function. To explain, the computation of ALWS (G, H) starts by
fitting the LWS estimator in the linear regression of H as the response of G, and
A| is used with the weights determined by the LWS estimator.

J. The method (I) with the weight function k2 (C) = 1
[
C < 3

4
]
for C ∈ [0, 1].

K. The approach of [12] that is meaningful however only for themouth localization
dataset.
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Table 1 Classification accuracy for three datasets. For the mouth localization data, modifications of
the test images are described in Section 3: (i) None (raw images); (ii) Illumination; (iii) Asymmetry;
(iv) Rotation; (v) Image denoising. A detailed description of the methods is given in Section 3.2.

Dataset
Mouth localization AMI Simul.

Method (i) (ii) (iii) (iv) (v) (vi) Raw Cont. Raw Cont.
A 0.90 0.86 0.81 0.88 0.81 0.93 0.73 0.66 0.71 0.67
B 0.93 0.90 0.86 0.92 0.86 0.95 0.76 0.70 0.77 0.70
C 0.89 0.84 0.74 0.89 0.84 0.93 0.72 0.61 0.70 0.64
D 1.00 0.98 0.95 0.99 0.93 0.98 0.85 0.83 0.80 0.77
E 1.00 1.00 0.98 1.00 0.95 0.98 0.87 0.85 0.83 0.80
F 1.00 0.98 0.96 1.00 0.89 0.97 0.86 0.82 0.79 0.73
G 1.00 0.96 0.95 1.00 0.93 0.99 0.88 0.85 0.86 0.82
H 1.00 1.00 0.98 1.00 0.92 0.96 0.86 0.83 0.84 0.79
I 0.96 0.96 0.93 0.99 0.94 0.96 0.77 0.72 0.75 0.71
J 0.94 0.93 0.89 0.95 0.89 0.93 0.74 0.69 0.72 0.66
K 1.00 1.00 0.97 0.95 0.97 0.96 Not meaningful

3.3 Results

The results as ratios of correctly classified cases are presented in Table 1. For the
mouth localization, the optimized centroids of methods D, F, and H turn out to out-
perform simple centroids (A, B, and C); the novel modifications E and G performing
intrinsic variable selection yield the best results. Simple standard centroids (A, B,
and C) are non-robust to data contamination; this follows from Section 2.1 and from
analogous considerations for other types of contaminating the images. On the other
hand, the robustness of optimized centroids is achieved by their optimization (but
not by using A| as such). Methods E and G are even able to overcome methods I
and J based on ALWS. We recall that A!,( is globally robust in terms of the break-
down point [4]), is computationally very demanding, and does not seem to allow
any feasible optimization. Other results reported previously in [6] revealed that also
numerous standard machine learning methods are too vulnerable (non-robust) with
respect to data contamination, if measuring the similarity by A or A| .

For the AMI dataset, methods E and G with variable selection perform the best
results for raw as well as contaminated datasets. For the simulated data, the method G
yields the best results and the method E stays only slightly behind as the second best
method.

4 Conclusions

Understanding the robustness of centroids represents a crucial question in image
processing with applications for convolutional neural networks (CNNs), because
centroids are very versatile tools that may be based on deep features learned by deep
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learning. We focus on small datasets, for which CNNs cannot be used [10]. This
paper is interested in performance of centroid-based object localization over small
databases with non-standardized images, which commonly appear e.g. in medical
image analysis.

The requirements on robustness with respect to modifications of the images turn
out not to contradict the requirements on optimality of the centroids. The method G
applying an intrinsic variable selection on the optimal centroid and weights [6]
can be interpreted within a broader framework of robust dimensionality reduction
(see [8] for an overview) or low-energy approximate computation. Additional results
not presented here reveal the method based on optimized centroids to be robust also
to small shift. Neither the theoretical part of this paper nor the experiments exploit
any specific properties of faces. The presented robust method has potential also for
various other applications, e.g. for deep fake detection by centroids, robust template
matching by CNNs [9], or applying filters in convolutional layers of CNNs.

Acknowledgements The research was supported by the grant 22-02067S of the Czech Science
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Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.
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