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Abstract The modelling of liquid–vapour flow with phase transition poses many
challenges, both on the theoretical level, as well as on the level of discretisation
methods. Therefore, accurate mathematical models and efficient numerical methods
are required. In that, we focus on two modelling approaches: the sharp-interface (SI)
approach and the diffuse-interface (DI) approach. For the SI-approach, representing
the phase boundary as a co-dimension-1manifold, we develop and validate analytical
Riemann solvers for basic isothermal two-phase flow scenarios. This ansatz becomes
cumbersome for increasingly complex thermodynamical settings. A more versatile
multiscale interface solver, that is based onmolecular dynamics simulations, is able to
accurately describe the evolution of phase boundaries in the temperature-dependent
case. It is shown to be even applicable to two-phase flow of multiple components.
Despite the successful developments for the SI approach, these models fail if the
interface undergoes topological changes. To understand merging and splitting phe-
nomena for droplet ensembles, we consider DI models of second gradient type. For
these Navier–Stokes–Korteweg systems, that can be seen as a third order extension
of the Navier–Stokes equations, we propose variants that are more accessible to stan-
dard numerical schemes. More precisely, we reformulate the capillarity operator to
restore the hyperbolicity of the Euler operator in the full system.

1 Introduction

In this contribution we consider the compressible flow of homogeneous fluids that
occur in two phases: a liquid and a vapour phase. We focus on a spatial scale such
that the phase boundaries exist as isolated flow patterns, i.e. single droplets are fully
resolved in the model. For the mathematical modelling of a compressible fluid with
liquid–vapour phase transitions one can then use either models which represent the
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Fig. 1 Graphical representation of a sharp interface (left) and a diffuse interface (right)

phase boundary as a codimension-1 manifold (Sharp-Interface (SI) approach) or as a
steep but continuous transition zone (Diffuse-Interface (DI) approach), see Fig. 1 for
an illustration. Both concepts are related via a SI-limit. This means, that a sequence
of solutions of the DI model converges to a solution of the SI model for vanishing
diffuse-interface parameter.

The thermodynamical setting is summarised in Sect. 2. We proceed with the SI
concept in Sect. 3. The mathematical model can then be seen as a free boundary
value problem that consists of appropriate coupling conditions across the interface,
and evolution equations in the bulk domains. We shortly review the one-dimensional
case,which amounts (in the absence of viscous forces) to solving aRiemann problem.
Notably, the phase boundary shows up as a discontinuous wave, similar to a shock
wave. Since exact Riemann solvers are not available for arbitrary thermodynamical
settings we develop in the in the SFB–TRR 75 a new multiscale approach. This
method determines the speed of a phase boundary locally by solving a molecular-
dynamical problem. In Sect. 4 we present some results of the research on DI models.
After a short reviewof the classicalNavier–Stokes–Korteweg systemwegive a sketch
for a new model. This model relies on a nonlocal free-energy formulation that has
been previously suggested to describe two-phase equilibria in solid mechanics. The
special structure of the resulting capillarity tensor can be exploited to compensate for
the occurrence of a spinodal region in two-phase thermodynamics. As a consequence
the resultingmodel can be solved numerically in a straightforwardwayusing standard
CFD codes for compressible flow. We conclude with some numerical experiments
on droplet ensembles with various phase transition phenomena.

This article bases largely on the publications of the authors and (former) members
of the working group that have been involved in the SFB–TRR 75. It contains results
of the PhD thesis of the first author [25].
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2 Thermodynamics of Compressible Two-Phase Flow

A central role in modelling two-phase flow plays the accurate representation of the
thermodynamic properties of fluids. For this purpose, equations of state (EOS) are
prescribed that put thermodynamic quantities in relation. Typically, an equation of
state contains a function ψ(ρ, T ) that determines the specific Helmholtz free energy
ψ from the fluid density ρ and the fluid temperature T . From this dependency the
fluid pressure p and specific Gibbs free energy μ can be inferred for temperature
T > 0 via

p = p(ρ) = ρ2 d
dρ ψ(ρ), (1)

μ = μ(ρ) = ψ(ρ) + p(ρ)

ρ
. (2)

In what follows, we consider for the sake of simplicity the case of constant tem-
perature T = Tref (with the exception of Sect. 3.2). A prototypical example for an
isothermal two-phase flowmodel is the van der Waals-fluid, for which one considers
the pressure function

p(ρ) := RTrefρ

1 − bρ
− aρ2, (3)

with some constants R, a, b > 0, and the reference temperature Tref > 0. For tem-
peratures Tref below the critical temperature Tcrit = 8a

27Rb , the pressure function
becomes non-monotone, see Fig. 2. The interval where the pressure is decreasing, i.e.
Aspin = (ρmax+ , ρmin− ) = {ρ ∈ (0, 1

b ) : p′(ρ) < 0} is called spinodal region. In this
region, the liquid is in a meta-stable state, and the system (4) below is not hyperbolic
anymore. For that reason, we define the admissible density intervalsA+ = (0, ρmax+ )

Fig. 2 The van der Waals pressure p(ρ) and free Helmholtz energy density ρψ(ρ) for Tref < Tcrit
as a prototypical example to describe a liquid with two phases
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and A− = (ρmin− , 1
b ). These intervals can be associated with the two fluid phases,

which meansA+ indicates the density interval for the vapour phase, andA− for the
liquid phase.

3 Sharp-Interface Modelling

This section is devoted to SI models that incorporate the well-known transmission
conditions at liquid–vapour interfaces [4]. The focus is on ideal fluids and the develop-
ment of interface Riemann solvers for the description of phase boundary dynamics.
We do not consider viscous fluids, which would not be accessible by self-similar
solutions in a conservation law framework.

In this article, we provide a summary of a multiscale approach that allows to
access complex scenarios like temperature-dependent flow and multi-component
flow. For project-related results within the SFB–TRR 75, we refer for the basic
two-phase Riemann solvers and the free boundary value problem to [23, 31–33]. In
collaboration with sub-project A2 within SFB–TRR 75, the ghost-fluid method and
two-phase Riemann solvers were further developed and applied in existing CFD-
code, see [16–18] Concerning two-phase multiscale modeling, we refer to e.g. [25,
32] and for the related work about constraint-aware surrogate solvers to [26]. A sharp
interface approach in the framework of the Stefan problem is pursued in [12].

3.1 Isothermal Two-Phase Flow

For the sharp-interface representation of two-phase flow, we consider a domain � ⊂
R

d that is split into two open, disjoint, time-dependent subdomains �+(t), �−(t),
t ∈ (0, tend), by a (d − 1)-dimensional manifold �(t), see Fig. 1. It is assumed that
in each subdomain�+(t),�−(t) only one phase is present. Furthermore, we assume
that in both domains, the fluid flow is described by the same set of PDEs. Neglecting
external forces, inviscid two-phase flow is governed for constant temperature by the
isothermal Euler equations

∂tρ + ∇ · (ρv) = 0,

∂t (ρv) + ∇ · (ρv ⊗ v + pI) = 0,
in �±(t) for t ∈ (0, tend). (4)

In (4), ρ = ρ(x, t) denotes the fluid density, v = v(x, t) the fluid velocity, I the
d-dimensional identity matrix. The pressure p = p(ρ) is defined by an equation
of state; we refer to the discussion in Sect. 2. The system (4) is supplemented by
appropriate initial conditions. Additionally, we assume no-flow boundary conditions
on ∂�.
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For a fixed point ξ ∈ �(t) on the interface, the normal vector (pointing into the
vapor region �+(t)) is denoted by n = n(ξ , t) ∈ S

d−1 and the speed of the interface
�(t) in normal direction is indicated by s = s(ξ , t) ∈ R.

We assume that the interface �(t) does not store any mass, and impose a momen-
tum balance involving curvature effects. For constant surface tension σ ∈ R, this
implies a no-slip condition for the tangential velocities (see [2] for a rational deriva-
tion of balance laws for interfacial transport). Altogether, we have

�ρ(v · n − s)� = 0,

�ρ(v · n − s)v · n + p(ρ)� = (d − 1)κσ,

�v · t� = 0, ∀ t ⊥ n,

(5)

with κ = κ(ξ , t) = −∇�(t) · n(ξ , t) denoting the mean curvature of the interface,
given by the negative surface divergence of n on the interface �(t). The jump oper-
ator � · � computes the difference between vapour and liquid phase quantities at the
interface �. For an arbitrary function a : Rd → R it is defined by

�a� := a+ − a−, with a± := lim
ε→0
ε>0

a(ξ ± εn). (6)

In order to obtain a well-posed model, an additional condition at the interface is
required, that determines the mass transfer across the interface. A direct prescription
of it might not be consistent with the second law of thermodynamics. Therefore, we
follow the ansatz in [1, 36] and formulate an algebraic equation at the interface—the
so-called kinetic relation that specifies the entropy dissipation at the interface. For
this purpose, let a driving force K : R → R : j 
→ K( j) be given that depends on
the relative mass flux j across the interface, i.e.

j = ρ±(v± · n − s). (7)

In the isothermal case, a kinetic relation takes the following form

�
μ(ρ) + j2

2ρ2

�
= −K( j). (8)

To see the thermodynamical significance of (8), let us assume for the moment that
(ρ, ρv) is a classical solution of Eqs. (4) in both bulk phases �±(t) fulfilling the
interface conditions (5) and the kinetic relation (8) with a driving forceK( j). In this
case, if the driving force upholds

jK( j) ≥ 0, for all j ∈ R, (9)

it can be shown that the solution satisfies the second law of thermodynamics. This
means, the solution dissipates the energy at the interface, i.e. it holds
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Fig. 3 Exemplary wave
pattern of an isothermal
two-phase Riemann solution

−s �E� − s(d − 1)κσ + �(E + p(ρ))v · n� = − jK( j) ≤ 0. (10)

For classical solutions in both bulk phases �±(t) and closed interfaces �(t) we
deduce the energy inequality

d

dt

(∫

�

ρψ(ρ) + 1
2ρ|v|2 dx + σ I [�(t)]

)
≤ 0. (11)

For static solutionswe infer that the sharp-interface solutionsminimize the functional

FSI[ρ] :=
∫

�

ρψ dx + σ I [�], (12)

where I [�] is the (d − 1)-dimensional surface measure of the interface �.
In our project,wedeveloped aRiemann solver for two-phaseflow that is applicable

to a wide range of kinetic relations [32, 37]. That means in particular, that we are
able to compute two-phase Riemann solutions that are consistent with the second
law of thermodynamics. For details on the Riemann solvers we refer to [32]. For
numerical simulations it suffices to know that the Riemann solver is a mapping of
the following form

R : P− × P+ → P− × P+ × R : (u−,u+) 
→ (u∗
−,u∗

+, s). (13)

It takes the liquid state u− ∈ P− ⊂ R
d+1 and the vapour state u+ ∈ P+ ⊂ R

d+1

directly at the phase boundary and returns thewave speed s ∈ Rof the phase boundary
wave, as well as the adjacent wave states u∗−, u∗+, see Fig. 3.

In Fig. 4 we show exemplary Riemann solutions computed by the aforementioned
Riemann solver [32] for three kinetic relations and the corresponding Liu entropy
solution. All choices lead to a three-wave solutions consisting of two bulk-phase
shock waves and a subsonic phase-boundary wave (with attached rarefaction due to
loss of genuine nonlinearity). The termsK1 andK3 are the lowest-order polynomial
choices that ensure (10) via the monotonicity condition (9), i.e.

K1( j) = j, K3( j) = sign( j) j2. (14)
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Fig. 4 Riemann solutions for isothermal liquid–vapour flow for three different kinetic relations
compared to the corresponding Liu entropy solution (dashed line). The Riemann solver [32] was
used to compute the solutions. The left figure shows the fluid pressure, the right figure the fluid
velocity. Both are plotted with respect to the Lagrangian space variable at time t = 1 (Source [32],
reprinted with permission from Springer Nature under No. 5039260679728)

These choices lead to a positive entropy dissipation. The functionK7 denotes a limit
relation, as it admits only phase boundaries connecting the Maxwell states, i.e. the
entropy dissipation is zero. For the sake of comparison we added the so-called Liu-
solution. The Liu solution is the classical Riemann solution of the isothermal Euler
equations (4) when the free energy ρψ(ρ) is substituted by its convex envelope,
which leads to a non-decreasing pressure function.

3.2 Temperature-Dependent Two-Phase Flow

Up to now, we have focused on isothermal two-phase flow.Most application-relevant
processes, however, are temperature-dependent. For example, latent heat can have
a strong influence on the local temperature distribution. Therefore, we turn to the
temperature-dependent Euler equations

∂tρ + ∇ · (ρv) = 0,

∂t (ρv) + ∇ · (ρv ⊗ v + pI) = 0,

∂t E + ∇ · ((E + p)v) = 0

in �±(t) for t ∈ (0, tend), (15)

with the total energy density E = E(x, t) satisfying E = ρε + 1
2ρ|v|2, with ε denot-

ing the specific internal energy. The fluid state variables of Eq. (15) are also written
in the form of a state vector u = (ρ, ρv, E). For the system given by Eq. (15), we
have to specify equations of state, that put in relation the pressure p = p(ρ, T ), the
specific internal energy ε = ε(ρ, T ), and the temperature T > 0.

In [37] the aforementioned isothermal Riemann solver is extended to the
temperature-dependent case. Unfortunately, finding an appropriate kinetic relation is
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Fig. 5 Graphical representation of the multiscale scheme illustrating its modules [25]

a non-trivial problem and the corresponding Riemann solutions may exhibit overly
large temperature jumps. As a matter of fact, and as discussed in [21], it appears
that the classical approach (using kinetic relations, and in absence of heat flux) is
unable to reproduce physically consistent behaviour. To circumvent this problem one
might model the heat flux across the interface. Yet this introduces new challenges
and requires further closure relations, which are difficult to obtain.

Therefore, we propose a novel approach to model the interface dynamics, that
is based on the microscopic dynamics of the fluid molecules at the interface. On
this scale, only the interactions between the fluid molecules have to be modelled,
and continuum-scale properties such as mass or heat flux emerge naturally. The
multiscale model consists of several modules, namely

• a continuum-scale sharp-interface two-phase model,
• the interface-preserving finite-volume algorithm on moving meshes (IPFV-
algorithm),

• the microscale interface solver, based on molecular dynamics simulations,
• constraint-aware neural networks, that account for underlying physical properties.

A schematic representation of the multiscale model and the aforementioned modules
is shown in Fig. 5.

To set up the multiscale model, we consider on the continuum scale the sys-
tem (15). Note that the EOS on the continuum scale has to be consistent with the
microscale MD system—in our case we apply the EOS for the Lennard–Jones fluid
presented in [35].

For the discretisation of the sharp-interface continuum-scale two-phase flow, we
apply an interface preserving finite volume method on moving meshes [7]. It has the
advantage, that the sharp interface is resolved within the mesh and the fluid phases
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are strictly separated, which means that on the discretisation-level fluid states are
not mixed across the phases. Moreover, this method enables us to use a dedicated
interface solver directly at the interface.

This microscale interface solver RMD is of the same type as R in (13), i.e.

RMD : P− × P+ → P− × P+ × R : (u−,u+) 
→ (u∗
−,u∗

+, s). (16)

Instead of determining the interface speed s and wave states u∗−, u∗+ analytically,
RMD determines them via molecular dynamics (MD) simulations This means that
large particle systems are considered, consisting of symmetricmono-atomic particles
that interact via the Lennard–Jones potential. Now, evaluating RMD corresponds to
simulate one large MD simulation that is set up analogously to a continuum-scale
Riemann problem. More specifically, we divide the MD simulation-domain into
two parts: the liquid phase and the vapour phase. In each phase, we set up particle
distributions that correspond to continuum-scale fluid states at the phase boundary.
Note that in the current implementation the interface curvature is not considered
in the MD simulations. Therefore, surface tension effects are also neglected on the
continuum scale. Starting from these Riemann problem-like initial data, we perform
the MD simulation and obtain the interface position and speed s, as well as the
interface wave states u∗−, u∗+ via local averaging on the MD scale.

To reduce the computational complexity of performing anMD simulation at every
single time step during the continuum-scale simulation, we employ a machine-
learned surrogate solver substituting RMD. For this purpose, we apply constraint-
resolving neural networks [26] that satisfy mass conservation at the phase boundary.

For a fully detailed description of themultiscale schemewe refer to the PhD-thesis
of the first author [25].

3.3 Numerical Simulation Results

In the following, we present numerical simulation results of the multiscale model.
In Fig. 6 we present a one-dimensional continuum-scale multiscale solution overlaid
over the corresponding MDRiemann solution. In this simulation, a vapour wave hits
the liquid, and increases the temperature near the phase boundary. We observe that
the multiscale solution is quantitatively consistent with the microscale MD solution,
up to some diffusive effects that are present only in the particle model.

The two-dimensional simulation shown in Fig. 7 illustrates, that the multiscale
scheme can be successfully applied to more complex situations. In this simulation,
a liquid droplet oscillates and gets hit by a vapour wave. The need for a surrogate
solver becomes evident. If we had to run a MD simulation—taking roughly 5 min—
for each of the approximately 200 interface edges in each of the 1000 time steps,
the whole simulation would have taken at least 16,000h which is clearly unfeasible.
By employing the surrogate solver, we can reduce the computational time for the
simulation to roughly 15h.
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Fig. 6 Multiscale simulation for the temperature-dependent two-phase flow model in one space
dimension and the correspondingMD simulations (a binned statistic is shown, averaged over 50MD
simulations) [25]. The initial data ρ− = 0.58, v− = 0, T− = 1.0, ρ+ = 0.05, v+ = −0.5, T+ = 1.0
is chosen in such a way that a vapour phase wave hits the liquid phase

3.4 Isothermal Two-Component Two-Phase Flow

An advantage of the multiscale model is that it is straightforward to consider more
complex fluids and fluid mixtures. Isothermal two-component flow can be modelled,
for example, with the continuum-scale, multi-componentmodel derived in [6], which
has the following form for each component i

∂tρi + ∇ · (ρivi ) = 0,

∂t (ρivi ) + ∇ · (ρivi ⊗ vi ) = −ρi∇μi − T
∑
j

fi jρiρ j (vi − v j ),
(17)

in �±(t) for t ∈ (0, tend). The primary variables are the partial mass densities ρi and
the partial velocities vi . The friction factor fi j = f ji > 0 between the components i
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Fig. 7 Two-dimensional multiscale simulation of the temperature-dependent two-phase flow
model. Initially the liquid droplet and the vapour atmosphere are not in equilibrium, resulting
in oscillations. Then a wave hits the liquid droplet, that increases the fluid temperature and deforms
the droplet [25]

and j is proportional to the reciprocal of the Maxwell–Stefan diffusion coefficients
-Di j . The chemical potential of component i with respect to mass is denoted by μi ,
and given by the EOS. We decided to apply the PC-SAFT EOS [20] as it is in good
agreement with our MD results.

To test the multiscale model, we consider a mixture of the two components argon
and methane, i.e. i ∈ {Ar,Me}. The structure of the corresponding molecules is sim-
ple enough to be approximated by basic Lennard–Jones particles, only the parameters
of the interaction potential need to be adapted.

Fig. 8 Two-dimensional multiscale simulation of two-component, two-phase flow model for an
argon–methanemixture.Agaseouswave consistingmostly of argon hits a liquid droplet that consists
primarily of methane. The upper part of each sub-figure shows ρMe, vMe for methane, and the lower
part ρAr, vAr for argon [25]
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The basic principle of the multiscale model does not change compared to the
single-component case—for all details we refer to [25].

In Fig. 8 two-dimensional simulation results are shown for a two-phase argon–
methane mixture. In it, a liquid droplet, consisting mostly of methane, is hit by a
vapour wave, that is composed mostly of argon. The droplet in turn deforms and is
pushed through the fluid domain, while evaporating methane into and accumulating
argon from the vapour atmosphere.

4 Diffuse-Interface Modelling

The SI approach from Sect. 3 is physically well-grounded as long as the interfaces
are separated. However, it comes with a severe disadvantage if interfaces meet. Coa-
lescence, splitting, formation or distinction events go along with singular curvature
states, rendering the original approach to fail. For such reasons, diffuse-interface
(DI) models have been suggested to describe the dynamics of a compressible fluid
with liquid-vapour phase transition. The DI models split into at least two sub-groups.
Whereas there are thewidely-used phase-fieldmodels for compressible liquid-vapour
flow (e.g. [3, 5, 29]), we favour a second-gradient approach which does not require
to bind an artificial order parameter to the density determining the phase state.
Prescisely, we rely on models of the Navier–Stokes–Korteweg (NSK) class. As in
Sect. 3 the phases are then uniquely determined by the density state (if temperature
is kept constant). Starting with the work of [14] there is by now a vast amount on lit-
erature for the NSK equations concerning analysis as well as numerics (see e.g. the
reviews [3, 30] for a partial overview). We will shortly review the classical NSK
system in Sect. 4.1, and then report on new model variants that have been obtained
within the SFB–TRR 75. In Sect. 4.2 we will then present numerical simulations for
the new model approaches.

This part uses material that has already been published in [8–11, 13, 15, 22, 28].

4.1 Navier–Stokes–Korteweg (NSK) Equations for
Two-Phase Flow

Wekeep the temperature fixed at Tref < Tcrit , such that a liquid and a vapour phase co-
exist (see Fig. 2 for the corresponding pressure p = p(ρ) omitting the temperature
dependence). For what follows, the unknowns will depend on a parameter ε > 0
governing the width of the diffuse interface. For ε → 0 we expect under appropriate
scaling of viscosity and capillarity parameters to recover certain solutions of models
in Sect. 3. As initial conditions for density and velocity we then set

ρε(·, 0) = ρ0, vε(·, 0) = v0 in �. (18)
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The Classical Navier–Stokes–Korteweg Equations. Let the capillarity parameter
γ = γ (ε) > 0 andTε be the viscous part of the stress tensor, given for the dynamical
shear viscosity η = η(ε), and the bulk viscosity λ = λ(ε) with η ≥ 0, 3λ + 2η ≥ 0
by

Tε
i j [v] := λ(∇ · v)δi j + 2ηDi j [v], Di j [v] = 1

2

(
vε
j,xi + vε

i,x j

)
, (19)

for i, j ∈ {1, . . . , n}. For the unknowns, density ρε = ρε(x, t) : � × [0, tend] →
(0, 1/b), velocity v = v(x, t) : � × [0, tend] → R

d , the classical NSK system
extends the Navier–Stokes system and reads as [14]

∂tρ
ε + ∇ · (ρεvε) = 0,

∂t (ρ
εvε) + ∇ · (ρεvε ⊗ vε + p(ρε)I) = ∇ · (Tε[vε]) + γρε∇�ρε,

(20)

in � × (0, tend). Besides the initial conditions (18), we fix, for n� ∈ S
d−1 being the

outer normal of ∂�, the boundary conditions

vε(·, t) = 0, n� · ∇ρε(·, t) = 0 on ∂�. (21)

This choice induces a 90◦-degree contact angle between the phases at the solid
wall boundary. The model is thermodynamically consistent, i.e. using (1), classical
solutions of (18), (20), (21) satisfy for all t ∈ (0, tend) and λ, η as above

d

dt

( ∫

�

1

2
ρε(x, t)|vε(x, t)|2 + ρε(x, t)ψ(ρε(x, t)) + γ

2
|∇ρε(x, t)|2 dx

)

≤ −
∫

�

2ηD[vε(x, t)] : D[vε(x, t)] + λ(∇ · (vε(x, t)))2 dx ≤ 0. (22)

The energy inequality (22) is the DI analogue to the SI energy inequality (11).
Let us consider static equilibrium solutions for (20). The generalized energy in (22)
reduces then to the van der Waals energy

FDI−NSK[ρε] :=
∫

�

ρε(x)ψ(ρε(x)) + γ

2
|∇ρε(x)|2 dx. (23)

In other words, the density component of the time-asymptotic limit of solutions of
the Eqs. (18), (20), (21) can be expected to minimize the functional FDI−NSK. For the
scaling γ (ε) = O(ε2), minimizers of (23) approach minimizers of the SI functional
FSI in (12) (see e.g. [27]). Additionally, with λ(ε), η(ε) = O(ε) one recovers for
ε → 0 solutions of Eqs. (4), (5), (8) with σ = 0 (see [13] for formal asymptotic-
analysis results in this direction including alternative scalings).

The Relaxed Navier–Stokes-Korteweg Equations. The classical NSK system
involves third-order derivatives, which makes it numerically quite complicated.
Moreover, the Euler-type operator in Eq. (20) is of mixed hyperbolic–elliptic type,
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i.e. the flux Jacobian has complex eigenvalues for densities in the spinodal region (see
Fig. 2). As one practical consequence, it is not possible to extend modern numerical
methods for the Navier–Stokes equations because these require the hyperbolicity.
Therefore, we aim at developing alternative formulations of the NSK system (20)
that avoid this difficulty. First, one can substitute the Laplacian in the momentum
balance of Eq. (20) by a convolution term (see [8, 28]) that relies on analytical argu-
ments from [9]. This approach necessitates the solution of an extra elliptic equation.
As a second approach we re-formulate the ansatz leading to a hyperbolic–parabolic
system that is solvable for any standard solver for the Navier–Stokes equations.

To be precise, for a relaxation parameter α > 0 we consider the relaxed NSK
system, given by

∂tρ
ε,α + ∇ · (ρε,αvε,α) = 0,

∂t (ρ
ε,αvε,α)+∇ · (ρε,αvε,α ⊗ vε,α + p(ρε,α)I) = ∇ · (Tε[vε,α])

+ αρε,α∇(cε,α − ρε,α),

βct−γ�cε,α = α(ρε,α − cε,α)

(24)

in � × (0, tend). Here, β = β(α) is a mobility parameter. The system (24) extends
the classical NSK system by a heat equation for the relaxation quantity cε,α =
cε,α(x, t) ∈ R. The unknown c should be close to ρε,α such that the initial conditions
are chosen as

ρε,α(·, 0) = cε,α(·, 0) = ρ0, vε,α(·, 0) = v0 in �. (25)

Note that Eq. (24) does not contain higher derivatives on ρε,α . The boundary condi-
tions from Eq. (21) with a Neumann condition on ρε,α transfer to

vε,α(·, t) = 0, n� · ∇cε,α(·, t) = 0 on ∂�. (26)

Local well-posedness of classical solutions for the Eqs. (24),(25),(26) can be derived
with standard contraction techniques. Beforewe go on to discuss the relation between
the relaxedNSKsystemand theNSKsystem (20) let us note that it is a straightforward
computation to verify that (24) is thermodynamically consistent. Classical solutions
(ρε,α, vε,α, cε,α) of Eqs. (24), (25), (26) obey for t ∈ [0, tend) the inequality

d

dt
Eε,α(t) := d

dt

( ∫

�

1

2
ρε,α(x, t)|vε,α(x, t)|2 + ρε,α(x, t)ψ(ρε,α(x, t))

+ α

2
(ρε,α(x, t) − c(x, t))2 + γ

2
|∇c(x, t)|2 dx

)

= −
∫

�

2ηD[vε,α(x, t)] : D[vε,α(x, t)]

+ λ(∇ · (vε,α(x, t)))2 + β
(
ct (x, t)

)2
dx

≤ 0.

(27)
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Static equilibrium solutions of Eq. (24) are provided by minimizers of the functional

FDI−rNSK[ρε,α, cε,α] :=∫

�

ρε,α(x)ψ(ρε,α(x)) + α

2

(
ρε,α(x) − cε,α(x)

)2 + γ

2
|∇cε,α(x)|2 dx. (28)

One observes that minima of the Van-der-Waals functional (23) are (formally) recov-
ered when considering the Korteweg limit α → ∞ for a sequence of minimizers of
Eq. (28) (see [34] for rigorous results, always keeping ε fixed). Likewise, we have
achieved analytical and numerical evidence that solutions of the relaxed NSK sys-
tem (24) with β = O(εα−1) converge for α → ∞ to solutions of the NSK system
(20) [10, 15, 28], that have been extended later in e.g. [19]. In turn, keeping α fixed
and scaling γ (ε) = O(ε2), λ(ε), η(ε) = O(ε) we conjecture that the SI limit ε → 0
equals the ones for Eqs. (23), (20), respectively.

4.2 Numerical Simulations for the Relaxed NSK System

Based on the analysis of the Korteweg limit α → ∞ for the relaxed NSK problem
(24)–(26) as described in Sect. 4.1, we view it as an approximation of the original
NSK problem (18), (20), (21). We have developed several numerical schemes to
solve the relaxed problems focusing on the Local Discontinuous-Galerkin method
that appears to be most flexible for this type of equations. For details we refer to [11,
22, 28]. Before we conclude this section with a series of numerical experiments let us
clarify why the relaxed system is more appropriate for the numerical discretisation.

First, the relaxed NSK system contains only second-order and local differential
operators as compared to the third-order system (20). Note that solving the additional
equation for the relaxation unknown cε,α is not a problem. This equation is a simple
linear heat equation, which can be solved extremely efficiently. But there is another
issue which makes Eq. (24) attractive. Neglecting the viscous part of the stress tensor
in Eq. (24) the momentum balance can be re-written in the form

∂t (ρ
ε,αvε,α)+∇ · (

ρε,αvε,α ⊗ vε,α + pα(ρε,α)I
) = αρε,α∇c, (29)

using the re-defined pressure

pα(ρ) := p(ρ) + α

2
ρ2. (30)

One readily observes that for α � 1, the function pα is monotonically increasing.
Then the entire Euler operator in Eq. (24) (, i.e., substituting p by pα in Eq. (24))
becomes hyperbolic. In turn the relaxed NSK system is accessible to standard meth-
ods for hyperbolic-parabolic equations ofNavier–Stokes type. In the sequelwe report
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on two examples from [22], which have been computed by an extension of the CFD-
code FLEXI [24].

Merging ofmultiple droplets, Ostwald ripening, and trend to equilibrium (from
[22]). For the first example, we start in t = 0.0 with an ensemble of droplets in
� = (0, 1)2, as displayed in the upper-left box in Fig. 9. The initial velocity vanishes
and for the parameters in Eq. (24) we make the choices

λ = −2

3
ε, η = ε, β = εα−1, γ = ε2, ε = 0.01, α = 100.

As pressure, the van derWaals function (3) is chosenwith a = 1/b = 3, R = 8/3 and
Tref = 0.85. The results of the simulation can be seen in Fig. 9. One observes several
phase transition effects. Smaller droplets merge and unite to a bigger one which is

Fig. 9 Evolution of a droplet ensemble and trend to (spherical) equilibrium (Source [22], reprinted
with permission from Elsevier under No. 5039260334246)
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driven into spherical (quasi-)equilibrium. Notably, there is also Ostwald ripening
taking place: droplets get smaller and vanish without contact to other droplets. For
this slow process the liquid mass is transported through the surrounding low-density
vapour phase. For the end of the simulation, one sees, that a spherical droplet remains,
confirming the discussion of equilibria in Sect. 4.1.

Head-on collisions and discrete energy dissipation (from [22]). For the second
example in � = (0, 1)3, we take all parameters as in the first one. The initial density
field is arranged, such that there are twodropletswith densityρl in a vapor atmosphere
of density ρv , see the upper-left box in Fig. 10. The initial velocity is chosen such that
the droplets are forced together. For the exact set-up we refer to [22, Sect. 4.3.2.].
The resulting collision scenario is shown in Fig. 10, where the contour surfaces for
the mean value of ρl and ρv are plotted. The two droplets merge and result in one
squashed droplet. This droplet oscillates, and finally evaporates completely. It is
remarkable, that for this numerical simulation, there holds a discrete analogue of the
energy decay as expressed in the relation (27). Its time evolution is tracked in Fig. 11.
We employed a third-order version of the spectral element approach in FLEXI [24],
with a spatial resolution of 643 elements, resulting in 2563 degrees of freedom. For
a complete study of head collisions with its various topological droplet scenarios we
refer to [22].

Fig. 10 Evolution of two colliding droplets. The figures display representative contour surfaces of
the density field at different times (Source [22], reprinted with permission from Elsevier under No.
5039260334246)
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Fig. 11 Time evolution of
the discrete energy Eε,α(t)
for different collision
velocities vrel. The plot at the
top corresponds to the
simulation shown in Fig. 10.
Just as for the exact solution
(see (27)), the discrete
energy in the numerical
simulations decreases
monotonically. (Source [22])

5 Conclusions

In the course of the project, we have developed novel approaches to model and
simulate two-phase flows.
For the SI modelling approach, an analytical two-phase solver was developed, that is
applicable to a wide range of kinetic closure relations. Furthermore, a newmultiscale
model was designed, that does not need prescribed closure relations at the interface.
Instead, the phase boundary dynamics are determined from MD simulations on a
more fundamental level. The versatility of this approach is proven by the fact that
even multi-component flow can be simulated.
Within theDImodelling framework,we considered aNSK-system,which, in its basic
form, is quite expensive to solve. Thus, we proposed and investigated alternative
formulations of the system, which are more efficient to simulate.
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