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Abstract In this paper, we present a spectral clustering approach for clustering
three-way data. Three-way data concern data characterized by three modes: = units,
? variables, and C different occasions. In other words, three-way data contain a C × ?
observedmatrix for each statistical observation. The units generated by simultaneous
observation of variables in different contexts are usually structured as three-way data,
so each unit is basically represented as a matrix. In order to cluster the = units in  
groups, the spectral clustering application to three-way data can be a powerful tool
for unsupervised classification. Here, one example on real three-way data have been
presented showing that spectral clustering method is a competitive method to cluster
this type of data.
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1 Introduction

Spectral clustering methods are based on the graph theory, where the units are
represented by the vertices of an undirected graph and the edges are weighted by
the pairwise similarities coming from a suitable kernel function, so the clustering
problem is reformulated as a graph partition problem, see e.g. [16, 6]. The spectral
clustering algorithm is a very powerful method for finding non-convex clusters of
data, moreover, it is a handy approach for handling high-dimensional data since it
works on a transformation of the raw data having a smaller dimension than the space
of the original data.
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Three-way data derives from the observation of various attributes measured on a
set of units in different situations; some examples are longitudinal data on multiple
response variables and multivariate spatial data. Three-way data can also derive
from temporal measurements of a feature vector, thus having the dataset composed
of three modes: = units (matrices), ? variables (columns), and C times (rows). Clus-
tering of three-way data has attracted a growing interest in literature, see e.g. [14],
[1]; model-based clustering of three-way data has been introduced by [15] in the
framework of matrix-variate normal mixtures; recent papers include [9] handle on
parsimonious models for modeling matrix data; [11] introduce two matrix-variate
distributions, both the elliptical heavy-tailed generalization of the matrix-variate
normal distribution; [12] deal with three-way data clustering using matrix-variate
cluster-weighted models (MV-CWM); and, [13] consider an application to educa-
tional data via mixtures of parsimonious matrix-normal distribution.

In this paper, we present a spectral clustering approach for clustering three-way
data and a suitable kernel function between matrices is introduced. As a matter of
fact, the data matrices represent the vertices of the graph, consequently, the edges
must be weighted by a single value.

The rest of the paper is organized as follows: in Section 2 the spectral clustering
method is summarized; in Section 3 a method to select the parameters in the spectral
clustering algorithm is described; in Section 4 the three-way spectral clustering with
a new kernel function are introduced; in Section 5 an application based on real
three-way data is presented. Finally, in Section 5 we provide concluding remarks.

2 Spectral Clustering

Spectral clustering algorithm for two-way data has been described in [8, 16, 6]. Here,
we summarize the main step of this algorithm.

Let + = {x1, x2, . . . , x=} be a set of points in X ⊆ R? . In order to group the data
+ in  cluster, the first step concerns the definition of a symmetric and continuous
function ^ : X × X → [0,∞) called the kernel function. Afterwards, a similarity
matrix , = (|8 9 ) can be assigned by setting |8 9 = ^(x8 , x 9 ) ≥ 0, for x8 , x 9 ∈ X.
and finally the normalized graph Laplacian matrix !sym ∈ R=×= is introduced

!sym = � − �−1/2,�−1/2, (1)

where � = diag(31, 32, . . . , 3=) is the degree matrix and 38 is the degree of the
vertex x8 defined as 38 =

∑
9≠8 |8 9 and � denotes the = × = identity matrix. The

Laplacian matrix !sym is positive semi-definite with = non-negative eigenvalues. For
a fixed  � =, let {$1, . . . , $ } be the eigenvectors corresponding to the smallest  
eigenvalues of !sym. Then, the normalized Laplacian embedding in the  principal
subspace is defined as the map Φ� : {x1, . . . , x=} → R given by

Φ� (x8) = (W18 , . . . , W 8), 8 = 1, . . . , =,
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where W18 , . . . , W 8 are the 8-th components of $1, . . . , $ , respectively. In other
words, the function Φ� (·) maps the data from the input space X to a feature space
defined by the  principal subspace of !sym. Afterwards, let_ = (y′1, . . . , y

′
=) be the

=× matrix given by the embedded data in the feature space, where y8 = Φ� (x8) for
8 = 1, . . . , =. Finally, the embedded data_ are clustered according to some clustering
procedure; usually, the :-means algorithm is taken into account in literature. How-
ever, to this end Gaussian mixtures have been proposed because they yield elliptical
cluster shapes, i.e. more flexible cluster shapes with respect to the :-means, see [2].
Finally, we point out that the performances of other mixture models based on non-
Gaussian component densities have been analyzed, but Gaussian mixture models
can be considered as a good trade-off between model simplicity and effectiveness,
see [3] for details.

3 A Graphical Approach for Parameter Selection

According to spectral clustering algorithm introduced in Section 2, the spectral
approach requires to set: i) the number of clusters  , ii) the kernel function ^ (with
the corresponding parameter). In order to select these quantities, in the following we
summarize the method proposed in [4].

To begin with, we point out that the choice of the kernel function affects the entire
data structure in the graph, and consequently, the structure of the Laplacian matrix
and its eigenvectors. An optimal kernel function should lead to a similarity matrix
, having (as much as possible) diagonal blocks: in this case, we get well-separated
groups and we are also able to understand the number of groups in that data set
by counting the number of blocks. For the sake of simplicity, we consider here the
self-tuning kernel introduced by [17]

^(x8 , x 9 ) = exp

(
−
‖x8 − x 9 ‖2

n8n 9

)
(2)

with n8 = ‖x8 − xℎ ‖, where xℎ is the ℎ-th neighbor of point x8 (similarly for n 9 ).
This function allow to get a similarity matrix that does not depend on any parameter
so that the algorithm of spectral clustering will be based on the pairwise proximity
between units. On the contrary, we need to select the ℎ-th neighbor of the unit in (2).

The main novelty of the joint-graphical approach concerns the analysis of some
graphic features of the Laplacian matrix including the shape of the embedded space.
Indeed, the embedded data provide useful information for the clustering, in particular
the main results in [10] and [5] allow to deduce that if the embedded data assume a
cones structure, then the number of clusters is equal to the number of the cones/spikes
in the feature space; furthermore, a clearer clustering structure emerges when the
spikes are narrower and well separated.

The idea behind the graphical approach is to select the number of groups and the
parameter ℎ in the kernel function from a joint analysis of three main characteristics:
the plot of the Laplacian matrix; the maxima values of the eigengaps between two
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consecutive eigenvalues; the scatter plot of the mapped data in the feature space and
in particular the number of spikes counted in the embedded data space.

We remark that we cannot analyze all possible values of ℎ ∈ {1, 2, . . . , =−1} and
hence we choose a suitable subset H ⊂ {1, 2, . . . , = − 1}, in particular we choose
H = {1%, 2%, 5%, 10%, 15%, 20%} × = ⊂ {1, 2, . . . , = − 1}, and select ℎ ∈ H , see
the following procedure for details.

Parameter selection ( and ℎ)

Input: data set + , kernel function ^,H .

1. For each ℎ inH , compute the matrix "B and analyze the block structure in the
greyscale plot of "B .

2. For each ℎ in H , plot the embedded data in the feature space and analyze the
shape of the cone structure.

3. If the number of blocks in Step 1 is equal to the number of spikes in Step 2, then
set  equal to the number of blocks. Go to Step 5.

4. Otherwise, analyze the eigengap plot.

a. If this plot shows a unique maximum eigengap for each ℎ ∈ H , then set  
according to this maximum. Go to Step 5.

b. If this plot shows multiple maxima for different ℎ ∈ H , select the number
of clusters  not to be smaller than the number of tight spikes in the
corresponding plot of the embedded data.

5. Select ℎ ∈ H such that the clearest orthogonal data structure emerges from the
plot of the embedded data.

6. Stop.

Output:  , ℎ.

4 Three-way Spectral Clustering

In this section, we propose a spectral approach for clustering three-way data. Three-
way data consists of a data set referring to the same sets of units and variables,
observed in different situations, i.e., a set of multivariate matrices, that can be
organized in three modes: = units, ? variables, and C situations. Therefore, given
= matrices that represent the vertices of the graph, each matrix is composed by ?
columns that represent our variables and C rows that represent the time or another
feature. So we have a tensor of dimension =× C× ?, thus the dataset is a tensor {^}8B:
for 8 = 1, . . . , =, B = 1, . . . , C, : = 1, . . . , ?.

We define a distance function X" between two matrices �, � ∈ R?×C such that
X" : 'C×? × 'C×? → [0, +∞) is defined as
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X" (�, �) := ‖� − �‖� =

√√√ C∑
B=1

?∑
:=1
|0B: − 1B: |2 (3)

where ‖ · ‖� is Frobenius norm1. Thus the distance between two units in the matrix
data ^ is equal to

X" (-81B: , -82B: ) =

√√√ C∑
B=1

?∑
:=1
|-81B: − -82B: |2, for 81, 82 = 1, . . . , =. (4)

For simplicity, in the following, we denote X" (-81B: , -82B: ) by X" (81, 82). Moreover,
we define the three-way self-tuning kernel function as

^( : ^ × ^ → [0, +∞), ^( (81, 82) = exp
(
−X" (81, 82)

n81n82

)
(5)

where n81 and n82 need to be selected like in the kernel defined in (2).
Afterwards, we compute the similarity matrix, given by |8182 = ^(81, 82), so that

we can apply the spectral clustering algorithm.
Finally, we point out that, differently from approaches based on mixtures of

matrix-variate data, the number of variables of the data set is not a critical issue
because the spectral clustering algorithm is based on distance measures.

5 A Real Data Application

We apply the three-way spectral clustering to the analysis of the Insurance data set,
available in the splm R package. This dataset was initially introduced by [7] and
has recently been analyzed by [12]. The goal is to study the consumption of non-life
insurance during the years 1998-2002 in the 103 Italian provinces, so C = 5 and
= = 103. As regards the number of variables, we consider all the variables contained
in the data set, so ? = 11. Thus, we have 103 matrices of dimensions 5 × 11.

The 103 Italian provinces are divided into north-west (24 provinces), north-
east (22 provinces), center (21 provinces), south (23 provinces), and islands (13
provinces).

As regard the choice of  and ℎ, we consider the graphical approach introduced
in Section 3. In Figure 1 the geometric features of spectral clustering are plotted
as ℎ varies. From the number of blocks of the Laplacian matrix (Figure 1-0)), the
first maximum eigengap (Figure 1-1)) and the number of spikes in the feature space
(Figure 1-2)), we deduce that the number of clusters is  = 2. For the selection of

1 In general, given a matrix � ∈ R=×<, with � = (08 9 ) for 8 = 1, . . . , = and 9 = 1, . . . , <. The
Frobenius norm is defined by

‖�‖� :=

√√√ <∑
9=1

=∑
8=1
|08 9 |2.
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Fig. 1 Insurance data. Spectral clustering features: 0) plot of Laplacian matrix in greyscale; 1)
plot of the first eight eigengap values; 2) scatterplot of the embedded data along with directions
($1,$2) .
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Table 1 Insurance data. Table of spectral clustering result.

Cluster 1
NORTHWEST (24 provinces)
NORTH EAST (22 provinces)

CENTRE (15 provinces)

Cluster 2
CENTRE (6 provinces)
SOUTH (23 provinces)
ISLANDS (13 provinces)

ℎ we choose indifferently ℎ = 15 and ℎ = 21 because in these cases the maximum
eigengap highlights the maximum values corresponding to  = 2. In Table 1 the
clustering results are presented. This table shows that only 6 center provinces are
classified together with the southern provinces. But to be sure that these provinces
are neighboring the south provinces, let us analyze spectral clustering results on the
map of Italy. Figure 2-0) illustrates the partition deriving from spectral clustering
in the political map of Italy, where Italian regions are described by the yellow lines,
while the provinces are by the black lines. The result shows a clear separation
between center-north Italy and south-insular Italy, in fact, the center-north has a
level of insurance penetration close to the European averages, while the South is
less developed economically. However, the Massa-Carrara province should belong
to the centre-north group. Moreover, we remark that the Rome province, being the
capital of Italy, has one socio-economic development comparable to that of north
Italy justifying belonging to the centre-north group.

Furthermore, in Figure 2-1) we also represented the partition produced by MN-
CWM proposed in [12], we note that the two clustering results are very similar to
each other and differ only for one province of central Italy (precisely for the province
of Terni). It should also be emphasized that the dataset analyzed by [12] is different
from the one analyzed here, since, to avoid excessive parameterization of the models,
the authors select only ? = 5 variables in the data set.

0) 1)

Fig. 2 Insurance data. 0) Three-way spectral clustering; 1) Method proposed by [12].
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6 Conclusion

In this paper, a spectral approach to cluster three-way data has been proposed. So
the data are organized in a tensor and the vertices in the graph are represented by
the matrices of dimension C × ?. In order to weigh the matrices in the graph, a
kernel function based on the Frobenius norm between the matrix difference has been
introduced. The performance of the spectral clustering algorithm has been shown in
one real three-way data set. Ourmethod is competitivewith respect to other clustering
methods proposed in the literature to performmatrix-data clustering. Finally, in order
to provide suggestions for future research, other kernel functions can be introduced
considering different distances with respect to the Frobenius norm.
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