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Abstract. Machine learning has revolutionized every facet of human
life, while also becoming more accessible and ubiquitous. Its prevalence
has had a powerful impact in healthcare, with numerous applications and
intelligent systems achieving clinical level expertise. However, building
robust and generalizable systems relies on training algorithms in a cen-
tralized fashion using large, heterogeneous datasets. In medicine, these
datasets are time consuming to annotate and difficult to collect centrally
due to privacy concerns. Recently, Federated Learning has been proposed
as a distributed learning technique to alleviate many of these privacy con-
cerns by providing a decentralized training paradigm for models using
large, distributed data. This new approach has become the defacto way of
building machine learning models in multiple industries (e.g. edge com-
puting, smartphones). Due to its strong potential, Federated Learning is
also becoming a popular training method in healthcare, where patient
privacy is of paramount concern. In this paper we performed an extensive
literature review to identify state-of-the-art Federated Learning applica-
tions for cancer research and clinical oncology analysis. Our objective
is to provide readers with an overview of the evolving Federated Learn-
ing landscape, with a focus on applications and algorithms in oncology
space. Moreover, we hope that this review will help readers to identify
potential needs and future directions for research and development.
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Highlights

• Federated learning (FL) has the potential to become the primary learning
paradigm for distributed cancer research, but specific hurdles have slowed its
adoption in the clinical setting.

• Labeled medical data is still extremely scarce; this problem also affects feder-
ated learning. A plethora of cancer datasets exist (e.g. TCIA, TCGA, Gene
Expression Omnibus, etc.), but few of them are labeled for supervised learn-
ing. The ones that are labeled (i.e., the Wisconsin Breast Cancer dataset -
for classification, the BraTS dataset - for image segmentation, the Kaggle
datasets for skin cancer) are the ones most commonly seen being used in FL.

• The largest majority of papers we found use cancer datasets for benchmarking
purposes: very few federated learning works solve an actual clinically relevant
question. Many of the papers we reviewed propose new software frameworks,
and virtually none follow-up with a clinical trial. This leaves FL absent from
the field of clinical oncology, based on our literature review.

• The compliance and security aspect of healthcare still poses the largest hur-
dle. Commercial entities such as EHR vendors (e.g., Epic Systems, Cerner,
Meditech, Allscripts, etc.), PACS vendors (e.g., GE, Philips, Hitachi, Siemens,
Canon, etc.), and other hardware manufacturers (e.g., Nvidia, Intel, etc.) seem
to be the best positioned to start pulling together resources, data, and models
that use FL to improve patient outcomes.

1 Introduction

Over the past decade, machine learning has witnessed rapid growth due to the
proliferation of deep learning. Fueled by large-scale training databases [1], these
data driven methods have gained significant popularity. Thanks to rapidly evolv-
ing architectures, (e.g., AlexNet [2], GoogLeNet [3], ResNet [4]) convolutional
neural networks (CNNs) have demonstrated consistent improvement on difficult
computer vision tasks including classification, object detection, and segmenta-
tion. Other areas of machine learning, such as natural language understand-
ing, recommendation systems and speech recognition, have also seen outstand-
ing results in their respective applications through the introduction of novel
approaches such as transformers [5,6], DLRM [7] and RNN-T [8].

Such advancements in artificial intelligence and machine learning have
already disrupted and transformed healthcare through applications ranging from
medical image analysis to protein sequencing [9–12]. And yet, while there are
over 150 AI-based interventions that are approved by the FDA (an updated
list with a focus on radiology can be reviewed at https://aicentral.acrdsi.org),
many open questions persist about how to best deploy existing AI solutions in
healthcare environments [13]. In addition to getting existing solutions deployed,
there are many challenges that must be overcome during the training process.
A consistent bottleneck has been the need for large amounts of heterogeneous
data to train accurate, robust and generalizable machine learning models. How-
ever, most healthcare organizations rarely carry data in such large quantities,

https://aicentral.acrdsi.org
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especially in the case of homogeneous populations or rare diseases with scarce
amounts of cases.

A common way data scientists attempt to overcome this issue is by first
pre-training a model on large, generic datasets (e.g., ImageNet [1]), and then
fine-tuning them on specific medical tasks of interest. However, even with this
approach, underperformance or generalizability issues [14] may persist. This is
often the case for medical tasks where there exists a large domain shift between
medical data (e.g., brain MRI, abdomen CT, genomics) and general purpose
public datasets such as ImageNet [1], MIMIC-CXR [15], ChexPert [16], etc.
More recently, Self Supervised Learning (SSL) approaches have demonstrated
promising results in performance using large unlabelled datasets, thus alleviating
the need for annotations; however, even with such SSL approaches, the need for
access to large amounts of heterogeneous medical data is still necessary to train
robust medical ML algorithms [17,18].

In addition to large, heterogeneous datasets, the other most common bot-
tleneck for ML algorithm training is computational power. The need for access
to considerably efficient computing resources (e.g., processing power, memory,
storage space) led to the field of distributed systems [19]. Within this area,
distributed machine learning has evolved as a setting where algorithms are
implemented and run on multiple nodes, leveraging larger amounts of data and
computational resources, thus improving performance and efficiency. The core
concept of distributed learning lies in the parallelization of algorithms across
computational nodes [19], but these processes are run without considering any
constraints that might need to be imposed by these nodes (e.g., considering that
data used across these nodes comes from different distributions). Because of
this, the majority of practical applications in collaborative learning fail to keep
the assumption of Independent-and-Identically-Distributed (IID) data across
nodes, such as user data from mobile devices or healthcare data from differ-
ent geographic and demographic properties. Federated Learning emerged as a
distributed learning paradigm that takes into account several practical chal-
lenges, and differentiates itself from traditional distributed learning settings, as
noted by Google [20], by addressing four main themes: statistical heterogeneity
of data across nodes, data imbalance across nodes, limited communication in
the distributed network (e.g., loss of synchronization, variability of communica-
tion capabilities), and the possibility of a large number of nodes relative to the
amounts of data.

In the Federated Learning setting, a “federation” of client sites with their
own datasets train models locally and then send their updates to a server. The
weights are the only information passed over lines of communication aiming at
preserving privacy. The model weights are then aggregated in the server from
the client updates, and the resulting aggregated model weights are sent back
to the clients for the next round of training. Because of its strong potential to
preserve privacy with client sites, such as hospitals, by keeping their data in-
house, Federated Learning has seen a rise in popularity over the last several
years, especially in the medical domain.
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Specifically, large-scale projects have been developed for facilitating collabo-
ration of medical institutions around the globe with the aid of Federated Learn-
ing, in both academic and industrial areas [21]. Trustworthy Federated Data
Analytics [22], German Cancer Consortium’s Joint Imaging Platform [23], and
the Melloddy project [24] were developed to improve academic research in various
healthcare applications by combining multiple institutions’ efforts. In industry,
the HealthChain project [25] aims to develop and deploy a Federated Learn-
ing framework across four hospitals in France to help determine effective treat-
ments for melanoma and breast cancer patients. Additionally, the Federated
Tumour Segmentation initiative (FeTS) [26,27] is an international collaboration
between 30 healthcare institutions aimed at enhancing tumor boundary detec-
tion, for example, in breast and liver tumors. In another international effort [28],
researchers trained ML models for mammogram assessment across a federation
of US and Brazilian healthcare providers.

In light of all these efforts, and given the growing adoption of Federated
Learning in healthcare, we believe that the cancer research community is lacking
a much needed review of the current state-of-the-art. Therefore, with this review
we aim at providing an comprehensive list of Federated Learning algorithms,
applications and frameworks proposed for cancer analysis. We envision that this
review can function as a quick reference for Federated Learning’s applications in
cancer and oncology, and provide a motivation for research in specific directions.

The review is structured as follows. In Sect. 2 we give an overview of Fed-
erated Learning to introduce the reader to related concepts. The main body of
this review is found in Sect. 3, which we begin by providing the search query
along with the inclusion/exclusion criteria for papers. After this, we provide a
summary of the current literature for: 1) Federated Learning algorithms in can-
cer analysis, 2) Federated Learning frameworks developed for cancer research,
and 3) Algorithms developed to preserve privacy under Federated Learning set-
tings. Finally, we conclude this review by offering our thoughts on the needs and
potential future directions for Federated Learning in the cancer research and
clinical oncology space.

2 Federated Learning Overview

Federated Learning was first introduced as a decentralized distributed machine
learning paradigm by Google [20]. The standard Federated Learning paradigm
that is outlined in this paper is as follows: i) Multiple client sites, each containing
a local dataset that remains at the client site during the entirety of training,
connect to a global server; ii) A global model is initialized in the global server,
and the weights from this global model are passed to each of the local client sites;
iii) Each client site trains a local version of the global model on their respective
dataset, and then sends the updated model weights to the global server; iv) The
global server updates the global model by aggregating the weights it receives
from the local clients, and then passes a copy of the updated global model to
each of the clients. The process that occurs between steps i–iv is called a round,
and during federated training, steps i–iv are repeated for multiple rounds until
the global model converges to a local minima. The most important aspect of
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this process is step iii. During this step, all data used for training is kept strictly
on the local clients’ machines. The only information that is passed between the
clients and the server are weight updates. This enables multiple sites to pool
their data for training of a global model while still maintaining data privacy.
During step iv, the authors use an algorithm that they coin federated averaging
to aggregate the weights. In this algorithm, each weight updated is weighted
by the size of the client dataset from which it comes, relative to the size of the
other client datasets. The aforementioned clients-server topology is known as
Centralized Federated Learning. One other topology has been found in research
[29], Decentralized Federated Learning, in which clients communicate peer-to-
peer without a central server.

Federated Learning can be broken down into three main subtypes [30]: Hor-
izontal Federated Learning, Vertical Federated Learning, and Federated Trans-
fer Learning. All three of these subtypes follow the core Federated Learning
paradigm, which is decentralized data pooling through the use of weight sharing
and aggregation between multiple clients and a global server. They are distin-
guished by the way in which their data sources differ. In Horizontal Federated
Learning, every client site has different users in their data, but all of these users
share similar features that are extracted by the networks. In Vertical Federated
Learning, users are the same across all client sites, but each client sites’ data
consists of different features, so the same user will be analyzed through dif-
ferent modalities depending on the client site. In Transfer Federated Learning,
the client sites don’t have users or features in common, but the tasks in their
datasets are still marginally related, so pooling them together typically leads to
more robust network training. For a more general review of Federated Learning,
readers are referred to [29,31,32]. Here we also list common Federated Learning
platforms: OpenFL [33], PySyft1, Tensorflow-Federated2, FedML [34], Flower3,
NVIDIA Clara4, Personal Health Train (PHT5).

3 Review

3.1 Search Design

The literature review was conducted in October 2021 by searching Google
Scholar for papers published between 2019 and 2021 that matched the query:
federated AND (cancer OR cancers OR tumor OR tumors OR oncology).

We chose this time period for our search query due to the fact that Google
didn’t publish their seminal Federated Learning paper [35] until 2017, so we
didn’t see a large amount of medical applications until than. A visual represen-
tation of the split of the material reviewed is presented in Fig. 1 and our review
process is shown in Fig. 2.
1 https://github.com/OpenMined/PySyft.
2 https://medium.com/tensorflow/introducing-tensorflow-federated-a4147aa20041.
3 https://flower.dev/.
4 https://developer.nvidia.com/clara.
5 https://pht.health-ri.nl/.

https://github.com/OpenMined/PySyft
https://medium.com/tensorflow/introducing-tensorflow-federated-a4147aa20041
https://flower.dev/
https://developer.nvidia.com/clara
https://pht.health-ri.nl/
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Through our review process we identified two main categories of Federated
Learning applications related to cancer and oncology: whether the study was
designed exclusively with cancer as its intended use-case, or whether cancer
datasets were used for benchmarking a general method (Fig. 1-Category). Every

Fig. 1. Split of the papers reviewed: Category and Sub-Category represent the
paper scope. Task refers to the machine learning task, while Data Type and Cancer
Type relate to the FL input data.

Fig. 2. A visual representation of our process for including papers for this review.
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category is also further divided into three sub-categories: the first one contains
the Federated Learning feasibility studies and methods that have been applied
to the analysis of cancer datasets (i.e., ’Framework’ in Fig. 1-Sub-Category).
The second contains Federated Learning frameworks proposed or developed for
’Cancer Analysis’, although almost all fail to secure relevant and novel cancer
datasets and hence resort to open-access data. Finally, the third sub-category
contains Federated Learning studies that address and analyze ’Privacy’ of cancer
data and computation.

3.2 Federated Learning Algorithms

Algorithms Designed for Cancer: Based on our literature search we iden-
tified that Federated Learning has been explored in many cancer studies, where
the aim is either comparing Federated Learning to conventional centralized data
analysis approaches in terms of performance, or developing novel methods to
solve various challenges faced when using Federated Learning (e.g., domain shift,
label deficiency, ...). In the most common training scenario, researchers simulate
a Federated Learning environment by taking an existing dataset and dividing it
into subsets using a partitioning scheme, where each subset represents a client
in a Federated Learning group.

Federated Learning has been applied on detecting brain tumors in several
studies [36–39]. In [36], the authors used the ’Brain MRI Segmentation’ dataset
from Kaggle for low-grade glioma segmentation [40], dividing the dataset into
5 “client” sites. The authors designed a network that achieves state-of-the-art
results on the task of glioma segmentation, and those results remained consistent
when they applied it to a Federated Learning setting. In [37], two separate
Federated Learning environments for brain tumor segmentation were simulated
using the BraTS dataset [41]. In both environments, the Federated Learning
model was compared against two other collaborative learning techniques, and
outperformed both. It also achieved nearly 99% of the DICE score obtained by
a model trained on the entire dataset with no decentralization. Similarly, [38]
demonstrated comparable performance between federated averaging and data
sharing for brain tumor segmentation on the BraTS dataset [41]. Sheller et al.
also showed how Federated Learning improves the learning of each participating
institution both in terms of performance on local data and performance on data
from unseen domains. In [39], the authors presented a comparison between a
Federated Learning approach and individual training of a 3D-Unet model to
segment glioblastoma in 165 multi-parametric structural MRI (mpMRI) scans.
The Federated Learning approach is shown to yield superior quantitative results.

Additional studies have explored Federated Learning on a variety of other can-
cers, including less common types. Some of the types covered in the uses cases
we reviewed included: skin cancer [42,43], breast cancer [44,45], prostate can-
cer [46], lung cancer [47], pancreatic cancer, anal cancer, and thyroid cancer. [42]
used the ISIC 2018 dataset [48] to simulate a Federated Learning environment for
classifying skin lesions. They first partitioned the dataset among multiple mock
client sites, then used a Dual-GAN [49] to augment each clients’ dataset. A clas-
sifier was then trained in a federated environment on the augmented datasets.
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In [43], the authors use the ISIC 2019 Dermoscopy dataset [48] to demonstrate
proof-of-concept for a skin lesion detection device trained using federated learn-
ing. In Roth et al. [44], a real-world experiment of federated breast density classi-
fication was performed using NVIDIA’s Clara framework. The authors developed
a breast density classification model with mammography data from 7 different
institutions. The global federated model showed significant improvements over the
locally trained models when validated against their own data as well as external
site validation. In [50] and [45], the authors demonstrate the ability to successfully
apply vertical federated learning (VFL) to cancer analysis, using VFL to create
a survival prediction model for breast cancer. [46] performed prostate image seg-
mentation in a federated setting. They showed how Federated Learning improves
model performance on local datasets. [47] described a large experiment on 20K
lung cancer patients across 8 institutes and 5 countries. They trained a logistic
regressor on these distributed data. To train the LR coefficients in a distributed
manner they used the Alternating Direction Method of Multipliers (ADMM). The
data included tumor staging and post-treatment survival information.

In [51], the authors tackle the task of pancreas segmentation for patients with
pancreatic cancer. Advanced tools to correctly identify pancreatic cancer are
extremely important since pancreatic cancer is normally only detectable once it
is late-stage, leading to extremely low survival rates [52]. They used two datasets
obtained from hospitals in Japan and Taiwan to simulate a Federated Learning
environment. The resulting model was able to better identify pancreas from
both datasets than models trained only on one site and validated on the other.
Concluding with similar results, [53] tested several deep learning architectures
for federated thyroid images classification, and Choudhury et al. [54] used data
from 3 different sites to create a prediction model for patients with anal cancer,
an extremely rare form of cancer, who received radical chemoradiotherapy. The
large and diverse group of examples given here demonstrates the robustness and
versatility of the Federated Learning paradigm, as well as its ability to improve
automated analysis on more rare cancer cases [51,53,54].

In addition to having many use cases with specific cancer types, Federated
Learning’s applications in genomics have also been a popular focal point for
research [55,56]. [55] performed federated gene expression analysis on breast
cancer and skin cancer data. [56] adapted the Cox proportional hazards (PH)
model [57] in a Federated Learning setting for survival analysis. Noting that
adapting this method in a distributed manner is non-trivial due to its non-
separable loss function, they implemented a discrete time extension of this model
with a separable loss function, and validated their method on the Genome Atlas
Data (TCGA)6, showing comparable performance to the centralized approach.

While the bulk of the papers we’ve reviewed so far focus purely on design-
ing federated algorithms that can predict different aspects of cancer with high
degrees of accuracy, a large sub-group of the papers in our review also aim at
addressing challenges federated learning currently faces. For many papers, that
challenge is either data heterogeneity [58–65], a common barrier in the medi-

6 https://www.cancer.gov/tcga.

https://www.cancer.gov/tcga
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cal field where patients can be subject to different geographic and demographic
conditions, or label deficiency [66,67], where it is not always guaranteed that
clients’ sites will have access to labeled data.

Addressing label deficiency, [66] introduced a new Federated Semi-Supervised
Learning (FSSL) approach for skin lesion classification. Their method is inspired
by knowledge distillation [68], where they model disease relationships in each client
by a relation matrix calculated from the local model output, then aggregate the
relation matrices from all clients to form a global one that is used locally in each
round to ensure that clients will have similar disease relationships. In [67], the
authors proposed a semi-supervised Federated Learning method, FedPerl. The
method was inspired by peer learning from educational psychology and ensemble
averaging from committee machines and aims to gain extra knowledge by learning
from similar clients i.e. peers. This encouraged the self-confidence of the clients by
sharing their knowledge in a way that did not expose their identities. Experimen-
tal setup consisted of 71,000 skin lesion images collected from 5 publicly available
datasets. With little annotated data, FedPerl outperformed state-of-the-art FSSL
methods and the baselines by 1.8% and 15.8%, respectively. It also generalized
better to an unseen client while being less sensitive to noisy ones.

Another challenge that frequently occurs in Federated Learning is domain
shift, which is caused by heterogeneity in datasets due to different scanners and
image acquisition protocols at different sites. Many papers modify the original
FL algorithm to account for this. Jimenez et al. [58] designed a novel weight
aggregation algorithm designed to address the problem of domain shift between
data from different institutions. This study utilized one public and two private
datasets, and the final global model outperformed previous Federated Learn-
ing approaches. Similarly, [59] introduced a new weight aggregation strategy
and showed its efficiency on pancreas CT image segmentation. [60] built on
the work of [51] by developing a Federated Learning algorithm that can learn
multiple tasks from heterogeneous datasets, making use of a training paradigm
the authors call dynamic weight averaging (DWA). Specifically, they trained
a model on the binary-classification problem of segmenting the pancreas from
background as well the multi-label classification problem of segmenting healthy
and tumorous pancreatic tissue and background. During the global aggregation
step, the weight value for each client update was adjusted based on the variation
of loss values from the previous rounds. DWA outperforms federated averag-
ing (FedAvg) and FedProx [69], another federated weight aggregation scheme
designed to handle heterogeneous networks.

In Guo et al. [61], the authors addressed the problem of domain shift while
applying their algorithm to the task of MRI reconstruction, using 4 different
MRI datasets; FastMRI, BraTS, IXI, and HPKs. Their algorithm, Federated
Learning-based Magnetic Resonance Imaging Reconstruction with Cross-site
Modeling (FL-MRCM), uses an adversarial domain identifier to align latent fea-
tures taken from the encoders of 2 different sites, avoiding sharing of data while
taking advantage of multiple sites’ data. In all experiments, FL-MRCM came
closest to reaching the upper-bound score of training a network on the entire
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dataset. In the same space, to alleviate domain shift performance impact, [62]
proposed a new method to train deep learning algorithms in Federated Learning
settings based on the disentanglement of the latent space into shape and appear-
ance information. Their method only shared the shape parameters to mitigate
domain shifts between individual clients. They presented promising results on
multiple brain MRI datasets.

Researchers in [63] proposed a method to address domain shift issues in terms
of performance and stability based on sharing the parameters of batch normal-
ization across clients but keeping the batch norm statistics local. Given that
these statistics are not shared with the central server they argued that there
is better protection from privacy attacks. They demonstrated their algorithm
on breast histopathology image analysis (Camelyon 20167 and Camelyon 20178

datasets). In [64] a key-problem of digital pathology is addressed via federated
learning: stain normalization across multiple laboratories and sites. They apply
GANs in a Federated Learning environment to solve the problem of color nor-
malization that arises due to different staining techniques used at different sites.
Here, a central discriminator is trained to be extremely robust by making use of
several decentralized generators.

Domain shift in Federated Learning has been also studied in Neural Archi-
tecture Search (NAS). [65] applied AutoML, a NAS approach, in a federated
setting for prostate image segmentation. To address domain shift, they trained
a ’supernet’ consisting of several deep learning modules in a federated setting,
then personalize this supernet in each client by searching for the best path along
the supernet components according to each client.

General Algorithms Benchmarked on Cancer Datasets: Cancer datasets
are also commonly used as benchmarks for evaluating general Federated Learning
approaches. BraTS [41], HAM10000 [70], Wisconsin Breast Cancer dataset [71],
and TCGA9 were the most common datasets used in the papers we sourced for
this review.

The BraTS dataset is an imaging dataset used to train computer vision mod-
els for brain tumor segmentation. It is frequently used as a benchmark for state-
of-the-art image analysis algorithms. Chang et al. [72] performed a Federated
Learning experiment on BraTS [41] using GANs in a similar setting to [64]. They
use several decentralized discriminators, placed at mock client sites, to train a
centralized discriminator at the client. Receiving synthetic images from a large
amount of generators allowed the authors to augment the dataset in a decen-
tralized fashion and train the discriminator to achieve very high accuracy. In
some cases the classifier was able to outperform non-Federated Learning trained
models, using Area Under the Curve (AUC) as a performance metric. In [73],
the authors address the problem of domain shift while benchmarking on BraTS.
They partition the network, and place a copy of each partition at each client
site. They then place the rest of the network on a centralized server. Lower-level
features taken from each client site are aggregated and passed as input to the

7 https://camelyon16.grand-challenge.org/.
8 https://camelyon17.grand-challenge.org/.
9 https://www.cancer.gov/tcga.

https://camelyon16.grand-challenge.org/
https://camelyon17.grand-challenge.org/
https://www.cancer.gov/tcga
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central network, which learns to be robust against domain shift. This paradigm
leads to extremely strong training results, especially as the domain shift becomes
more pronounced.

The HAM10000 dataset is a multi-source dermatoscopic image dataset of
pigmented lesion used for skin lesion detection and segmentation. Similar to
BraTS, it frequently appears in many computer vision applications, such as [74],
where the authors proposed a new server aggregation method addressing sta-
tistical heterogeneity that may be present between the participating datasets.
The weights are calculated to be inversely proportional to the difference between
the corresponding client model distribution and the global model distribution.
They validated their new method on several benchmarks, including HAM10000
[70]. In [75] a new Federated Learning strategy was introduced for tackling non
iid-ness in data. Training one epoch on each local dataset was done over sev-
eral communication rounds. The approach was evaluated on various datasets,
including HAM10000, and showed superior results to similar methods, such as
FedAVG.

The Wisconsin Breast Cancer dataset [71] is another versatile dataset that
is used for benchmarking many different classification algorithms. It is a simple
dataset that is easy to integrate into most ML workflows, consisting of positive
and negative breast cancer samples, and several numerical features describing
those samples. Salmeron et al. [76] used this dataset to simulate a Federated
Learning environment. The authors then used this environment to train a Fuzzy
Cognitive Map (FCM) [77] classifier that outperformed clients that were trained
individually as well as a model trained on the entire dataset. Researchers in
[78] extended SQL-based training data debugging (RAIN method) for Federated
Learning. They demonstrated this extension on multiple datasets, including the
Wisconsin Breast Cancer dataset [71]. [79] introduced a new Federated Learning
strategy that showed comparable performance to federated averaging while giv-
ing two benefits: communication efficiency and trustworthiness, via Stein Varia-
tional Gradient Descent (SVGD) which is a non-parametric Bayesian framework
that approximates a target posterior distribution via non-random and interact-
ing particles. They performed extensive experiments on various benchmarks,
including binary classification of breast cancer data. [80] introduced a new fed-
erated setup that requires less communication costs and no centralized model
sharing; clients learn collaboratively and simultaneously without the need of syn-
chronization. They validated their setup, termed gradient assisted learning, on
various datasets including breast cancer, and showed comparable performance
with state-of-the-art methods but with less communications costs. [81] investi-
gated how to mitigate the effects of model poisoning, a scenario where one or
more clients upload intentionally false model parameters (or are forced to do
so, e.g. by being hacked). They introduced new model-poisoning attacks, and
showed that the methods of mitigating the effects of these attacks still need
development. In [82], a method for building a global model under the Federated
Learning setting was proposed by learning the data distribution of each client
and building a global model based on these shared distributions.
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The Cancer Genome Atlas (TCGA) is a public consortium of cancer data cre-
ated for the purpose of benchmarking healthcare analysis algorithms. In [83] a
method was proposed for matrix factorization under Federated Learning settings.
Specifically, they extended the FedAvg method to allow for robust matrix factor-
ization. They benchmarked this method on the Cancer Genome Atlas (TCGA).
Benchmarking on the same data, [84] introduced two Federated Learning algo-
rithms for matrix factorization and applied them to a data clustering task.

3.3 Federated Learning Frameworks

Frameworks Developed for Cancer Analysis: In [85], the authors designed
a decentralized framework which they coined Braintorrent. This framework
removes the global server from the traditional FL paradigm, and instead allows
sites to communicate their weights with one another directly. The framework was
tested on the task of whole-brain segmentation, and demonstrates impressive
results, outperforming traditional Federated Learning with a global server and
achieving performance close to that of a model trained using pooled data. [86]
designed an open source framework to facilitate analysis of local data between
institutions in order to create a model for oral cavity cancer survival rates using
data from multinational institutions. [87] introduced a framework, GenoPPML,
that is a combination of Federated Learning and multiparty computation. The
framework utilizes differential privacy and homomorphic encryption for guaran-
teeing preserved privacy, and it was mainly built for regression for genomics data.
In [88] the authors proposed a framework to train on skin lesion images using
IoT devices (smartphones). They further utilized Transfer Learning in this Fed-
erated Learning framework to circumvent the need of large, labelled data. The
German National Cancer Center, an initiative whose primary goal is to foster
multiclinical trials for development of improved diagnosis and treatment tools
for cancer, recently released the Joint Imaging Platform (JIP) [89], a platform
designed to build a foundation for Federated Learning scenarios. JIP provides
containerized tools for Federated Learning, and many institutions have com-
mitted to testing JIP for use cases in the coming years. [90] provides another
framework with multiple objectives and use cases. Here, the authors proposed a
“marketplace” approach to federated learning: it provides the infrastructure and
other computational resources for 3rd party applications to run in a Secure Mul-
tiparty Computation system; there, for sake of example, multiple computational
tasks related to cancer research (from data normalization to Kaplan-Mayer anal-
ysis and COX regression) are treated as “Apps” and deployed into a secure and
distributed environment.

General Frameworks: Because decentralized analysis of medical data is one of
the most natural use cases for federated learning, cancer datasets are frequently
included when benchmarking general federated learning frameworks. [91] intro-
duced a framework for federated meta learning; a library for fast and efficient
algorithm selection. They evaluated a prototype on various datasets including
breast cancer dataset, showing better efficiency of their framework in finding the
best algorithm for a given dataset against the ordinary grid search approach. In
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[92], the authors design a classification framework for breast cancer that incor-
porates differential privacy. Similarly, [50] uses the Wisconsin Breast Dataset as
once of their use cases for a privacy-verification FL framework.

3.4 Privacy Protection in Federated Learning Settings

One important benefit of Federated Learning for healthcare is its potential to
mitigate privacy concerns. Although Federated Learning allows for multiple sites
to train ML models on their data safely, there are still ways that this paradigm
can be exploited. One very common exploitation is that dataset labels can be
reconstructed from the gradients used during model training [93,94].

In this section we discuss research that addresses privacy concerns of Feder-
ated Learning in cancer. We present papers that either benchmark their privacy-
concerned investigations and methods on cancer data, or those which study Fed-
erated Learning privacy exclusively for cancer applications.

Privacy Methods for Cancer: In [95], the authors proposed a combination
of meta-heuristic methods to operate the whole mechanism of aggregation, sepa-
ration of models as well as evaluation. They analyzed the results in terms of the
accuracy of the general model as well as for security against poisoning attacks.
[96] implemented differentially privacy SGD training in a cyclic Federated Learn-
ing setting of two clients, and did an extensive study on the trade-off between
privacy and accuracy. They achieved an acceptable trade-off between accuracy
and privacy, and tested their experiments on classification of tumorous genes.
In [97] the authors benchmarked various differential privacy methods against
skin lesion classification in Federated Learning settings. [98] demonstrated an
approach to prevent access to intermediate model weights by using a layer for
privacy protection. The aggregation server prevented direct connections between
hosts so that interim model weights cannot be viewed during training.

In [99], the authors studied the effect that two different techniques to preserve
privacy had on a Federated Learning environment: injecting samples with noise
or sharing only a fraction of the model’s weights. Using the BraTS dataset [41] for
brain tumor segmentation, they found that leaving out up to 40% of the model’s
weights only affected accuracy by a negligible amount. Using the BraTS dataset
[41] the authors in [100] extended Private Aggregation of Teacher Ensembles
(PATE) [101] which is used as an aggregation function using the teacher-student
paradigm to enable privacy preserving training: teacher models are trained on
private datasets and the student model (global) is trained on a public dataset
using those teacher models. This extension applied a dimensionality reduction
method to increase sensitivity for segmentation tasks. They validated their app-
roach on three (2) common dimensionality reduction methods to assess differen-
tial privacy: PCA, Autoencoder and Wavelet transforms. [102] used noise injec-
tion as a successful privacy preservation technique for analyzing gigapixel whole
slide images. [103] created a hybrid environment for encryption of medical data
using blockchain technologies, Federated Learning, and homomorphic encryp-
tion. Homomorphic encryption is also used in [104], where it is leveraged to show
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secure and accurate computation of essential biomedical analysis tasks, including
Kaplan-Meier survival analysis in oncology and genome-wide association studies
(GWAS) in medical genetics. The authors demonstrate this through the use of
their framework, FAMHE. GWAS data was also at the center of the SAFETY
framework [105], where a hybrid deployment of both homomorphic encryption
and secure hardware (Intel SGX) provides a good trade-off in terms of efficiency
and computational support for secure statistical analysis. Rrajotte et al. [106]
developed a framework called FELICIA (Federated Learning with a Centralized
Adversary), which uses the PrivGAN architecture [107] to make use of data from
multiple institutions and create higher-quality synthetic training data without
sharing data among sites. [108] used differential privacy and demonstrated how
the performance was still comparable to the centralized experiments despite the
privacy-performance trade-off. They also showed empirically how the model with
differential privacy became immune against adversarial attacks, and evaluated
all their approaches on liver image segmentation.

General Privacy-Preserving Methods Benchmarked on Cancer Data
sets: [109] introduced Federboost, a Federated Learning method for gradient
boosting decision trees (GDBT). Their method can be applied for vertical and
horizontal Federated Learning, and is characterized by the ease of ensuring secure
model sharing. They demonstrated security and comparable performance to cen-
tralized settings using various datasets including breast cancer gene data from
TCGA. [110] introduced a new Federated Learning approach for mitigating pos-
sible privacy breaches when sharing model weights. Their method was evaluated
on various benchmark datasets including breast cancer data, and showed com-
parable performance to the conventional Federated Learning approaches while
being more robust to gradient leaks, i.e. more privacy-preserving. [111] devel-
oped a homomorphic encryption framework on FPGA, aiming to accelerate the
training phase under Federated Learning with the most possible encryption.
They demonstrated performance improvement in speed benchmarking on mul-
tiple datasets including the Wisconsin Breast Cancer dataset.

In [112], the authors proposed attacks for two machine learning algorithms,
logistic regression and XGBoost, in a Federated Learning setting. In this study
the adversary does not deviate from the defined learning protocol, but attempts
to infer private training data from the legitimately received information. In [113],
the authors proposed an approach, self-taught Federated Learning, to address
the limitations of current methods when handling heterogeneous datasets (e.g. a
slow training speed, impractical for real-world applications). It exploited unsu-
pervised feature extraction techniques for Federated Learning with heteroge-
neous datasets while preserving data privacy. In [114] a method is proposed to
identify malicious poisoning attacks by having the server itself bootstrap trust.
Specifically, the server collects a small, clean training dataset (called the root
dataset) for the learning task and maintains a model (called server model) based
on this to bootstrap trust. In each iteration, the server first assigns a trust score
to each local model update from the clients, where a local model update has
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a lower trust score. They benchmarked their method against CH-MNIST; a
medical image classification dataset consisting of 5,000 images of histology tiles
collected from colorectal cancer patients. Where privacy is concerned, quantum
cryptography is probably the next frontier of the security battleground, and some
authors have started developing in this direction while using cancer datasets for
benchmarking their secure federated learning frameworks [115]. Figure 1 presents
an overall synopsis of all the studies reviewed in this paper based on AI tasks,
cancer type, data type and category of work.

4 Conclusion and Discussion

Data decentralization is a crucial setting for developing data-driven models in
healthcare due to the sensitive nature of medical data. Federated Learning, while
still a new research field, has already demonstrated its potential use to support
a distributed learning setup for healthcare. While the general field of Federated
Learning research is very active with a focus on improving model aggregation
and efficient communication between nodes, model and data privacy is a very
challenging and open problem [32]. The data privacy aspect is very important
especially in healthcare where legal, ethical and regulatory constraints impose
tremendous restrictions and pressure to data providers (e.g., healthcare net-
works, research institutions)

While the Federated Learning research community is engaged in addressing
the aforementioned open problems, in this paper we aimed at presenting the cur-
rent status of Federated Learning in the domain of cancer and oncology because
we believe that the machine learning community in this particular space can
benefit from a quick review and perhaps direct research efforts in specific subar-
eas. Our review highlighted that although a lot of works have been developed for
Federated Learning only 56% of them have been exclusively proposed for cancer
research or clinical oncology. This demonstrates the need for solutions designed
specifically within this space. For example, privacy preserving methods may need
to be researched and explored under the scope of the cancer field given that pri-
vacy requirements and guarantees can be significantly different from other areas
(e.g., finance). In a similar fashion, while data heterogeneity is an open chal-
lenge in the general machine learning community, cancer and oncology datasets
manifest unique properties which may require deeper clinical and medical device
expertise involvement when developing methods that aim at overcoming model
degredation in largely heterogeneous medical data.

Although there are quite a few frameworks developed specifically for cancer
analysis (i.e., 13% Fig. 1), there is the potential risk of a fragmented platform
landscape. This is true when it comes to the general Federated Learning commu-
nity in which a large number of frameworks are currently being developed and
maintained. Indeed, such efforts can lead to improved solutions but it is usually
collaborative efforts that can achieve better adoption. In the cancer domain data
scientists can benefit from platforms that aim at developing tools for distributed
annotation, distributed model training workflows, and moreover the adoption of
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data standardization and thus better integration of Federated Learning into the
clinical workflow.

When it comes to tasks (Fig. 1) we observed that the majority of algorithms
are related to classification and segmentation, and use images (either from radi-
ology or pathology) as input data type. This highlights the need for a broader
exploration of other important tasks in cancer analysis such as survival predic-
tion, genomics expression, precision medicine, patient treatment planning, and
advanced patient diagnosis/prognosis through multi-modal data. Furthermore,
within the context of cancer type we identified that almost 70% of the stud-
ies were addressing only a specific type of cancer: either brain tumor, or breast
cancer, or skin lesions. This reaffirms our previous statement that Federated
Learning should expand its application on multiple cancer types. Perhaps the
reason for this increased focus on these three specific cancer types comes from
the fact that these three areas have been well-established through the release of
large public datasets. This emphasizes the overall need for large medical datasets
being available to the research community. Ideally, federations that are currently
being developed to support distributed learning (e.g., Federated Learning) will
provide support in the future for secure remote machine learning development
on geographically distributed data providers through robust privacy-preserving
layers.

As with any new research field, Federated Learning for healthcare and in
particular for cancer and oncology is still in its early days. However, whether the
studies were simulating Federated Learning environments or conducting small
experiments across hospitals with real private data, they constitute solid basis
for future work. Federated Learning infrastructures are continuously being devel-
oped specifically for healthcare and cancer research to facilitate true collabora-
tion between healthcare institutions across the world.
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