
Chapter 4
Proportionality

A key difference among ABC rules is how they treat minorities of voters, i.e., small
groups with preferences different from larger groups. Let us illustrate this issue with
the following simple example.

Example 4.1 Consider the approval-based preference profile with 60 voters approv-
ing A = {a1, . . . , a10}, 20 voters approving B = {b1, . . . , b6}, 10 voters approv-
ing C = {c1, c2}, 8 voters approving D = {d1, d2, d3, d4}, and 2 voters approving
E = {e1, e2, e3}; assume our goal is to pick a committee of ten candidates. Given
this instance AV returns committee A, and in some cases this is a reasonable choice
(e.g., when the goal of the election is to select finalists of a contest). Yet, when the
goal is to select a representative body that should reflect voters’ preferences in a pro-
portional fashion, this committee violates very basic principles of fairness. Indeed,
the voters who approve committee A constitute 60% of the population, yet effec-
tively they decide about the whole committee; at the same time the group of 20%
who approve B is ignored. A committee that consists of six candidates from A, two
candidates from B, one candidate fromC , and one candidate from D is, for example,
a much more proportional choice.

In Example 4.1, picking an outcome that is intuitively proportional is easy due to
a very specific structure of voters’ approval sets—each two approval sets are either
the same or disjoint. Finding a proportional committee in the general case, when
any two approval sets can arbitrarily overlap, is by far less straightforward, and to
some extent ambiguous. Several approaches that allow one to formally reason about
proportionality have been proposed in the literature.

The goal of this chapter is to discuss the many faces of proportional representa-
tion. Proportionality, at its core, is a notion of fairness that grants smaller and larger
groups of voters a fair consideration of their preferences.1 The concrete definitions

1 The concept of proportionality alsofinds application beyondvoting, such as proportional clustering
in machine learning [22, 49].
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Table 4.1 Proportionality of ABC rule. There are three rules which perform particularly well in
terms of proportionality: PAV, Phragmén’s sequential rule, and the Method of Equal Shares. The
mark † means that the result holds only when the number of voters n is divisible by the committee
size k. References of the form (A.x) refer to propositions in Appendix A

Proportionality

degree

EJR PJR JR Laminar
prop.

Priceability Apportionment

AV 0 [68] None

PAV − 1 [4] [3] [3] [3] D’Hondt [13]

seq-PAV ≈ 0.7 − 1
(for k ≤ 200) [68]

D’Hondt [13]

rev-seq-
PAV

? D’Hondt [13]

CC ≤ 1 (Example 4.6) [3] None

seq-CC ≤ 1 (Example 4.6) [3] None

seq-
Phragmén

−1)/2 [68] [12] [12] [56] [56] D’Hondt [13]

M. Equal
Shares

±1)/2 (A.10) [56] [56] [56] [56] [56] D’Hondt [56]

leximax-
Phragmén

1 [68] [12] [12] [56] D’Hondt [13]

Monroe ≤ 1 (Ex. 4.6) † [66] [3] LRM † [13]

Greedy
Monroe

≤ 1 (Ex. 4.6) † [66] (A.7) LRM † (A.5)

MAV 0 (A.10) None

SAV 0 (A.10) None

of what proportionality exactly means, however, differ. In this chapter, we review
the main approaches to proportionality and identify ABC rules which can be con-
sidered proportional. Table4.1 and Fig. 4.1 provide an overview of this analysis; the
corresponding concepts are explained in this chapter.

But before we delve into this topic, let us answer the question why proportionality
has such a prominent place in this book. The main reason is that this reflects the
attention this topic has received. Since 2015, when Aziz et al. [3] first introduced
(extended) justified representation (Sect. 4.2), there has been rapid progress in the
understanding of proportionality in ABC elections. This progress has been along
two trajectories: (i) defining stronger and stronger proportionality properties and (ii)
finding (computationally tractable) ABC rules satisfying these properties. In many
situations, a proportional committee corresponds to a fair selection of candidates.
Thus, this line of research canbeviewedas the search for amaximally fairABCvoting
rule. The following sections (Sects. 4.1–4.4) provide an overview of this exciting
endeavour.

However, non-proportional rules are certainly also relevant and even necessary
in many applications. For example, when shortlisting candidates for a prize, we
may want to select the “best” candidates without considerations of a proportional
selection. Or if we want to form a group that deliberates a topic, we would like to
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stable priceability
(Section 4.3)

the core
(Definition 4.10)

FJR
(Definition 4.7)

core subject to priceability
with equal payments

(Section 4.4)

priceability
(Definition 4.8)

EJR
(Definition 4.3)

PJR
(Definition 4.5)

JR
(Definition 4.6)

lower quota
(Section 4.1)

incompatible
perfect representation

(Definition 4.9)

Fig. 4.1 The relation between different proportionality axioms. An arrow from property A to B
means that A implies B

include as many diverse opinions as possible and thus we do not give a higher weight
to popular opinions. In general, much less work has been done on analysing and
understanding non-proportional rules and this topic deserves much more attention.
In Sect. 4.5, we summarise the existing literature and discuss concepts of “non-
proportionality”.

The two final sections of this chapter are dedicated to the interplay of proportion-
ality and strategyproofness (Sect. 4.7) and considerations of proportionality when
candidates have external attributes (Sect. 4.6).

4.1 Apportionment

One approach to reasoning about proportionality of voting rules is to first identify
a class of well-structured preference profiles where the concept of proportionality
can be intuitively captured, and then to examine the behaviour of voting rules on
such well-structured profiles. We focus here on so-called party-list profiles, which
are election instances of the form as we have seen in Example 4.1.

Definition 4.1 (Party-list profiles) We say that an approval profile A = (A(1),
. . . , A(n)) is a party-list profile if for each two voters i, j ∈ N we have that either
A(i) = A( j) or that A(i) ∩ A( j) = ∅. We say that an election instance (A, k) is a



48 4 Proportionality

party-list instance if (i) A is a party-list profile, and (ii) for each voter i ∈ N we have
that |A(i)| ≥ k.

Party-list profiles closely resemble political elections with political parties, hence
the name of the domain. In such elections, voters are typically asked to vote for
exactly one party. To see the connection to party-list profiles, note the following: If
A is a party-list profile, then the sets of voters and candidates can be divided into p
disjoint groups each, N = N1 ∪ · · · ∪ Np and C ⊇ C1 ∪ · · · ∪ Cp, so that all voters
from group Ni , i ∈ [p], approve exactly the candidates from Ci (and no others). The
candidates from Ci can be thought of as members of some (virtual) party, and the
voters from Ni are those who cast their vote on party Ci .

In such elections, where the voters do not vote for individual candidates but rather
eachvoter casts a single vote for onepolitical party, the problemof distributing seats to
political parties is called the apportionment problem. The concept of proportionality
in the apportionment setting has been extensively studied in the literature and is well
understood—for a detailed overview we refer the reader to the comprehensive books
by Balinski and Young [5] and by Pukelsheim [62].

We see from Definition 4.1 that the apportionment problem can be viewed as a
strict subdomain of approval-based multi-winner elections, and consequently ABC
rules can be viewed as functions that extend apportionment methods to the more
general setting of approval profiles. This connection was already known and referred
to by Thiele [73] and Phragmén [59]. In a more systematic fashion, Brill et al. [13]
showed such relations between various ABC rules and methods of apportionment.
To properly explain this relation, let us first define three prominent apportionment
methods, used in parliamentary elections all over the world.

In the following, we assume that there are p political parties, consisting of the
candidate sets C1, . . . ,Cp. By ni we denote the number of votes cast on party Ci .
Further, in line with our usual notation, k denotes the number of committee seats that
we want to distribute among the parties.

Apportionment Rule 1 (D’Hondt method2) The D’Hondt method proceeds in k
rounds, in each round allocating one seat to some party. Consider the r-th round,
and let si (r) be the number of seats that are currently assigned to party Ci ; thus,∑

i∈[p] si (r) = r − 1. The D’Hondt method assigns the r-th seat to the party Ci with
the highest ratio ni

si (r)+1 (using a tiebreaking order between parties if necessary).

2 Victor D’Hondt (1841–1901) was a Belgian professor of law and active proponent of proportional
representation [24, 25]. The D’Hondt method is also known as the Jefferson method. Thomas
Jefferson (1743–1826) was president of theUnited States, and proposed thismethod to allocate seats
in theHouse ofRepresentatives to states.D’Hondt’s proposalwas specificallymeant for proportional
representation in parliaments. D’Hondt developed this method independently of Jefferson, even
though Jefferson’s proposalwas earlier and largely similar. The name “Jeffersonmethod” is typically
used in the U.S., while “D’Hondt method” is prevalent in Europe.
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Apportionment Rule 2 (Sainte-Laguë3 method) The Sainte-Laguë method is
defined analogously to the D’Hondt method, but in the r-th round it allocates the
r-th seat to the party Ci which maximises the ratio ni

2si (r)+1 .

Both the D’Hondt and the Sainte-Laguë method belong to the class of divisor
methods. Divisor methods differ in the formula for the ratio used to distribute seats
to parties. The aforementioned books by Balinski and Young [5] and by Pukelsheim
[62] discuss this important class of apportionment methods in much more detail.

Apportionment Rule 3 (Largest remainder method, LRM4) The largest remainder
method first assigns to each party

⌊
k · ni

n

⌋
seats—this way at least k − p + 1 seats

are assigned. Second, it assigns the remaining r < p seats to the r parties with the
largest remainders k · ni

n − ⌊
k · ni

n

⌋
, assigning each party at most one seat.

Example 4.2 Consider a party-list representation of the profile from Example 4.1.
We have five parties, A, B, C , D, and E , each getting, respectively, 60, 20, 10, 8,
and 2 votes; the committee size is k = 10. The computation of the D’Hondt method
can be followed in the left table below:

A B C D E

ni 60 20 10 8 2
ni/2 30 10 5 4 1
ni/3 20 6 2/3 3 1/3 2 2/3 2/3

ni/4 15 5 2 1/2 2 1/2

ni/5 12 4 2 1 3/5 2/5

ni/6 10 3 1/3 1 2/3 1 1/3 1/3

ni/7 8 4/74/74/7 2 6/7 1 3/7 1 1/7 2/7

ni/8 71/2 2 1/2 1 1/4 1 1/4

A B C D E

ni 60 20 10 8 2
ni/3 20 6 2/32/32/3 3 1/3 2 2/3 2/3

ni/5 12 4 2 1 3/5 2/5

ni/7 8 4/74/74/7 2 6/7 1 3/7 1 1/7 2/7

ni/9 6 2/32/32/3 2 2/9 1 1/9 1 8/9 2/9

ni/11 5 5/115/115/11 1 9/11 10/11 8/11 2/11

ni/13 4 8/13 1 7/13 10/13 8/13 2/13

ni/15 4 1 1/3 2/3 8/15 2/15

In the subsequent rounds the D’Hondt method allocates seats to parties A, A, A
(by tie-breaking), B, A, A, A (by tie-breaking), B (by tie-breaking), C , and A. For
example, in the fourth round, when A is already allocated 3 seats and B is allocated
none, the rule will give the next seat to B rather than to A, because 20

0+1 > 60
3+1 .

Summarising, seven seats will be allocated to party A, two seats to party B, and one
seat to party C ; the remaining parties will get no seats. In the diction of ABC rules,
winning committees are exactly those that consist of seven candidates from A, two
candidates from B and one candidate from C .

3 As it is the case with the D’Hondt/Jefferson method, this rule has been developed independently
in Europe and in the U.S. and goes by different names: Sainte-Laguë is used in Europe (in particular
in the context of proportional representation in parliaments) and Webster is the name used in the
U.S. literature. Sainte-Laguë (1882–1950) was a French mathematician and proposed this method
in 1910 [65]. Daniel Webster (1782–1852) was a U.S. statesman and proposed this method in
1832 [5].
4 The largest remainder method is also known as the Hamilton method, as it was proposed in the
U.S. by Alexander Hamilton (1755–1804). His proposal was abandoned in favour of Jefferson’s
method [5].
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The computation of the Sainte-Laguëmethod is illustrated in the above right table.
It will allocate six seats to A, two seats to B, one seat to C , and one seat to D.

The largest remainder method first assigns to parties A, B, C , D, and E—
respectively—6, 2, 1, 0, and 0 seats. Then, the remainders are considered:

A B C D E
ni 60 20 10 8 2⌊
k · ni

n

⌋
6 2 1 0 0

Remainder 0 0 0 0.8 0.2
Seats 6 2 1 1 0

There is one unassigned seat which will be given to the party with the largest remain-
der, namely to D. Thus, LRM will allocate six seats to A, two seats to B, one seat to
C , and one seat to D.

The D’Hondt method, the Sainte-Laguë method, and LRM exhibit particularly
appealing properties. For example, the D’Hondt method satisfies lower quota, which
means that a party i which receives ni out of n votes must be allocated at least
�k · ni/n	 committee seats. The largest remainder method satisfies not only lower
quota but also upper quota: a party i with ni out of n votes must not receive more
than 
k · ni/n� seats. However, the largest remainder method fails an important axiom
called population monotonicity, which states that an increase in support must not
harm a party. In contrast, populationmonotonicity is satisfied byD’Hondt and Sainte-
Laguë. For further details, we refer the interested reader to the aforementioned books
on apportionment methods [5, 62].

We are now ready to formulate the main results of Brill et al. [13]:

Theorem 4.1 (Brill et al. [13]) PAV, sequential PAV, seq-Phragmén, and leximax-
Phragmén extend the D’Hondt method of apportionment. Phragmén’s variance-
minimising rule5 extends the Sainte-Laguë method of apportionment. If n is divisible
by k, then Monroe’s rule extends the largest remainders method.

Theorem 4.1 lists ABC rules that behave proportionally on party-list profiles and
thus these rules can be considered good contenders for being proportional in the
general ABC model. In addition, we show in the appendix that also Greedy Monroe
extends the largest remainder method when n is divisible by k (Proposition A.5), but
both Monroe’s rule and Greedy Monroe do not if n is not divisible by k (Proposition
A.6).

Lackner and Skowron [44] strengthened the results of Brill et al. [13], providing
a strong argument in favour of PAV:

Theorem 4.2 (Lackner and Skowron [44]) PAV is the unique extension of the
D’Hondt method that satisfies neutrality, anonymity, consistency, and continuity.

5 This rule is similar to leximax-Phragmén but minimises the variance of loads instead of the
maximum load, see [12, 36] for a precise definition.
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Lackner and Skowron [44] further show that this result can be generalised to arbi-
trary divisor-based apportionment methods. For example, the Sainte-Laguë method
yields the w-Thiele method with w(x) = ∑x

j=1
1

2 j−1 .

4.2 Cohesive Groups

In party-list profiles (Definition 4.1), voters can be arranged in groups with identical
preferences. Then, proportionality requires that a large-enough group of voters with
identical preferences deserves a certain number of representatives in the elected
committee (proportional to the size of the group). This approach can be generalised
to groups with non-identical but similar preferences. We now discuss axioms that
relax the requirements for groups of voters to be entitled to representatives. These
axioms are based on the concept of �-cohesiveness:

Definition 4.2 For � ≥ 1, a group V ⊆ N is �-cohesive if:

(i) |V | ≥ � · n
k , and

(ii)
∣
∣⋂

i∈V A(i)
∣
∣ ≥ �.

An �-cohesive group consists of an �/k-th fraction of voters, thus, intuitively, such
a group should be able to control at least �/k · k = � committee seats. Further, an
�-cohesive group agrees on � candidates, so one can ensure each member of the
group gets � representatives by selecting only � candidates. It is, hence, tempting
to require that for each �-cohesive group V , each voter from V should be given at
least � representatives in the elected committee. Unfortunately, this would be too
strong—there exists no rule that would satisfy this property.

Example 4.3 (Aziz et al. [4]) Consider a profile A with four candidates (a, b, c, d)
and 12 voters, with the following approval sets:

A(1) : {a, d} A(4) : {a, b} A(7) : {b, c} A(10) : {c, d}
A(2) : {a} A(5) : {b} A(8) : {c} A(11) : {d}
A(3) : {a} A(6) : {b} A(9) : {c} A(12) : {d}.

Let k = 3. The group {1, 2, 3, 4} is 1-cohesive, as it has a commonly approved
candidate (a) and is of size 12

3 = 4. If we want to give each voter in this group
a representative, candidate a has to be in the winning committee (voters 2 and 3
only approve a). Now observe that also the groups {4, 5, 6, 7}, {7, 8, 9, 10}, and
{10, 11, 12, 1} are 1-cohesive. Thus, also candidates b, c, and d have to be in every
winning committee. This is impossible as we are interested in committees of size 3.
We see that it is impossible to satisfy every voter in 1-cohesive groups.

We see from this example that the requirement that each voter from an �-cohesive
group should have at least � representatives in the elected committee is simply too
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strong.6 However, it can be weakened a bit without losing much of its intuitive
appeal. We start our discussion with extended justified representation (EJR) [3] and
proportionality degree [4, 66, 68, 69].7 The former concept is formulated as an
axiom, the latter as a proportionality guarantee specified by a function.

Definition 4.3 (Extended justified representation, EJR) An ABC rule R satisfies
extended justified representation (EJR) if for each election instance E = (A, k),
each winning committee W ∈ R(E), and each �-cohesive group of voters V there
exists a voter i ∈ V with at least � representatives in W , i.e., |A(i) ∩ W | ≥ �.

Example 4.4 Let us revisit Example 4.3. The committee {a, b, c} satisfies the condi-
tion of EJR: every 1-cohesive group contains at least one voterwith one representative
in {a, b, c}. For example, for the 1-cohesive group {10, 11, 12, 1}, the voters 10 and
1 have a representative in the committee. Note that in this example actually all size-3
committees satisfy the EJR condition; also there are no �-cohesive groups for � ≥ 2.

Definition 4.4 (Proportionality degree) Fix a function f : N → R. An ABC rule
R has a proportionality degree of f if for each election instance E = (A, k), each
winning committee W ∈ R(E), and each �-cohesive group of voters V , the average
number of representatives that voters from V get in W is at least f (�), i.e.,

1

|V | ·
∑

i∈V
|A(i) ∩ W | ≥ f (�).

At first, it might appear that even for large cohesive groups, EJR gives a guar-
antee only to a single voter within this group. However, the EJR property applies
to any group of agents: Let V be an �-cohesive group. If we remove a voter with �

representatives (who, by EJR, is guaranteed to exist), the resulting group will be at
least (� − 1)-cohesive. Consequently, in such a group there must exist a voter with
at least � − 1 representatives, etc. As a consequence of this argument, EJR implies
a proportionality degree of at least fR(�) = �−1

2 [66]. The other direction does not
hold: even an ABC rule with a proportionality degree of fR(�) = � − 1 may fail
EJR (cf. Proposition A.8).

Example 4.3 also shows that there exists no rule with a proportionality degree of
f (�) = �:

Example 4.5 Consider again the profile of Example 4.3. Assume, there exists
a rule R with a proportionality degree of fR(�) = � and let k = 3. The group
{1, 2, 3, 4} is 1-cohesive, so in order to ensure that these voters get on average one

6 In a very recent work, Brill et al. [16] explore this intuitive (but unachievable) requirement—
called individual representation—in much more depth. In particular, they show that all ABC rules
presented in this book sometimes fail individual representation even for elections where such a
committee exists. In addition, they study conditions under which individual representation can be
satisfied.
7 The concept of proportionality degreewas initially referred to asaverage satisfaction of �-cohesive
groups [4, 66]. Skowron et al. [69] called an almost equivalent property κ-group representation.
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representative, candidate a must be selected. By applying the same reasoning to
{4, 5, 6, 7} we infer that b must be selected. Analogously, we conclude that c and d
must be selected. However, there are only three seats in the committee, a contradic-
tion.

Aziz et al. [4] generalise the above example and prove that there exists no rule with
a proportionality degree of f (�) = � − 1 + ε for ε > 0. PAV matches this bound,
and thus has an optimal proportionality degree. Below we include the proof of this
result, since a similar idea is often used in the analysis of proportionality properties
of Thiele methods.

Theorem 4.3 (Aziz et al. [3, 4]) PAV has a proportionality degree of � − 1. It also
satisfies EJR.

Proof Consider an election E = (A, k) and let W be a winning committee accord-
ing to PAV. Let N and C denote the sets of voters and candidates in E , respec-
tively. We will show that for each �-cohesive group of voters V it holds that
1

|V | · ∑
i∈V |A(i) ∩ W | > � − 1. This proves that PAV has the proportionality degree

of � − 1. We can further conclude that there exists a voter i ∈ V with |A(i) ∩ W | >

� − 1, and hence PAV also satisfies EJR.
Towards a contradiction assume there exists an �-cohesive group of voters V with

1
|V | · ∑

i∈V |A(i) ∩ W | ≤ � − 1. We will show that there exists a pair of candidates,
c ∈ W and c′ /∈ W , such that scorePAV(A, (W ∪ {c′}) \ {c}) > scorePAV(A,W ). This
would indicate that we can replace one member of W with another not-selected
candidate so that the new winning committee has a higher PAV-score than W . This
would contradict the fact that W is a winning committee.

For convenience, for a set of candidates X and a candidate y we will use the
notation:

�(X, y) = scorePAV(X ∪ {y}) − scorePAV(X),

i.e., �(X, y) is the marginal contribution of y given X .
Since 1

|V | · ∑
i∈V |A(i) ∩ W | ≤ � − 1 and V is �-cohesive, there exists a not-

selected candidate c′ ∈ C that is approved by all the voters from V . If we add this
candidate to the committee W , the PAV-score will increase by:

�(W, c′) =
∑

i∈N (c′)

1

|A(i) ∩ W | + 1
≥

∑

i∈V

1

|A(i) ∩ W | + 1
.

From the inequality between the arithmetic and harmonic means we further get that:

�(W, c′) ≥ |V |2
∑

i∈V (|A(i) ∩ W | + 1)
≥ |V |2

|V |(� − 1) + |V | = |V |
�

≥ n

k
.

The last inequality follows from �-cohesiveness.
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Now, consider a committee W ′ = W ∪ {c′}, and observe that

∑

c∈W ′
�(W ′ \ {c}, c) =

∑

c∈W ′

∑

i∈N (c)

1

|A(i) ∩ W ′| =
∑

i∈N

∑

c∈A(i)∩W ′

1

|A(i) ∩ W ′|

=
∑

i∈N : A(i)∩W ′ �=∅
|A(i) ∩ W ′| · 1

|A(i) ∩ W ′| ≤ n.

As a result, there exists c ∈ W ′ such that �(W ′ \ {c}, c) ≤ n
k+1 . Consequently:

scorePAV(A, (W ∪ {c′}) \ {c}) = scorePAV(A,W ) + �(W, c′) − �(W ′ \ c, c)
≥ scorePAV(A,W ) + n

k
− n

k + 1
> scorePAV(A,W ).

This yields a contradiction and completes the proof. �

In contrast to PAV, the two sequential variants of PAV, seq-PAV and rev-seq-PAV,
do not satisfy EJR. However, the proportionality guarantees of Theorem 4.3 also
hold for a local-search variant of PAV [4], which—in contrast to PAV itself—runs in
polynomial time. Thus, EJR and a proportionality degree of � − 1 are achievable in
polynomial time. Aziz et al. [4] also construct a second polynomial-time computable
(but rather involved) rule that satisfies EJR. More recently, Peters and Skowron [56]
prove that theMethod of Equal Shares, which is also computable in polynomial time,
satisfies EJR. Among the rules introduced in Chap. 2, PAV and the Method of Equal
Shares are the only ones that satisfy EJR. An overview of the proportionality degree
of rules can be found in Table4.1.

Let us now consider two properties that are weaker than EJR.

Definition 4.5 (Proportional justified representation, PJR [66]) An ABC rule R
satisfies proportional justified representation (PJR) if for each election E = (A, k),
each winning committeeW ∈ R(E), and each �-cohesive group of voters V it holds
that

∣
∣W ∩ (⋃

i∈V A(i)
)∣
∣ ≥ �.

Definition 4.6 (Justified representation, JR [3]) An ABC rule R satisfies justified
representation (JR) if for each election E = (A, k), each W ∈ R(E), and each 1-
cohesive group of voters V there exists a voter i ∈ V who is represented by at least
one member of W , i.e., |W ∩ A(i)| ≥ 1.

PJR and JR are much weaker properties than EJR; in particular EJR implies PJR,
which in turn implies JR. Example 4.6, below, illustrates that the stronger of the two
axioms, PJR, can be satisfied even by rules that could be considered very bad from
the perspective of proportionality degree (and, thus, also from the perspective of
approximating EJR). On the other hand, there exist rules with good proportionality
degree that do not satisfy even JR—this happens, e.g., when a rule does not provide
sufficient guarantees for 1-cohesive groups (although it might satisfy EJR for � ≥ 2).
Generally, justified representation cannot be viewed as a proportionality axiom as
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it grants even large group only a single representative in the selected committee. In
contrast, PJR can be viewed as a moderate proportionality requirement, significantly
weaker than EJR but stronger than, e.g., lower quota on party-list profile. We refer
to Table4.1 for an overview which rules satisfy JR and PJR.

Example 4.6 Fix k and consider the following instance:

ck+1

ck+2

· · ·
c2k

c1

V1

c2

V2

c3

V3

· · ·
· · ·

ck

Vk

There are 2k candidates. The voters can be divided into k equal-size groups so
that the voters from the i th group, in the diagram denoted as Vi , approve ci and
{ck+1, . . . , c2k}. Committee {c1, . . . , ck} (marked blue) satisfies PJR, but clearly,
{ck+1, . . . , c2k} (markedgreen) is amuchbetter choice from theperspective of propor-
tionality degree. Also, {ck+1, . . . , c2k} satisfies the EJR condition while {c1, . . . , ck}
does not. This example shows that PJR implies no better proportionality degree than
f (�) = 1.

Given that there are rather few rules satisfying EJR, Bredereck et al. [11] per-
formed computer simulations for several distributions of voters’ preferences and
verified how hard it is on average to find a committee that satisfies the condition
imposed by EJR. They concluded that �-cohesive groups for � ≥ 2 are quite rare,
and that a random committee among those that satisfy the much weaker condition of
JR is quite likely to satisfy EJR as well. Their second conclusion was that JR, PJR,
and EJR, while highly desired, do not guarantee on their own a sensible selection
of committees, and one needs to put forward additional criteria. Specifically, they
showed that there are often many committees satisfying these conditions, and these
committees may vary significantly. Bredereck et al. [11] derived their conclusions
from the analysis of specific distributions of voters’ preferences; it would be desirable
to analyse this phenomenon more broadly, e.g., for other types of distributions.

Recently, Peters et al. [57] introduced an even stronger axiom, called fully justified
representation (FJR), where the precondition of �-cohesiveness is relaxed. In EJR
we say that a group of voters V is �-cohesive if |V | ≥ � · n/k and if there exists a set
T of � candidates such that each voter from V approves all � candidates from T .
In the definition of FJR, on the other hand, we only require that there must exist an
integer β such that each voter from V approves at least β candidates from T . FJR
enforces that at least one member of V must have at least β representatives in the
elected committee. Note that EJR corresponds to FJR with a fixed value of β = �.
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Definition 4.7 (Fully justified representation [57]) Given an integer value β and
a subset of candidates T ⊆ C , we say that a group of voters V is weakly (β, T )-
cohesive if |V | ≥ |T | · n/k and if for each voter i ∈ V it holds that |A(i) ∩ T | ≥ β.
An ABC rule R satisfies fully justified representation (FJR) if for each election
E = (A, k), each winning committee W ∈ R(E), each integer β and T ⊆ C , and
each weakly (β, T )-cohesive group of voters V , there exists a voter i ∈ V such that
|W ∩ A(i)| ≥ β.

For the time being, the only known rule that satisfies FJR is rather artificial and
specifically tailored to the definition of the axiom [57]. It is an open question whether
there exists a natural ABC rule which satisfies FJR together with other desirable
properties.

All proportionality concepts discussed in this section ensure that cohesive groups
are guaranteed a certain representation in the elected committee.Cevallos andStewart
[19] argue that in some contexts—for example when using ABC rules for selecting
validators in the blockchain protocol—it is equally important to ensure that groups
are not over-represented. To the best of our knowledge formal axioms capturing this
intuitive requirement are still missing.8

To sum up, when considering proportionality axioms based on cohesive groups,
PAV stands out as the most proportional rule. TheMethod of Equal Shares comes at a
close second (its proportionality degree is lower) but it is computable in polynomial
time. If we desire a committee monotone rule, then seq-Phragmén is a very good
choice: it has a proportionality degree of fPhrag(�) = �−1

2 [68], i.e., the proportionality
degree that is implied by EJR, and satisfies PJR [12]. Also seq-PAV is a good choice:
for reasonable sizes of committees seq-PAV has a better proportionality degree than
seq-Phragmén; on the other hand, it satisfies neither PJR nor JR.

4.3 Laminar Proportionality and Priceability

The properties that we discussed in Sect. 4.2 (extended justified representation and
the proportionality degree) and the axiomatic characterisation given in Theorem
4.2 all indicate that PAV provides particularly strong proportionality guarantees.
Specifically, one could interpret these results as suggesting that PAV is a better
rule—in terms of proportionality—than Phragmén’s sequential rule and the Method
of Equal Shares. However, drawing such a conclusion based on the so-far presented
results would be too early. In the following we explain that proportionality can be
understood in at least two different ways and that the axioms we discussed so far
capture and formalise only one specific form of proportionality. We explain that
Phragmén’s sequential rule and the Method of Equal Shares provide very strong
proportionality guarantees, but with respect to an interpretation of proportionality
that is not captured by properties based on cohesive groups, and which is—to some
extent—incomparable with the type of proportionality guaranteed by PAV.

8 We note that the upper quota axiom in the apportionment setting can be viewed as such an axiom.
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Let us start by illustrating the difference in how PAV and Phragmén’s sequential
rule (and the Method of Equal Shares) operate with the following example.

Example 4.7 ([56]) There are 15 candidates and 6 voters—the voters’ approval sets
are depicted in the diagram below. The committee shaded in blue in the left-hand
side picture is the one that is selected by the Phragmén’s sequential rule and by the
Method of Equal Shares. The committee shaded in the right-hand side picture is
chosen by PAV.

c1
c2
c3

c4 c5 c6

c7
c8
c9

c10
c11
c12

c13
c14
c15

1 2 3 4 5 6

(a) seq-Phragmén and Equal Shares

c1
c2
c3

c4 c5 c6

c7
c8
c9

c10
c11
c12

c13
c14
c15

1 2 3 4 5 6

(b) PAV

The approval sets of voters 1, 2, and 3 are disjoint from those of voters 4, 5, and 6.
It seems intuitive that the first three voters, who together form half of the society,
should be able to decide about half of the elected candidates. Phragmén’s sequential
rule and the Method of Equal Shares select committees where the first three voters
approve in total half of the members, thus the behaviour of these rules is consistent
with the aforementioned understanding of proportionality. PAV follows a different
principle: In the committee depicted in (a), each of the first three voters approves 4
candidates; each of the remaining three voters approves only 2 committee members.
PAV notices that this is the case, and tries to reduce the societal inequality of voters’
satisfaction by removing one representative of voter 1 and adding one to 4; similarly,
PAV considers that it is more fair to remove the representatives of 2 and 3, and add the
candidates liked by 5 and 6. On the one hand, PAV prefers to pick a committee that
minimises the societal inequality in the voters’ satisfactions (measured as the number
of approved committee members). On the other hand, it punishes voters 1, 2, and
3 for being agreeable and “easy to satisfy” with fewer committee members—PAV
allows them to decide only about one quarter of the committee.

Example 4.7 illustrates that PAV and Phragmén’s sequential rule (and the Method
of Equal Shares) follow two different types of proportionality. PAV implements a
welfarist type of proportionalitywhich is primarily concernedwith thewelfare (satis-
faction) of the voters. This type of proportionality is captured, e.g., by the properties
discussed in Sect. 4.2. PAV also satisfies the Pigou–Dalton principle of transfers,
which says that given an election (A, k) and two committees, W and W ′, which
in total get the same numbers of approvals (scoreAV(A,W ) = scoreAV(A,W ′)), the
one which minimises the societal inequality should be preferred [56]. Phragmén’s
sequential rule and the Method of Equal Shares, on the other hand, implement pro-
portionality with respect to power, which—informally speaking—says that a group
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consisting of an α fraction of voters should be given a voting power that enables
to decide about an α fraction of the committee. In other words, the type of propor-
tionality of Phragmén-like rules is not mainly concerned with the welfare of groups
but with the justification of welfare, achieved by endowing each voter with the same
amount of virtual budget that represents the voting power.

Peters and Skowron [56] discuss two properties—laminar proportionality and
priceability—which aim at formally capturing the high-level idea of proportionality
with respect to power.9 The first of the two properties—laminar proportionality—
is very similar in spirit to proportionality on party-list profiles. The corresponding
axiom identifies a class of well-structured election instances—called laminar elec-
tions—and specifies how a laminar proportional rule should behave on these profiles.
Laminar profiles are more general than party-list profiles and are defined by a recur-
sive structure, similar to the election from Example 4.7.

The second property, which we will discuss in more detail, is priceability. Intu-
itively, we say that a committee W is priceable if we can endow each voter with the
same fixed budget and if for each voter there exists a payment function such that:
(1) voters do not spend more than their allotted budget, (2) voters pay only for the
candidates they approve, (3) each elected candidate gets a total payment of 1; can-
didates that are not elected receive no payments, and (4) there is no group of voters
who approve a non-elected candidate, and who in total have more than one unit of
unspent budget. Priceability is a notion of proportionality as it distributes power to
groups of sufficient size; a large enough group receives enough collective budget to
afford one or more candidates in the committee.

Formally, we obtain the following definition:

Definition 4.8 (Priceability) Given an election instance (A, k), a committee W is
priceable if there exists a per-voter budget p ∈ R+ and pi : C → [0, 1] for each voter
i ∈ N such that:

(1)
∑

c∈C pi (c) ≤ p for each i ∈ N ,
(2) pi (c) = 0 for each i ∈ N and c /∈ A(i),

(3)
∑

i∈N pi (c) =
{
1 if c ∈ W ,

0 otherwise.

(4)
∑

i∈N (c)

(
p − ∑

c′∈W pi (c′)
) ≤ 1 for each c /∈ W .

An ABC rule is priceable if it returns only priceable committees.

Example 4.8 Consider the election instance from Example 4.7. The committees
returned by Phragmén’s sequential rule and by theMethod of Equal Shares are price-
able. For example, considerW1 = {c1, . . . , c6, c7, c8, c10, c11, c13, c14} (the commit-
tee shaded blue in the left figure in Example 4.7). This committee is priceable as wit-
nessed by the following price system: the voters’ budget is p = 2, and the payment
functions are as follows (we only specify the non-zero payments): p1(ci ) = p2(ci ) =

9 Laminar proportionality and priceability are similar in spirit but are logically independent (neither
implies the other).



4.3 Laminar Proportionality and Priceability 59

p3(ci ) = 1/3 for i ∈ {1, 2, 3} and p1(c4) = p2(c5) = p3(c6) = p4(c7) = p4(c8) =
p5(c10) = p5(c11) = p6(c13) = p6(c14) = 1. Each voter fully spends their budget
of 2.

On the other hand, the committee W2 = {c1, c2, c3, c7, . . . , c15} returned by PAV
(the one shaded blue in the right figure in Example 4.7) is not priceable. Indeed, if
the voters’ budget p were ≤ 2, then the voters 4, 5, 6 could not afford to pay for 9
candidates c7, . . . , c15. If p > 2, then some of the voters 1, 2, 3, say voter 1, would
have a remaining budget of more than 1. Hence, this voter would have more budget
than needed to buy a candidate outside of W2 (e.g., c4), which contradicts condition
(4) in Definition 4.8.

Peters and Skowron [56] generalised Example 4.8 and showed that no welfarist
rule (see Definition 2.1) is priceable. This shows that priceability is inherently not a
welfarist concept. The same is true for laminar proportionality.

Theorem 4.4 (Peters andSkowron [56])Phragmén’s sequential rule and theMethod
of Equal Shares are laminar proportional and priceable. No welfarist rule is lam-
inar proportional nor priceable. No rule satisfying the Pigou–Dalton principle of
transfers is laminar proportional nor priceable.

While priceability is not a welfarist concept, it implies proportional justified rep-
resentation. Further, all priceable rules must be equivalent to the D’Hondt method
of apportionment on party-list profiles (cf. Theorem 4.1). A price system provides
an explicit and easily verifiable evidence explaining that the voters can use their
power (represented through virtual money) to ensure that the candidates from the
committee are selected. This intuitively explains that priceability captures the idea
of proportionality with respect to power—proportionality follows from the fact that
each voter is initially endowed with the same amount of virtual money.

Priceability itself puts rather mild constraints on the payment functions {pi }i∈N .
Recently, Peters et al. [58] introduced a stronger version of the axiom: we say that
a price system (p, {pi }i∈N ) is stable if it satisfies conditions (1)–(3) from Definition
4.8 and the following strengthening of condition (4):

(4*) Condition for Stability: There exists no non-empty group of voters V ⊆ N ,
no subsetW ′ ⊆ C \ W , and no collections {p′

i }i∈V (p′
i : W ′ → [0, 1]) and {Ri }i∈V

(with Ri ⊆ W for all i ∈ V ) such that all the following conditions hold:

1. For each c ∈ W ′:
∑

i∈V p′
i (c) > 1.

2. For each i ∈ V : pi (W \ Ri ) + p′
i (W

′) ≤ p.
3. Each voter i ∈ V approves more candidates in W \ Ri ∪ W ′ than in W , or i

approves as many candidates in W \ Ri ∪ W ′ as in W but
∑

c∈W\Ri
pi (c) +∑

c∈W ′ p′
i (c) <

∑
c∈W pi (c).

In words, it should not be possible for the voters from V to propose a set of candidates
W ′ such that if each voter i ∈ V transferred hermoney from Ri ⊆ W to the candidates
fromW ′, then these candidates would garner more than enough money to be elected,
and each voter from i ∈ V would be happier with W \ Ri ∪ W ′ than with W .
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Stable priceability is a strong condition: stable-priceable committees do not
always exist, and if so, they belong to the core (see Sect. 4.4). On the other hand,
one can check in a polynomial time whether a committee is stable-priceable, and
such committees often exist in practice. Peters et al. [58] also introduced the con-
cept of balanced stable-priceability, which additionally requires that each two voters
must pay the same amount of virtual money for the same candidate. They proved
that balanced stable-priceable committees can be characterised as outputs of slightly
modified version of the Method of Equal Shares.

We mention one more property—perfect representation [66]—which is loosely
related to priceability. It also requires an explanation how voters can distribute their
support/power in away that justifies electing a committee; however, the axiomapplies
only in very specific situations.

Definition 4.9 (Sánchez-Fernández et al. [66]) We say that a committeeW satisfies
perfect representation if the set of voters can be divided into k equally-sized disjoint
groups N = N1 ∪ . . . ∪ Nk (|Ni | = n/k for each i ∈ k) and if we can assign a distinct
candidate from W to each of these groups in a way that for each i ∈ k the voters
from Ni all approve their assigned candidate. An ABC rule R satisfies perfect rep-
resentation ifR returns only committees satisfying perfect representation whenever
such committees exist.

Perfect representation is incompatible with EJR [66] and with weak (and strong)
Pareto efficiency (Proposition A.9), and it is not implied by (nor implies) priceability.
Among the rules considered in this paper, only Monroe [66] and leximax-Phragmén
[12] satisfy perfect representation, as does the variance-based rule by Phragmén
mentioned in Theorem 4.1 [12].

To sum up, if we are mainly interested in the welfarist interpretation of propor-
tionality, as captured by axioms that specify how cohesive groups of voters should
be treated, then PAV is the best among the considered rules. Yet, sequential PAV,
seq-Phragmén, and the Method of Equal Shares perform also reasonably well with
respect to these criteria, and they are computable in polynomial time. Sequential PAV
does not satisfy JR, and so it might discriminate small cohesive groups of voters. On
the other hand, for reasonably small committees sequential PAV has better propor-
tionality degree than seq-Phragmén, and the Method of Equal Shares. The axioms
that well describe the welfarist type of proportionality are EJR and proportionality
degree, and to a lesser extent PJR and JR. If we are interested in proportionality
with respect to power, then we shall also consider the axioms of priceability and
laminar proportionality. In this case the Method of Equal Shares and Phragmén’s
sequential rule are the two superior rules. It is not entirely clear which one of the two
rules is better. On the one hand, the Method of Equal Shares satisfies the appealing
axiom of EJR; on the other hand, Phragmén’s sequential rule is committee monotone
(see Sect. 3.3). In Table4.1, we highlighted the three rules that—with the current state
of knowledge—we consider the best ABC rules in terms of proportionality.
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4.4 The Core

An important concept of group fairness that has been extensively studied in the
context of ABC rules is the core. This notion of proportionality is adopted from
cooperative game theory,10 and was first introduced in the context of multi-winner
voting by Aziz et al. [3].

Definition 4.10 Given an instance (A, k) we say that a committee W is in the core
if for each non-empty V ⊆ N and each T ⊆ C with

|T |
k

≤ |V |
n

, (4.1)

there exists a voter i ∈ V such that |A(i) ∩ T | ≤ |A(i) ∩ W |, i.e., voter i is at least
as satisfied withW as with T . We say that an ABC ruleR satisfies the core property
if for each instance (A, k) each winning committee W ∈ R(A, k) is in the core.

Informally speaking, the core property requires that a group V constituting an α
fraction of voters should be able to control an α fraction of the committee. If such
a group can propose a set T of �αk	 candidates such that each voter in V is more
satisfied with the proposed set T than with the winning committeeW , then the group
V would have an incentive to deviate, hence would witness that committee W is not
stable (and, in some sense, also not fair). If a winning committee is in the core, then
no such deviation is possible.

The core property implies extended justified representation (Definition 4.3):
Assume an ABC rule R satisfies the core property and consider an instance (A, k),
a winning committee W , and an �-cohesive group of voters V . Let T be the set of
� candidates that are approved by all the voters in V (such candidates exist because
V is �-cohesive). Since W is in the core, there must exist a voter i ∈ V such that
|A(i) ∩ W | ≥ |A(i) ∩ T | = �, hence the condition of EJR must be satisfied. While
the notion of core strictly generalises EJR and thus implies strong satisfaction guar-
antees for cohesive groups, it can also be viewed as a concept formalising the idea
of proportionality with respect to power (cf. Sect. 4.3).

It is an important open question whether there exists an ABC rule that satisfies
the core property, or—equivalently—whether the core is always non-empty. For the
time being only partial answers to this intriguing question are known:

1. None of the rules mentioned in Chap. 2 satisfies the property. Since a rule sat-
isfying the core must satisfy EJR, only PAV and the Method of Equal Shares
come into consideration. However, counterexamples for both are known [3, 56].
For PAV, the instance from Example 4.7 shows a violation of the core. A simple
example for the Method of Equal Shares can be found in [60, Example 4].

2. No welfarist rule (Definition 2.1) can satisfy the core property [56].

10 Specifically, the definition used in the literature on multi-winner voting is based on the definition
of the core for cooperative games with non-transferable payoffs [20, 52].
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3. If one restricts the attention to a special subclass of approval profiles, so-called
approval-based party-list profiles as introduced by Brill et al. [15], the situa-
tion changes. Approval-based party-list profiles are approval profiles where each
candidate appears with at least k copies, i.e., for every candidate c it holds that∣
∣{c′ ∈ C : N (c) = N (c′)}∣∣ ≥ k. Approval-based party-list profiles are thus more
general than party-list profiles (cf. Definition 4.1)—intuitively each voter can
approve one or more parties. Brill et al. [15] prove that PAV satisfies the core
property on approval-based party-list profiles. As mentioned before, PAV does
not satisfy the core property in the general case.

4. It is known that the core can be empty in settings that are related to the ABC
model but are more expressive. This is the case, e.g., in committee elections with
ranking-based preferences [23, 60] and in participatory budgeting with additive
utilities [30, Appendix C]; these two settings are discussed Sect. 6.1 and in Sect.
6.4, respectively.

As it remains unclear whether an ABC rule satisfying the core property is an
achievable goal, several works in the most recent literature analysed relaxed notions
of the core. We review these notions in the following.

4.4.1 Relaxation by Randomisation

The first type of relaxation that we consider is a probabilistic variant of the notion,
i.e., the question becomes: “can core-like properties be guaranteed in expectation (ex-
ante)?” Cheng et al. [23] prove that there always exists a lottery over committees that
satisfies the core property in expectation. Let EX∼�(X) denote the expected value of
a random variable X distributed according to a lottery (probability distribution) �.

Theorem 4.5 (Cheng et al. [23]) For each election instance (A, k) there exists a
lottery over committees � such that for each group of candidates T ⊆ C it holds
that

|T |
k

>
EW∼� (N (T,W ))

n
, (4.2)

where N (T,W ) is the set of voters who prefer T over W:

N (T,W ) = {i ∈ N : |A(i) ∩ T | > |A(i) ∩ W |} .

Note that Eq. (4.2) is indeed a negated, probabilistic version of Eq. (4.1), showing
that in expectation there are too few voters to propose a different committee. While
it is not known whether such a lottery � can be found in a polynomial time, Cheng
et al. [23] prove that if we restrict our attention only to sets T of size bounded by a
constant, then for each ε > 0 there is a polynomial-time algorithm that computes �

such that (1 + ε) · |T |
k > EW∼�(N (T,W ))

n .
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4.4.2 Relaxation by Deterministic Approximation

Another approach is to ask whether the core property can be well approximated. A
few notions of approximation have been proposed; Definition 4.11 below unifies the
definitions considered in the literature.

Definition 4.11 We say that an ABC ruleR provides a γ-multiplicative-η-additive-
satisfaction β-group-size approximation to the core if for each instance (A, k), each
winning committee W ∈ R(A, k), each non-empty subset of voters V ⊆ N , and
each subset of candidates T ⊆ C with

β · |T |
k

≤ |V |
n

there exists a voter i ∈ V such that |A(i) ∩ T | ≤ γ · |A(i) ∩ W | + η.

There are two components in Definition 4.11: The satisfaction-approximation
component says that a voter i has an incentive to deviate towards T only if her gain
in satisfaction is sufficiently large, that is, if i’s satisfaction in T is greater at least by
a multiplicative factor of γ and an additive factor of η than her satisfaction inW . The
group-size-approximation component prohibits deviations towards sets T which are
(by a multiplicative factor of β) smaller than k · |V |

n , as imposed by the core. If γ = 1,
then we omit the term “γ-multiplicative” from the name of the property. Similarly,
if η = 0 we omit the term “η-additive”, and if β = 1, then we omit the term “β-
group-size”. The satisfaction-approximation and the group-size approximation are
incomparable.

When considering the problem of approximating the core, we distinguish two
classes of algorithms. The first class contains dedicated approximation algorithms,
which are mostly based on dependent rounding of fractional committees. The second
class consists of established rules, such as PAV or theMethod of Equal Shares, which
can be shown to approximate the core (to some degree).

Jiang et al. [38] present an algorithm that provides 32-group-size approximation
to the core. Their approach is based on dependent rounding of lotteries that are
in expectation in the core (the existence of such lotteries is guaranteed by The-
orem 4.5). Notably, the approach of Jiang et al. [38] extends much beyond the
approval-based preferences; for cardinal utilities they round a lottery that in expecta-
tion 2-approximates the core and obtain a discrete committee with the 32-group-size
approximation guarantee.

Fain et al. [30] present a family of algorithms based on dependent rounding
of fractional committees (returned by a linear program that closely resembles the
formulation of PAV as an integer linear program). For each λ ∈ (1, 2] they provide
an algorithm that guarantees a λ-multiplicative-η-additive-satisfaction 1

2−λ
-group-

size approximation to the core, where η = O
(

1
λ4 log

(
k
λ

))
. Their algorithm naturally

extends to a more general model related to participatory budgeting.
The result of Fain et al. [30] has recently been improved. Munagala et al. [51] pre-

sented a polynomial time algorithm that guarantees 67.37-multiplicative-1-additive-
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satisfaction approximation to the core. They also presented an algorithm that offers
a 9.27-multiplicative-1-additive-satisfaction approximation to the core, yet running
in exponential time. These algorithms, which are based on dependent rounding, can
be also applied to more general types of voters’ preferences.

For commonly known rules the following results are known: Cheng et al. [23]
prove that PAV does not guarantee β-group-size approximation to the core even
for β = �(

√
k). On the other hand, Peters and Skowron [56] prove that PAV gives

2-multiplicative-satisfaction approximation to the core. Further, for each ε > 0 no
rule that satisfies the Pigou–Dalton principle can provide a (2 − ε)-multiplicative-
satisfaction approximation to the core. Thus, PAV can be viewed as giving the
strongest multiplicative-satisfaction approximation to the core subject to satisfying
the Pigou–Dalton principle of transfers. Finally, they show that the Method of Equal
Shares provides O(log(k))-multiplicative-1-additive-satisfaction approximation to
the core.

4.4.3 Relaxation By Constraining the Space of Deviations

Yet another approach to relaxing the core property is to prohibit only certain types
of deviations. As we have already explained at the beginning of this section, EJR
can be viewed as a restricted variant of the core property: It prohibits the deviations
of groups of voters towards outcomes T on which the deviating voters unanimously
agree. Intuitively, if a group V agrees on all candidates from T , then it is easier for
such a group to synchronise and to deviate, thus EJR can be viewed as the minimal
restricted variant of the core. Motivated by the same arguments, Peters and Skowron
[56] considered other restricted variants of the core property.

A committee property is a set of triples (A′, k ′,W ′), where (A′, k ′) is an election
instance andW ′ is a size-k ′ committee.Wewrite A|V for profile A restricted to voters
in V ⊆ N .

Definition 4.12 (Peters and Skowron [56]) Let P be a committee property. Given
an instance (A, k), we say that a pair (V, T ), with V �= ∅, V ⊆ N , T ⊆ C , is an
allowed deviation from a committeeW if (1) |T |

k ≤ |V |
n , (2) |A(i) ∩ T | > |A(i) ∩ W |

for each i ∈ V , and (3) T has property P , i.e., (A|V , |T |, T ) ∈ P . An ABC rule R
satisfies the core subject toP if for each instance (A, k) and each winning committee
W ∈ R(A, k) there exists no allowed deviation.

For example, letPcoh be a committee property such that (A′, k ′,W ′) ∈ Pcoh if and
only if W ′ ⊆ A′(i) for all voters i in the domain of A′; we call Pcoh cohesiveness
(cf. Definition 4.2). Then, EJR can be equivalently defined as the core subject to
cohesiveness.

The Method of Equal Shares satisfies core subject to priceability with equal pay-
ments, which is a variant of priceability that additionally requires that voters must
pay the same amount of virtual budget for the same candidate (cf. Definition 4.8);



4.5 Degressive and Regressive Proportionality 65

priceability with equal payments is thus stronger than priceability, yet weaker than
cohesiveness [56]. It is an open question whether the core subject to weaker (yet still
natural) types of constraints is always non-empty.

4.5 Degressive and Regressive Proportionality

The notions of proportionality that we discussed in Sects. 4.1–4.4 aimed at capturing
the following intuitive idea: An α fraction of voters should be able to decide about
an α fraction of the committee—in this approach the relation between the size of the
group and its eligibility is linear. In this section we discuss two alternative concepts:
degressive and regressive proportionality. These two concepts should be viewed
more as high-level ideas than formal properties. We first explain them intuitively,
providing an illustrative example, and next we will discuss a few formal approaches
to reasoning about degressive and regressive proportionality.

According to degressive proportionality, smaller groups of voters should be
favoured, i.e., be eligible to more representatives in the elected committee than in
the case of linear proportionality.11 An extreme form of degressive proportionality
is diversity [32]—there, if possible, each voter should be represented by at least one
candidate in the elected committee. At the other end is the idea of regressive propor-
tionality, where the emphasis is put on well-representing large groups. An extreme
form of regressive proportionality is individual excellence [32], where it is assumed
that only the candidates with the highest total support from the voters should be
elected. In fact, these two notions—diversity and individual excellence—are extreme
to the extent that they can no longer be considered notions of proportionality. Exam-
ple 4.9, below, illustrates the ideas of degressive and regressive proportionality, and
the two extreme variants of them—diversity and individual excellence.

Example 4.9 Consider the approval-based preference profile from Example 4.1:

60 voters : {a1, . . . , a10} 20 voters : {b1, . . . , b6} 10 voters : {c1, c2}
8 voters : {d1, . . . , a4} 2 voters : {e1, e2, e3}.

A linearly-proportional committee W1 could consist of six candidates from A, two
candidates from B, one candidate from C , and one candidate from D (this is the
committee selected by the Sainte-Laguë apportionment method). Another linearly-
proportional committee could consist of seven candidates candidates from A, two
from B, one fromC , but none from D (this is the committee selected by the D’Hondt
apportionment method).

11 Degressive proportional apportionment is often used for distributing parliamentary seats among
geographical regions, e.g., in the division of the European Parliament seats among EU countries (see
the book of Rose [64] for a discussion of arguments and negotiations that resulted in a degressive
apportionment rule being used for assembling the European Parliament).
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Table 4.2 Flavors of (dis)proportionality
# Votes 60 20 10 8 2

Example of linear proportionality
(Sainte-Laguë)

6 2 1 1 0

A different example of linear
proportionality (D’Hondt)

7 2 1 0 0

An example of degressive
proportionality

4 3 2 1 0

Another example of degressive
proportionality

3 3 3 1 0

An example of diversity 4 3 1 1 1

Another example of diversity 2 2 2 2 2

An example of regressive
proportionality

8 2 0 0 0

Individual excellence 10 0 0 0 0

In contrast, a degressive-proportional committee W2 could, for example, consist
of four candidates from A, three candidates from B, two candidates from C , and one
candidate from D. Another example of a degressive-proportional committee would
be W3 with three candidates from each of the sets A, B, and C , and one from D.
Committees W2 and W3, however, are not diverse, since two voters who support
E = {e1, e2, e3} are not represented at all. A diverse committee could consist of,
e.g., four candidates from A, three candidates from B, one candidates from C , one
candidate from D, and one candidate from E . A regressive-proportional committee
would include more candidates from the set A = {a1, . . . , a10} at the cost of groups
supported by less voters. For example, a committee that consists of eight candidates
from A and two candidates from B would be regressive-proportional. Table4.2 shows
the example relations between a size of a group and its number of representatives for
different forms of proportionality:

The arguments in favour of degressive proportionality usually come from the
analysis of probabilistic models describing how the decisions made by the elected
committee map to the satisfaction of individual voters participating in the process of
electing the committee (for party-list preferences, an excellent exposition is given
by Koriyama et al. [41]; see also [47, 48]). An interesting concrete example of
degressive proportionality is square-root proportionality devised by Penrose [53]
(see also [70]), where the idea is that the groups of voters should be represented
proportionally to the square-roots of their sizes.12 Further, degressive proportionally
in general, and diversity in particular, are particularly appealing ideas in the context of
deliberative democracy—there, the goal is to select a committee that should discuss
and deliberate on various issues rather than make majoritarian decisions. It is argued
that for deliberative democracy it is particularly important to represent as many

12 This method has been proposed for the United Nations Parliamentary Assembly [17] and for
allocating voting weights in the Council of the European Union [71].
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various opinions in the committees as possible [21, 50], which can be achieved by
maximising the number of voters who are represented in the elected committee.

On the other hand, the idea of regressive proportionality is particularly appealing
when the goal is to select a committee of candidates based on their individual merits,
for example when the goal of an election is to select finalists in a contest or to choose
a set of grants that should be funded (then, the voters act as judges/experts).

In the remaining part of this section we discuss two approaches to formalising
the ideas of degressive and regressive proportionality: axiomatic approaches and a
quantitative approach.

4.5.1 Axiomatic Approaches to Diversity and Individual
Excellence

The axiomatic approach generally applies only to the extreme forms of the degressive
and regressive proportionality, i.e., to diversity and individual excellence, respec-
tively. This approach is similar to the one we discussed in Sect. 4.1: by formalising
the concepts of diversity and individual excellence on party-list profiles (Definition
4.1), we obtain axiomatic characterisations for the more general domain of ABC
rules.

Intuitively, disjoint diversity requires that in party-list profiles as many voters as
possible have at least one representative in the elected committee. Disjoint equality
says that each approval carries the same strength, and so all candidates that are
approved once have the same right for being elected.

Definition 4.13 (Disjoint diversity) An ABC ruleR satisfies disjoint diversity if for
each party-list instance (A, k)with voter sets (N1, . . . , Np) and |N1| ≥ |N2| ≥ . . . ≥
|Np|, there exists a winning committeeW ∈ R(A, k) that contains one candidate for
each of the k largest parties, i.e., for each r ≤ min(p, k) and each i ∈ Nr we have
that A(i) ∩ W �= ∅.
Definition 4.14 (Disjoint equality) An ABC ruleR satisfies disjoint equality if for
each election instance (A, k) where each candidate is approved at most once and the
number of approved candidates is at least k (i.e., |⋃i∈N A(i)| ≥ k), a committee W
is winning if and only if it contains only approved candidates, W ⊆ ⋃

i∈N A(i).

Intuitively, disjoint equality is aimed at capturing the idea of individual
excellence—the candidates that are approved exactly once are virtually indistin-
guishable from the perspective of the support coming from the voters; thus all such
candidates should have equal rights to be selected.

The following theorems show that, similarly to the case of D’Hondt proportion-
ality (Theorem 4.2), the concepts of disjoint diversity and disjoint equality uniquely
extend to the full domain of approval-based preferences if one assumes the natural
axioms of anonymity, neutrality, and consistency (and a fewmore technical axioms).
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Fig. 4.2 A diagram illustrating the relation between defining w-functions of Thiele methods and
the type of proportionality these Thiele rules implement

Theorem 4.6 (Lackner and Skowron [44]) The Approval Chamberlin–Courant rule
is the only non-trivial ABC ranking rule that satisfies anonymity, neutrality, con-
sistency, weak efficiency, continuity, and disjoint diversity. Multi-Winner Approval
Voting is the only ABC ranking rule that satisfies anonymity, neutrality, consistency,
weak efficiency, continuity, and disjoint equality.

Lackner and Skowron [44] provided a similar analysis for intermediate notions
of degressive and regressive proportionality. They conclude that w-Thiele methods
based on w-scoring functions that have a larger slope than the w-function of PAV
are more oriented towards regressive proportionality, whereas w-functions that have
a smaller slope are closer in spirit to the idea of degressive proportionality. This
relation is symbolically visualised in Fig. 4.2.

Jaworski and Skowron [37] constructed a class of rules that generalise Phragmén’s
rule. Intuitively, a degressive variant of seq-Phragmén is obtained by assuming that
the voters who already have more representatives earn money at a slower rate than
those that have fewer. Regressive proportionality is implemented by assuming that
the candidates who are approved by more voters cost less than those that garnered
fewer approvals.

Faliszewski et al. [33] discuss three specific classes of rules that span the spectrum
between individual excellence and diversity. They analyse these rules in the ranking-
based model, that is when voters rank the candidates instead of approving some of
them (see Sect. 6.1). These classes of rules can be analogously defined for approval
ballots. Brill et al. [14], Faliszewski and Talmon [31] extend Monroe’s rule so that it
can implement the idea of regressive proportionality; this is also done in the ranking-
based framework. It would be interesting to see whether their techniques can be
successfully applied to the ABC model.

Finally, Subiza and Peris [72] propose an axiom called α-unanimity (parameter-
ized with α ∈ [0, 1]), which can be seen as a strong diversity axiom. The authors
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propose a voting rule (Lexiunanimous Approval Voting) that satisfies this axiom; this
rule is a refined version of CC. Thiele methods (including CC itself) do not satisfy
this axiom for any α.

4.5.2 Quantifying Degressive and Regressive Proportionality

The second approach to formally reason about degressive and regressive proportion-
ality is quantitative in nature. Lackner and Skowron [43] define two measures—the
utilitarian guarantee and the representation guarantee—that can be used to quantify
how well a given rule performs in terms of individual excellence and diversity.

Recall that scoreAV(A,W ) denotes the total number of approvals a given com-
mittee receives in profile A and scoreCC(A,W ) denotes the number of voters who
approve at least one member of W .

Definition 4.15 (Utilitarian and Representation Guarantee [43]) The utilitarian
guarantee of an ABC rule R is a function κAV : N → [0, 1] that takes as input an
integer k, representing the committee size, and is defined as:

κAV(k) = inf
A

minW∈R(A,k)(scoreAV(A,W ))

maxW : |W |=k(scoreAV(A,W ))
.

The representation guarantee of anABCruleR is a functionκCC : N → [0, 1]defined
as:

κCC(k) = inf
A

minW∈R(A,k)(scoreCC(A,W ))

maxW : |W |=k(scoreCC(A,W ))
.

Note that the utilitarian and the representation guarantee of an ABC ruleR mea-
sure howwell ruleR approximates Multi-Winner Approval Voting and the Approval
Chamberlin–Courant rule, respectively. These two rules embody the principles of
diversity and individual excellence (cf. Theorem 4.6).

Lackner and Skowron [43] show that the utilitarian guarantee of PAV, sequential
PAV, and seq-Phragmén is �(1/

√
k); their representation guarantee is 1/2 + �(1/k).

CC and seq-CC achieve a better representation guarantee (of 1 and 1 − 1/e, respec-
tively), but their utilitarian guarantee is only�(1/k). In that sense, these three propor-
tional rules (PAV, sequential PAV, and seq-Phragmén) can be viewed as a desirable
compromise between the two guarantees. On the other, the authors also show that
proportional rules are never an optimal compromise. Finally, p-geometric rules—
the Thiele rules defined by wp-geom(x) = ∑x

i=1 (1/p)i—for different values of the
parameter p span the whole spectrum from AV to CC. By adjusting the parameter
p, one can obtain any desired compromise between the utilitarian and representation
goals.

Elkind et al. [29] extend this work by considering the “price” of justified represen-
tation axioms: what are the optimal utilitarian and representation guarantees when
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requiring justified representation (Definition 4.6) or extended justified representation
(Definition 4.3)? Their results show that already justified representation implies a
utilitarian guarantee of no better than 2/

√
k; the same holds for EJR. The consequences

for the representation guarantee are less pronounced: JR does not restrict the repre-
sentation guarantee (e.g., CC satisfies JR and has a representation guarantee of 1)
and EJR is compatible with a representation guarantee of 3

4 .

4.5.3 An Experimental View on Degressive and Regressive
Proportionality

Godziszewski et al. [35] visualised the structure of the committees produced by
various ABC rules on histograms. They performed computer simulations in which
the candidates and the voters were represented as points in the two-dimensional
Euclidean space. Intuitively, a point corresponding to a voter or a candidate might
represent their position in the spectrum of possible opinions regarding various issues.
In each simulation the candidates and the voterswere drawn froma given distribution,
and a preference profile was constructed from the positions of the voters and the
candidates. The main idea was that the voters are more likely to approve candidates
whose corresponding points are closer to them, since their opinions resemble views
of such candidates. Given a preference profile, a specific ABC rule was used to find
a winning committee, and the points corresponding to the selected candidates were
marked with red dots on the histogram of the respective rule. The experiment was
repeatedmultiple times, and each time the dotswere put on the same histogram. Thus,
the density of red dots in a given area represent the probabilities that the candidates
from this area are chosen for the winning committee. This idea was first proposed
by Elkind et al. [28] in the context of ranking-based elections.

Such histograms give valuable insights into the nature of voting rules. We depict
several of them in Fig. 4.3. In the left column of the figure, we depict distribu-
tions of the points representing the voters and the candidates: red areas correspond
to the candidates, green areas to the voters, and olive areas correspond to both.
The subsequent columns depict distributions of the elected candidates for six ABC
rules. These histograms already illustrate the very different natures of the considered
rules. For example, the distributions obtained for PAV and the sequential Phragmén’s
rule closely resemble distributions of the voters (which is exactly what one would
expect from proportional rules), CC puts more emphasis on representing as diverse
a spectrum of voters as possible, AV selects candidates that are in the centres of the
distributions—the choice that corresponds to individual excellence. The Method of
Equal Shares induces histograms that are in some sense between PAVandAV. Finally,
the behaviour of Minimax AV (MAV) is inconsistent with our intuitive interpretation
of proportionality in the Euclidean model.



4.6 Proportionality and Strategic Voting 71

distribution AV CC MAV PAV Eq. Shares Phragmén

Fig. 4.3 Visualising the outcomes of some selected ABC rules (from [35])

The conclusions from this experimental exercise are to a large extent consistent
with the conclusions coming from the axiomatic analysis. For a more detailed dis-
cussion we refer to the original work [35].

4.6 Proportionality and Strategic Voting

The ABC rules that we have considered in the context of proportionality are all
prone to manipulations (cf. Sect. 3.6). In this section we explain that this is not a
coincidence—achieving proportionality and strategyproofness at the same time is
inherently impossible. This impossibility was first proven by Peters [54, 55] for
resolute rules (rules that always return a single winning committee), even for very
weak formulations of the desired axioms. (Earlier work by Aziz et al. [2] and Janson
[36] already showed that certain proportional rules—such as PAV, seq-PAV, and seq-
Phragmén—are not strategyproof.)

Theorem 4.7 (Peters [54, 55]) Suppose k ≥ 3, the number n of voters is divisible
by k, and m ≥ k + 1. Then there exists no resolute ABC rule R which satisfies the
following three axioms:

1. weak proportionality: for each party-list election (A, k) where some singleton
ballot {c} appears at least n/k times (|{i : A(i) = {c}}| ≥ n/k), candidate c must
belong to the winning committee, i.e., c ∈ R(A, k),

2. weak efficiency: a candidate who is approved by no voter may not be part of the
winning committee, unless fewer than k candidates receive at least one approval,

3. inclusion-strategyproofness13 (as defined in Sect. 3.6).

Kluiving et al. [40] prove a similar result for irresolute rules (i.e., when rules are
allowed to output multiple tied winning committees), using cardinality-strategy-
proofness and Pareto efficiency. Further, Duddy [27] proves a related impossibility

13 This axiom can be further weakened to allow voters only to manipulate by reporting subsets of
their true approval sets.
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result for irresolute rules using slightly different axioms; this result also requires a
form of Pareto efficiency.

Lackner and Skowron [42] showed that AV is the only ABC scoring rule (Sect.
3.5) that satisfies SD-strategyproofness; this result can also be seen as an impos-
sibility result concerning proportionality and strategyproofness within the class of
ABC scoring rules. Further, they quantified the trade-off between strategyproofness
and proportionality. For various ABC rules they empirically measured their level
of strategyproofness by assessing the fraction of profiles, for which there exists a
voter who has an incentive to misreport her approval set. They concluded that rules
which are more similar to AV (i.e., rules that follow the principle of regressive pro-
portionality) are less manipulable than proportional rules. The rules that follow the
principle of degressive proportionality are the most manipulable. A similar conclu-
sion was obtained by Barrot et al. [6], but there the authors analysed a different class
of rules—namely those based on the Hamming distance, and spanning the spectrum
from AV to Minimax Approval Voting.

Since in the general case, there exist no proportional strategyproof ABC rule,
Botan [9] restricted the analysis to three specific types of manipulations: (1) subset
manipulations, where a voter can manipulate only by submitting a subset of her true
approval set, (2) superset manipulations, where each voter can only send a superset
of her true preferences, and (3) disjoint manipulations, where a manipulation can be
performed only by submitting a subset of candidates disjoint from the true approval
set of the voter. They showed that for party-list preference profiles (see Definition
4.1) all Thiele methods are cardinality-strategyproof14 against subset, superset, and
disjoint manipulations.

4.7 Proportionality with Respect to External Attributes

In Sects. 4.1–4.6, we have considered formal concepts that capture, in various ways,
what it means that the structure of the elected committee proportionally reflects the
(approval-based) preferences of the voters. In other words, we have considered pro-
portionality with respect to the preferences given by the voters. In this section, we
briefly consider a framework that approaches the concept of proportionality quite
differently: we analyse proportionality with respect to external attributes of the can-
didates.15

Let us start by recalling the apportionment setting that we discussed in Sect. 4.1. In
the apportionment model we are given a set of candidates, each candidate belonging
to a single political party; for each political party we are given a desired fraction

14 Formally, Botan [9] defines strategyproofness for irresolute rules and states their results for the
general class of Gärdenfors preference extensions [34]. These extensions define preference relations
over sets of winning committees and thus can be applied to irresolute rules.
15 A noteworthy real-world example is the Lebanese Parliament, where an equal representation of
Christians and Muslims (64 seats each) is mandated [26].
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of seats the party should ideally get in the elected committee (typically, this is the
fraction of votes cast on the party). The goal is to pick the committee that matches the
desired fractions as closely as possible. Thus, one can say that in the apportionment
setting there is one external attribute, which is the party affiliation, each candidate
has a certain value of this attribute, and the goal is to pick the committee where the
different values of the attribute are represented proportionally to the given desired
fractions.

Now, assume that there are twoattributes—each candidate has a political affiliation
and a geographic region that she represents. For each value of each attribute we
are given a desired fraction of seats that the candidates with this attribute value
should get. This setting is called bi-apportionment, and it is discussed in detail in a
book chapter by Pukelsheim [61] (several articles study the bi-apportionment setting
from a computational perspective [46, 63, 67]). The model of bi-apportionment has
been further extended to an arbitrary number of attributes by Lang and Skowron
[45].16 There, the authors analysed axiomatically and algorithmically two rules that
extend the D’Hondt method and the largest remainder method to the multi-attribute
apportionment.

The desired fractions in the (multi-attribute) apportionment model can be based
on the voters preferences, or they might be given exogenously, e.g., by imposing
certain quotas, specifying how many candidates with given attribute values should
be included in the winning committee. Taking one specific interpretation, namely
assuming the voters are asked to approve attribute values, Kagita et al. [39] proposed
several other rules for selecting committees. They formulated axioms, requiring that
the selected committee should consist of candidates whose attribute values propor-
tionally represent voters’ preferences. Unfortunately, none of the rules they propose
satisfies any of these axioms. In general our axiomatic understanding of the multi-
attribute apportionment model is still not well-advanced.

In the final part of this section we will consider a model which takes into account
both the voters’ preferences over candidates, and external constraints based on
attributes of the candidates. Instead of defining this model formally, we provide
an illustrative example.

Example 4.10 Assume we want to select a representative committee. Such a com-
mittee should be gender-balanced, containing 50%ofmale (M) and50%of female (F)
committee members. Additionally, the committee should represent people from dif-
ferent educational backgrounds: at least 25% and at most 50% of its members should
have a bachelor’s degree (B), between 40% and 60% should have an upper-secondary
education (U), and between 10% and 25%—a primary or lower-secondary educa-
tion (P). Finally, the selected committee should contain at least 25%young people (Y)

16 The multi-attribute model finds its application, e.g., in the process of sortition. In sortition one
needs to select a committee of ordinary people who will discuss certain controversial matters,
and come up with recommendations helping the governments make decisions. In this process it is
important to select a committee consisting of people who are representative for the whole society.
Currently, randomised algorithms are mostly used for such selections [8]. The multi-attribute model
provides alternative methods that take advantage of information regarding attributes of the potential
committee members.
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and at least 50% senior people (S). The pool of candidates from which we can select
members of such a committee is given in the table below. Additionally, seven voters
express their preferences via the following approval ballots.

Name Gender Education Age
c1 F B Y
c2 M U Y
c3 M U S
c4 F P S
c5 M U Y
c6 M U Y
c7 M U Y
c8 F B S

A(1) = {c1, c2, c3}
A(2) = {c3, c5}
A(3) = {c7, c8}
A(4) = {c3, c4, c5, c7}
A(5) = {c1, c8}
A(6) = {c6}
A(7) = {c1, c2, c6}

Assume we want to select k = 4 committee members. The winning commit-
tee according to AV would be W1 = {c1, c3, c7, c8} (for simplicity, we assume the
ties are broken lexicographically c8 � c7 � · · · � c1), and according to PAV, the
winning committee would be W2 = {c1, c3, c6, c8}. However, each of these two
committees violates the attribute-level constraints. The committee maximising the
AV-score and the PAV-score subject to these constraints would be, respectively,
W3 = {c1, c3, c4, c7} and W4 = {c3, c4, c6, c8}.

As can be seen in Example 4.10, score-based ABC rules (in particular Thiele
methods) are suitable for this approach: the winning committee is the one with the
highest score that satisfies all external constraints. Following this approach, Bred-
ereck et al. [10] and Celis et al. [18] considered the model of multi-winner elections
with external constraints, but where the qualities of the committees are assessed via
a general set function f . The function f may in particular depend on the voters’
ballots, for example we can set f (W ) = scoreAV(A,W ). Aziz [1] studied a similar
model, but assuming there is a global ranking over C that represents the objective
qualities of the candidates. There, the goal is to select the lexicographically best
committee subject to the multi-attribute constraints, which are treated more softly
than in case of Bredereck et al. [10] and Celis et al. [18]. Let us also mention that
Bei et al. [7] studied a related model, but there the goal is to select the committee
of maximal cardinality that satisfies the attribute-level constraints. We will consider
algorithmic aspects of these and related approaches in Sect. 5.3.

Note that this approach is not compatible with rules that do not naturally provide
a ranking of committees by scores (e.g., seq-Phragmén or the Method of Equal
Shares). It is an interesting question how to adapt these rules to the model with
external constraints.
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