
Similarity Forest for Time Series Classification

Tomasz Górecki, Maciej Łuczak, and Paweł Piasecki

Abstract The idea of similarity forest comes from Sathe and Aggarwal [19] and is
derived from random forest. Random forests, during already 20 years of existence,
proved to be one of the most excellent methods, showing top performance across a
vast array of domains, preserving simplicity, time efficiency, still being interpretable
at the same time. However, its usage is limited to multidimensional data. Similarity
forest does not require such representation – it is only needed to compute similarities
between observations. Thus, it may be applied to data, for which multidimensional
representation is not available. In this paper, we propose the implementation of
similarity forest for time series classification. We investigate 2 distance measures:
Euclidean and dynamic time warping (DTW) as the underlying measure for the
algorithm. We compare the performance of similarity forest with 1-nearest neighbor
and random forest on the UCR (University of California, Riverside) benchmark
database. We show that similarity forest with DTW, taking into account mean ranks,
outperforms other classifiers. The comparison is enriched with statistical analysis.

Keywords: time series, time series classification, random forest, similarity forest

Tomasz Górecki (�)
Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Uniwersytetu Poz-
nańskiego 4, Poznań, Poland, e-mail: tomasz.gorecki@amu.edu.pl

Maciej Łuczak
Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Uniwersytetu Poz-
nańskiego 4, Poznań, Poland, e-mail: maciej.luczak@amu.edu.pl

Paweł Piasecki
Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Uniwersytetu Poz-
nańskiego 4, Poznań, Poland, e-mail: pawel.piasecki@amu.edu.pl

165© The Author(s) 2023
P. Brito et al. (eds.), Classification and Data Science in the Digital Age,
Studies in Classification, Data Analysis, and Knowledge Organization,
https://doi.org/10.1007/978-3-031-09034-9_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-09034-9_19&domain=pdf

T. Górecki et al.

1 Introduction

Time series classification is a well-developing research field, that gained much
attention from researchers and business during the last two decades apparently by
the fact that more and more data around us seems to be located in the time domain –
and thus fulfilling the definition of time series. Predictive maintenance [18], quality
monitoring [22], stock market analysis [20] or sales forecasting [17] are just a few
exemplar nowadays problems where time series are indeed present. The reason why
we usually apply to time series different methods from regular (non-time series) data
is the fact, that time series are ordered in time (or some other space with ordering)
and it is beneficial to use the information conveyed by the ordering.

In recent years, one could observe many advances on the field of time series
classification. In 2017, Bagnall et al. presented a comprehensive comparison of time
series classification algorithms [2], showing that despite there are dozens of far
more complex methods, 1-Nearest Neighbour (1NN) [6, 11] coupled with DTW [3]
distance constitutes a good baseline. In fact, it has been outperformed by several
classifiers, with Collective of Transformation Ensembles (COTE) [1] as the most
efficient one. Furthermore, COTE was extended with Hierarchical Vote system, first
to HIVE-COTE [13] and then finally to HIVE-COTE 2.0 [15] – a current state of
the art classifier for time series. In general, the success of COTE-family classifiers
is based on the observation, that in the case of time series it is highly beneficial
to use different data representations. For example, HIVE-COTE 1.0 utilizes five
ensembles based on different data transformation domains. However, a common
criticism of such an approach is its time complexity. In the case of HIVE-COTE,
it equals $ (=2;4), where = is a number of observations and ; is a length of series.
Another drawback, especially significant for practitioners is the complex structure
of the model ensembles that makes it hard to use HIVE-COTE without spending a
decent amount of time studying its components beforehand.

As an alternative to such complex models may be trying to achieve possibly
slightly worse performance in favour of model simplicity and reduced computation
time. A group of classifiers that seems to hold a great potential are those inspired
by Random Forest (RF) [4]. This already 20-years old algorithm remains in the
classifiers’ forefront, showing extremely good performance and robustness across
multiple domains. Fernandez-Delgado et al. [10] performed a comparison of 179
classifiers on 121 non-time series data sets originated from UCI Machine Learning
Repository [9], concluding RF to be the most accurate one. Unfortunately, the usage
of RF is essentially limited to multidimensional data, as they sample features from
original space while creating each node of decision trees.

In this paper, we propose a method for extending RF to work with time series
using similarity forests (SF). We significantly extend the applicability of the RF
method to time series data. Furthermore, the approach even outperforms traditional
classifiers for time series. The main goal of this paper is to enrich the pool of time
series classifiers by Similarity Forest for time series classification. SF was initially
proposed bySathe andAggarwal in 2017 [19], as amethod extendingRandomForests
to deal with arbitrary data sets, provided that we are able to compute similarities

166

Similarity Forest for Time Series Classification

between observations.Wewould like to implement and tune themethod to time series
data. We investigate the performance of the model using two distance measures (the
algorithm’s hyper-parameter): Euclidean and DTW. Also, a comparison with other
selected time series classifiers is provided. We compare its performance against
1NN-ED, 1NN-DTW and RF.

The rest of the paper is structured as follows. In Section 2, we provide details
of similarity forest and we give more details about random forests. Additionally, we
discuss how similarity forest is related to random forest. Section 3 describes data
sets that we used and the comparison methodology. The corresponding results are
presented in Section 4. Finally, in Section 5 we give a brief summary of our research.

2 Classification Methods Used in Comparison

In the paper, we compare the standard random forest and the similarity forest with
the distance measure: ED (Euclidian distance) and DTW (dynamic time warping
distance). As benchmark methods, we also use the nearest neighbor method (1NN)
with distance measure ED and DTW. 1NN-ED and 1NN-DTW are very common
classificationmethods for time series classification [2]. For a review of thesemethods
refer to [14].

2.1 General Method of Random Forest Construction

Random forest consists of random decision trees. For the construction of a random
forest we usually take decision trees as simple as possible — without special criteria
for stopping, pruning, etc.

When building a decision tree, we start at a node # , which contains the entire
data set (bootstrap sample). Then, according to an established criterion, we split the
node # into two subnodes #1 and #2. In each subnode there are data subsets of
the data set from node # . We make this split in a way that is optimal for a given
split method. In each node, we write down how the split occurred. Then, proceeding
recursively, we split next nodes into subnodes until the stop criterion occurs. In our
case we take the simplest such criterion, namely we stop the split of a given node
when only elements of the same class are included in a node. We call such a node a
leaf and assign it a label which elements of the node (leaf) have.

Having built a tree, we can now use it (in the testing phase) to classify a new
observation. We pass this observation through the trained tree — starting from the
node # selecting each time one of the subnodes, according to the condition stored
in the node. We do this until we reach one of the leaves, and then we assign the test
observation to the class of the leaf.

Now, constructing the random forest, we collect a certain number of decision
trees, train them independently according to the above method and, in the test phase,

167

T. Górecki et al.

use each of the trees to test new observation. Thus, each tree assigns a label to the
test observation. The final label (for the entire forest) we construct by voting, we
choose the most frequently appearing label among the decision trees.

2.2 Classical Random Forest

To create a (classical) random tree and a random forest [4], we proceed as described
above using the following node split method:

To obtain split conditions for a single tree, we select randomly a certain number
of features (

√
: for classification, : — number of features), and for each feature

we create a feature vector (column, variable) made of all elements of the data set
(bootstrap sample). For a given feature vector (variable), we determine a threshold
vector. First, we sort values of the feature vector (uniquely — without repeating
values). Let us name this sorted feature vector as+++ = (+1, +2, . . .). Then we take the
values of the split as means of successive values of the vector+++ :

{8 =
+8 ++8+1

2
8 = 1, 2, (1)

Each splitting value divides the data set in node # into two subsets — the one (left)
in which we have elements with feature values smaller than {8 and the second (right)
with other elements. Then we check the quality of such a split.

The splitting point is chosen such that it minimizes the Gini index of the children
nodes. If ?1, ?2 . . . ?2 are the fractions of data points belonging to the 2 different
classes in node # , then the Gini index of that node is given by: � (#) = 1−∑2

8=1 ?
2
8
.

Then, if the node # is split into two children nodes #1 and #2, with =1 and =2
points, respectively, the Gini quality of the children nodes is given by:

�&(#1, #2) =
=1� (#1) + =2� (#2)

=1 + =2
.

Quality of the split is given by: �&(#) = � (#) − �&(#1, #2).

2.3 Similarity Forest

The similarity forest [19] differs from the ordinary (classical) random forest only in
the way we split nodes of trees. Instead of selecting a certain number of features,
we select randomly a pair of elements 41, 42 with different classes. Then, for each
element 4 of the subset of elements in a given node, we calculate the difference of
the squared distances to the elements 41 and 42:

|(4) = 3 (4, 41)2 − 3 (4, 42)2,

168

Similarity Forest for Time Series Classification

where 3 is any fixed distance measure of the elements of the data set. We sort the
vector ||| uniquely (without duplicates) creating the vector+++ and continue as for the
classical decision tree. We calculate values of the split {8 (1), calculate the quality
of the node split using the Gini index (2.2) and choose the best split. In the learning
phase, we remember in each node how the optimal split occurred (elements 41,
42, |(4)). In the learning phase, in each node we write down the optimal split —
elements 41, 42, and value |(4)).

2.4 Random Forest vs Similarity Forest

The difference between a classical random tree and a similarity tree is that instead of
selecting

√
: of the features, we select only one pair of elements 41, 42. Generally,

we have much fewer possible node splits, which has a very good effect on the
computation time.

The second important difference is that in the similarity tree we use any distance
measure between elements of the data set. Therefore, we can use distance measures
specific to a data set. For example, for time series we can use the DTW distance,
much better suited for calculating the distance between time series, instead of the
Euclidean distance.

3 Experimental Setup

We investigated the performance of similarity forest on UCR time series repository
[7] (128 data sets). The latest update of the UCR database introduced several data
sets with missing observations and uneven sample lengths. However, the repository
includes a standardized version of the database without these impediments, and that
is the version we used.

All data sets are split into a training and testing subset, and all parameter opti-
mization is conducted on the training set only. We combined both parts and in the
next step, we used 100 random train/test splits.

4 Results

The error rates for each classifier can be found on the accompanying website1. In
the Table 1 we show a short summary of results, including a number of wins (draw
is not counted as a win) and mean ranks. Taking into account mean ranks, SF-DTW
is the best classifier, sightly ahead of RF (mean ranks correspondingly equal 2.64

1 https://github.com/ppias/similarity_forest_for_tsc

169

T. Górecki et al.

Table 1 Number of wins (clearly wins) and mean ranks for examined methods.

Method 1NN-ED 1NN-DTW RF SF-ED SF-DTW

Wins 12 28 38 10 31
Mean rank 3.59 2.89 2.69 3.19 2.64

and 2.89). Figure 1 demonstrates comparison of error rates and ranks for classifiers.
These results lead to a conclusion that even though there is no clear winner, the top
efficient distances are dominated by RF and SF-based classifiers. Figure 2 shows
scatter plots of errors for pairs of classifiers.

1NN-DTW

1NN-ED

RF

SF-DTW

SF-ED

0.00 0.25 0.50 0.75

Errors

1NN-DTW

1NN-ED

RF

SF-DTW

SF-ED

1 2 3 4 5

Ranks

Fig. 1 Comparison of error rates and ranks.

SF-ED better here

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

RF

S
F
-E
D

SF-DTW better here

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

RF

S
F
-D
T
W

SF-DTW better here

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

SF-ED

S
F
-D
T
W

Fig. 2 Comparison of error rates.

To identify differences between the classifiers, we present a detailed statistical
comparison. In the beginning, we test the null hypothesis that all classifiers perform
the same and the observed differences are merely random. The Friedman test with
Iman & Davenport extension is probably the most popular omnibus test, and it is
usually a good choice when comparing different classifiers [12]. The ?-value from
this test is equal to 0. The obtained ?-value indicates that we can safely reject the
null hypothesis that all the algorithms perform the same. We can therefore proceed

170

Similarity Forest for Time Series Classification

with the post-hoc tests in order to detect significant pairwise differences among all
of the classifiers.

Demšar [8] proposes the use of the Nemenyi’s test [16] that compares all the
algorithms pair-wise. For a significance level U the test determines the critical
difference (CD). If the difference between the average ranking of two algorithms is
greater than CD the null hypothesis that the algorithms have the same performance
is rejected. Additionally, Demšar [8] creates a plot to visually check the differences,
the CD plot. In the plot, those algorithms that are not joined by a line can be regarded
as different.

In our case, with a significance of U = 0.05 any two algorithms with a difference
in the mean rank above 0.54 will be regarded as non equal (Figure 3). We can see
that we have three groups of methods. In the first group we have SF-DTW, RF and
1NN-DTW, in the second we have RF, 1NN-DTW and SF-ED and in the last group
we have SF-ED and 1NN-ED. Unfortunately, groups are not disjoint. The first group
is the group with the highest accuracy of classification. Hence, SF-DTW does not
statistically outperform RF. However, we can recommend it over RF because of
statistically the same quality and much better computational properties.

2 3 4

CD

SF-DTW

RF

1NN-DTW

SF-ED

1NN-ED

Fig. 3 Critical difference plot.

5 Conclusions

Our contribution is to implement similarity forest for time series classification using
two distance measures: Euclidean and DTW. Comparison based on the recently
updated UCR data repository (128 data sets) was presented. We showed that SF-
DTWoutperforms other classifiers, including 1NN-DTWwhich has been considered
as a strong baseline hard to beat for years. The statistical comparison showed, that RF
and SF-DTW are statistically insignificantly different, however taking into account
mean ranks the latter one is the best one.

There are many improvements that could be applied to the implementation that
we propose. For example, we could test other distance measures such as LCSS [21]
or ERP [5] that were successfully used in time series tasks. Another idea could be
to investigate the usage of boosting algorithm.

Acknowledgements The research work was supported by grant No. 2018/31/N/ST6/01209 of the
National Science Centre.

171

T. Górecki et al.

References

1. Bagnall, A., Lines, J., Hills, J., Bostrom A.: Time-series classification with COTE: The
collective of transformation-based ensembles. IEEE Trans. on Knowl. and Data Eng. 27,
2522–2535 (2015)

2. Bagnall, A., Lines, J., Bostrom, A., Large J., Keogh, E.: The great time series classification
bake off: a review and experimental evaluation of recent algorithmic advances. Data Min. and
Knowl. Discov. 31, 606–660 (2017)

3. Berndt, D. J., Clifford, J.: Using dynamic time warping to find patterns in time series. Proc.
of the 3rd Int. Conf. on Knowl. Discov. and Data Min., pp. 359–370 (1994)

4. Brieman, L.: Random forests. J. Mach. Learn. Arch. 45, 5–32 (2001)
5. Chen, L., Ng, R.: On the marriage of !?-norms and edit distance. Proc. of the 30th Int. Conf.

on Very Large Data Bases 30, pp. 792–803 (2004)
6. Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. on Inf. Theor. 13,

21–27 (1967)
7. Dau, H.A., Keogh, E., Kamgar, K., Yeh, Chin-Chia M., Zhu, Y.,Gharghabi, S., Ratanama-

hatana, C.A., Yanping, C., Hu, B., Begum, N., Bagnall, A., Mueen, A., Batista, G., Hexagon-
ML: The UCR time series classification archive (2019) https://www.cs.ucr.edu/\str
ing~eamonn/time_series_data_2018

8. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. of Mach. Learn.
Res. 7, 1–30 (2006).

9. Du,a D., Graff, C.: UCI Machine Learning Repository.
http://archive.ics.uci.edu/ml

10. Fernandez-Delgado, M., Cernadas, E., Barro, S., Amorim, D.: Do we need hundreds of
classifiers to solve real world classification problems?. J. of Mach. Learn. Res. 15, 3133–3181
(2014)

11. Fix, E, Hodges, J. L.: Discriminatory analysis: nonparametric discrimination, consistency
properties. Techn. Rep. 4, (1951)

12. García, S., Fernández, A., Luengo, J., Herrera, F.: Advanced nonparametric tests for multiple
comparisons in the design of experiments in computational intelligence and data mining:
Experimental Analysis of Power. Inf. Sci. 180, 2044–2064 (2010)

13. Lines, J., Taylor S., Bagnall, A.: HIVE-COTE: The hierarchical vote collective of transfor-
mation based ensembles for time series classification. IEEE Int. Conf. on Data Min., pp.
1041–1046 (2016)

14. Maharaj, E. A., D’Urso, P., Caiado, J.: Time Series Clustering and Classification. Chapman
and Hall/CRC. (2019)

15. Middlehurst, M., Large, J., Flynn, M., Lines, J., Bostrom, A., Bagnall, A.: HIVE-COTE 2.0:
a new meta ensemble for time series classification. (2021)
https://arxiv.org/abs/2104.07551

16. Nemenyi, P.:Distribution-freemultiple comparisons. PhD thesis at PrincetonUniversity (1963)
17. Pavlyshenko, B. M.: Machine-learning models for sales time series forecasting. Data 4, 15

(2019)
18. Rastogi, V., Srivastava, S., Mishra, M., Thukral, R.: Predictive maintenance for SME in

industry 4.0. 2020 Glob. Smart Ind. Conf., pp. 382–390 (2020)
19. Sathe, S., Aggarwal, C. C.: Similarity forests. Proc. of the 23rd ACM SIGKDD, pp. 395–403

(2017)
20. Tang, J., Chen, X.: Stock market prediction based on historic prices and news titles. Proc. of

the 2018 Int. Conf. on Mach. Learn. Techn., pp. 29–34 (2018)
21. Vlachos, M., Kollios, G., Gunopulos, D.: Discovering similar multidimensional trajectories.

Proc. 18th Int. Conf. on Data Eng., pp. 673–684 (2002)
22. Wuest, T., Irgens, C., Thoben, K. D.: An approach to quality monitoring in manufacturing

using supervised machine learning on product state data. J. of Int. Man. 25, 1167–1180 (2014)

172

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

173Similarity Forest for Time Series Classification

	Similarity Forest for Time Series Classification
	1 Introduction
	2 Classification Methods Used in Comparison
	2.1 General Method of Random Forest Construction
	2.2 Classical Random Forest
	2.3 Similarity Forest
	2.4 Random Forest vs Similarity Forest

	3 Experimental Setup
	4 Results
	5 Conclusions
	References

