Skip to main content

Novel Insights into the Role of Voltage-Gated Calcium Channel Genes in Psychiatric Disorders

  • Chapter
  • First Online:
Voltage-Gated Calcium Channels

Abstract

Calcium entering via voltage-gated calcium channels is a second messenger key for cellular functions including gene expression, neuronal excitability, neurogenesis, neuronal differentiation, and neurotransmitter release. Alterations in these calcium-dependent processes have been observed in psychiatric disorders. Furthermore, genetic studies have identified associations of risk genetic variants of voltage-gated calcium channel genes (CACNA1A-I) with psychiatric disorders. Thus, these channels are becoming promising targets to treat these pathologies. In this chapter, we will discuss evidence linking calcium to psychiatric disorders, and then we will review key genetic studies that have found strong associations among voltage-gated calcium channel genes and psychiatric disorders. Next, we will examine the role of voltage-gated calcium channels in neurobiological mechanisms linked to psychiatric disorders. We will analyze evidence from animal models that link voltage-gated to behavioral endophenotypes observed in psychiatric disorders. Finally, we will discuss the current view and challenges to target these channels to treat psychiatric disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ADHD:

attention deficit and hyperactivity disorder

ASD:

autism spectrum disorder

BD:

bipolar disorder

BDNF:

brain-derived neurotrophic factor

CaMKII:

Ca2/calmodulin-dependent protein kinase II

CCK:

cholecystokinin

CPu:

caudate putamen

CREB:

cAMP response-element binding protein

EA2:

episodic ataxia type 2

eIF2α:

eukaryotic initiation factor 2α

FHM1:

familial hemiplegic ataxia type 1

FST:

forced-swim test

GWAS:

genome-wide association study

MDD:

major depressive disorder

mTOR:

mammalian target of rapamycin

NAc:

nucleus accumbens

PV:

parvalbumin

RDoC:

research domain criteria

SCZ:

schizophrenia

SNc:

substantia nigra pars compacta

SNP:

single nucleotide polymorphism

TS:

timothy syndrome

TST:

tail suspension test

VGCC :

voltage-gated calcium channel

VTA:

ventral tegmental area

References

  • Albert, P. R., & Vahid-Ansari, F. (2019). The 5-HT1A receptor: Signaling to behavior. Biochimie, 161, 34–45.

    Article  CAS  PubMed  Google Scholar 

  • Ament, S. A., Szelinger, S., Glusman, G., Ashworth, J., Hou, L., Akula, N., et al. (2015). Rare variants in neuronal excitability genes influence risk for bipolar disorder. Proceedings of the National Academy of Sciences of the United States of America, 112, 3576–3581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andrade, A., Hope, J., Allen, A., Yorgan, V., Lipscombe, D., & Pan, J. Q. (2016). A rare schizophrenia risk variant of CACNA1I disrupts CaV3.3 channel activity. Scientific Reports, 6, 34233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andrade, A., Brennecke, A., Mallat, S., Brown, J., Gomez-Rivadeneira, J., Czepiel, N., et al. (2019). Genetic associations between voltage-gated calcium channels and psychiatric disorders. International Journal of Molecular Sciences, 20, E3537.

    Article  PubMed  Google Scholar 

  • Apple, D. M., Fonseca, R. S., & Kokovay, E. (2017). The role of adult neurogenesis in psychiatric and cognitive disorders. Brain Research, 1655, 270–276.

    Article  CAS  PubMed  Google Scholar 

  • Association, A. P. (2000). Diagnostic and statistical manual of mental disorders.

    Google Scholar 

  • Astori, S., Wimmer, R. D., Prosser, H. M., Corti, C., Corsi, M., Liaudet, N., et al. (2011). The Ca(V)3.3 calcium channel is the major sleep spindle pacemaker in thalamus. Proceedings of the National Academy of Sciences of the United States of America, 108, 13823–13828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bader, P. L., Faizi, M., Kim, L. H., Owen, S. F., Tadross, M. R., Alfa, R. W., et al. (2011). Mouse model of Timothy syndrome recapitulates triad of autistic traits. Proceedings of the National Academy of Sciences of the United States of America, 108, 15432–15437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker, M., Hong, S. I., Kang, S., & Choi, D. S. (2020). Rodent models for psychiatric disorders: Problems and promises. Laboratory Animal Research, 36, 9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bartko, G., Horvath, S., Zador, G., & Frecska, E. (1991). Effects of adjunctive verapamil administration in chronic schizophrenic patients. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 15, 343–349.

    Article  CAS  Google Scholar 

  • Bavley, C. C., Fetcho, R. N., Burgdorf, C. E., Walsh, A. P., Fischer, D. K., Hall, B. S., et al. (2020). Cocaine- and stress-primed reinstatement of drug-associated memories elicit differential behavioral and frontostriatal circuit activity patterns via recruitment of L-type Ca2+ channels. Molecular Psychiatry, 25, 2373–2391.

    Article  CAS  PubMed  Google Scholar 

  • Bavley, C. C., Kabir, Z. D., Walsh, A. P., Kosovsky, M., Hackett, J., Sun, H., et al. (2021). Dopamine D1R-neuron cacna1c deficiency: A new model of extinction therapy-resistant post-traumatic stress. Molecular Psychiatry, 26, 2286–2298.

    Article  CAS  PubMed  Google Scholar 

  • Benca, R. M., Obermeyer, W. H., Thisted, R. A., & Gillin, J. C. (1992). Sleep and psychiatric disorders. A meta-analysis. Archives of General Psychiatry, 49, 651–668; discussion 669.

    Article  CAS  PubMed  Google Scholar 

  • Bergson, P., Lipkind, G., Lee, S. P., Duban, M. E., & Hanck, D. A. (2011). Verapamil block of T-type calcium channels. Molecular Pharmacology, 79, 411–419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berridge, M. J. (2014). Calcium signalling and psychiatric disease: Bipolar disorder and schizophrenia. Cell and Tissue Research, 357, 477–492.

    Article  CAS  PubMed  Google Scholar 

  • Beuckmann, C. T., Sinton, C. M., Miyamoto, N., Ino, M., & Yanagisawa, M. (2003). N-type calcium channel alpha1B subunit (Cav2.2) knock-out mice display hyperactivity and vigilance state differences. The Journal of Neuroscience, 23, 6793–6797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • BiaÅ‚a, G., & LangwiÅ„ski, R. (1996). Effects of calcium channel antagonists on the reinforcing properties of morphine, ethanol and cocaine as measured by place conditioning. Journal of Physiology and Pharmacology, 47, 497–502.

    PubMed  Google Scholar 

  • Bigos, K. L., Mattay, V. S., Callicott, J. H., Straub, R. E., Vakkalanka, R., Kolachana, B., et al. (2010). Genetic variation in CACNA1C affects brain circuitries related to mental illness. Archives of General Psychiatry, 67, 939–945.

    Article  PubMed  PubMed Central  Google Scholar 

  • Blazon, M., LaCarubba, B., Bunda, A., Czepiel, N., Mallat, S., Londrigan, L., et al. (2021). N-type calcium channels control GABAergic transmission in brain areas related to fear and anxiety. OBM Neurobiology, 5. https://doi.org/10.21926/obm.neurobiol.2101083

  • Boehm, S., & Huck, S. (1996). Inhibition of N-type calcium channels: The only mechanism by which presynaptic alpha 2-autoreceptors control sympathetic transmitter release. The European Journal of Neuroscience, 8, 1924–1931.

    Article  CAS  PubMed  Google Scholar 

  • Bojarski, L., Debowska, K., & Wojda, U. (2010). In vitro findings of alterations in intracellular calcium homeostasis in schizophrenia. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 34, 1367–1374.

    Article  CAS  Google Scholar 

  • Brimblecombe, K. R., Gracie, C. J., Platt, N. J., & Cragg, S. J. (2015). Gating of dopamine transmission by calcium and axonal N-, Q-, T- and L-type voltage-gated calcium channels differs between striatal domains. The Journal of Physiology, 593, 929–946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buckley, P. F., Miller, B. J., Lehrer, D. S., & Castle, D. J. (2009). Psychiatric comorbidities and schizophrenia. Schizophrenia Bulletin, 35, 383–402.

    Article  PubMed  Google Scholar 

  • Bunda, A., LaCarubba, B., Akiki, M., & Andrade, A. (2019a). Tissue- and cell-specific expression of a splice variant in the II-III cytoplasmic loop of Cacna1b. FEBS Open Bio, 9, 1603–1616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bunda, A., LaCarubba, B., Bertolino, M., Akiki, M., Bath, K., Lopez-Soto, J., et al. (2019b). Cacna1b alternative splicing impacts excitatory neurotransmission and is linked to behavioral responses to aversive stimuli. Molecular Brain, 12, 81.

    Article  PubMed  PubMed Central  Google Scholar 

  • Burmeister, M., McInnis, M. G., & Zöllner, S. (2008). Psychiatric genetics: Progress amid controversy. Nature Reviews. Genetics, 9, 527–540.

    Article  CAS  PubMed  Google Scholar 

  • Busquet, P., Nguyen, N. K., Schmid, E., Tanimoto, N., Seeliger, M. W., Ben-Yosef, T., et al. (2010). CaV1.3 L-type Ca2+ channels modulate depression-like behaviour in mice independent of deaf phenotype. The International Journal of Neuropsychopharmacology, 13, 499–513.

    Article  CAS  PubMed  Google Scholar 

  • Cantor, R. M., Kono, N., Duvall, J. A., Alvarez-Retuerto, A., Stone, J. L., Alarcón, M., et al. (2005). Replication of autism linkage: Fine-mapping peak at 17q21. American Journal of Human Genetics, 76, 1050–1056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardozo, D. L., & Bean, B. P. (1995). Voltage-dependent calcium channels in rat midbrain dopamine neurons: Modulation by dopamine and GABAB receptors. Journal of Neurophysiology, 74, 1137–1148.

    Article  CAS  PubMed  Google Scholar 

  • Carman, J. S., & Wyatt, R. J. (1979). Calcium: Bivalent cation in the bivalent psychoses. Biological Psychiatry, 14, 295–336.

    CAS  PubMed  Google Scholar 

  • Casamassima, F., Hay, A. C., Benedetti, A., Lattanzi, L., Cassano, G. B., & Perlis, R. H. (2010). L-type calcium channels and psychiatric disorders: A brief review. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 153B, 1373–1390.

    Article  CAS  Google Scholar 

  • Chourasia, N., Ossó-Rivera, H., Ghosh, A., Von Allmen, G., & Koenig, M. K. (2019). Expanding the phenotypic spectrum of CACNA1H mutations. Pediatric Neurology, 93, 50–55.

    Article  PubMed  Google Scholar 

  • Cipriani, A., Saunders, K., Attenburrow, M. J., Stefaniak, J., Panchal, P., Stockton, S., et al. (2016). A systematic review of calcium channel antagonists in bipolar disorder and some considerations for their future development. Molecular Psychiatry, 21, 1324–1332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark, M. B., Wrzesinski, T., Garcia, A. B., Hall, N. A. L., Kleinman, J. E., Hyde, T., et al. (2020). Long-read sequencing reveals the complex splicing profile of the psychiatric risk gene CACNA1C in human brain. Molecular Psychiatry, 25, 37–47.

    Article  CAS  PubMed  Google Scholar 

  • Costa-Mattioli, M., & Monteggia, L. M. (2013). mTOR complexes in neurodevelopmental and neuropsychiatric disorders. Nature Neuroscience, 16, 1537–1543.

    Article  CAS  PubMed  Google Scholar 

  • Cross-Disorder, G. O. T. P. G. C., Lee, S. H., Ripke, S., Neale, B. M., Faraone, S. V., Purcell, S. M., et al. (2013). Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. Nature Genetics, 45, 984–994.

    Article  Google Scholar 

  • D’Cruz, A. M., Ragozzino, M. E., Mosconi, M. W., Shrestha, S., Cook, E. H., & Sweeney, J. A. (2013). Reduced behavioral flexibility in autism spectrum disorders. Neuropsychology, 27, 152–160.

    Article  PubMed  PubMed Central  Google Scholar 

  • D’Gama, A. M., Pochareddy, S., Li, M., Jamuar, S. S., Reiff, R. E., Lam, A. N., et al. (2015). Targeted DNA sequencing from autism spectrum disorder brains implicates multiple genetic mechanisms. Neuron, 88, 910–917.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dalley, J. W., & Robbins, T. W. (2017). Fractionating impulsivity: Neuropsychiatric implications. Nature Reviews. Neuroscience, 18, 158–171.

    Article  CAS  PubMed  Google Scholar 

  • Dao, D. T., Mahon, P. B., Cai, X., Kovacsics, C. E., Blackwell, R. A., Arad, M., et al. (2010). Mood disorder susceptibility gene CACNA1C modifies mood-related behaviors in mice and interacts with sex to influence behavior in mice and diagnosis in humans. Biological Psychiatry, 68, 801–810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Rubeis, S., He, X., Goldberg, A. P., Poultney, C. S., Samocha, K., Cicek, A. E., et al. (2014). Synaptic, transcriptional and chromatin genes disrupted in autism. Nature, 515, 209–215.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dedic, N., Pöhlmann, M. L., Richter, J. S., Mehta, D., Czamara, D., Metzger, M. W., et al. (2018). Cross-disorder risk gene CACNA1C differentially modulates susceptibility to psychiatric disorders during development and adulthood. Molecular Psychiatry, 23, 533–543.

    Article  CAS  PubMed  Google Scholar 

  • Deisseroth, K., Heist, E. K., & Tsien, R. W. (1998). Translocation of calmodulin to the nucleus supports CREB phosphorylation in hippocampal neurons. Nature, 392, 198–202.

    Article  CAS  PubMed  Google Scholar 

  • Deng, W., Aimone, J. B., & Gage, F. H. (2010). New neurons and new memories: How does adult hippocampal neurogenesis affect learning and memory. Nature Reviews. Neuroscience, 11, 339–350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dietrich, D., Kirschstein, T., Kukley, M., Pereverzev, A., von der Brelie, C., Schneider, T., et al. (2003). Functional specialization of presynaptic Cav2.3 Ca2+ channels. Neuron, 39, 483–496.

    Article  CAS  PubMed  Google Scholar 

  • Dolmetsch, R. E., Pajvani, U., Fife, K., Spotts, J. M., & Greenberg, M. E. (2001). Signaling to the nucleus by an L-type calcium channel-calmodulin complex through the MAP kinase pathway. Science, 294, 333–339.

    Article  CAS  PubMed  Google Scholar 

  • Dolphin, A. C., & Lee, A. (2020). Presynaptic calcium channels: Specialized control of synaptic neurotransmitter release. Nature Reviews. Neuroscience, 21, 213–229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubovsky, S. L., & Franks, R. D. (1983). Intracellular calcium ions in affective disorders: A review and an hypothesis. Biological Psychiatry, 18, 781–797.

    CAS  PubMed  Google Scholar 

  • Dubovsky, S. L., Thomas, M., Hijazi, A., & Murphy, J. (1994). Intracellular calcium signalling in peripheral cells of patients with bipolar affective disorder. European Archives of Psychiatry and Clinical Neuroscience, 243, 229–234.

    Article  CAS  PubMed  Google Scholar 

  • Dupret, D., Revest, J. M., Koehl, M., Ichas, F., De Giorgi, F., Costet, P., et al. (2008). Spatial relational memory requires hippocampal adult neurogenesis. PLoS One, 3, e1959.

    Article  PubMed  PubMed Central  Google Scholar 

  • Durante, P., Cardenas, C. G., Whittaker, J. A., Kitai, S. T., & Scroggs, R. S. (2004). Low-threshold L-type calcium channels in rat dopamine neurons. Journal of Neurophysiology, 91, 1450–1454.

    Article  CAS  PubMed  Google Scholar 

  • El Ghaleb, Y., Schneeberger, P. E., Fernández-Quintero, M. L., Geisler, S. M., Pelizzari, S., Polstra, A. M., et al. (2021). CACNA1I gain-of-function mutations differentially affect channel gating and cause neurodevelopmental disorders. Brain, 144, 2092–2106.

    Article  PubMed  PubMed Central  Google Scholar 

  • Elia, J., Glessner, J. T., Wang, K., Takahashi, N., Shtir, C. J., Hadley, D., et al. (2011). Genome-wide copy number variation study associates metabotropic glutamate receptor gene networks with attention deficit hyperactivity disorder. Nature Genetics, 44, 78–84.

    Article  PubMed  PubMed Central  Google Scholar 

  • Emamghoreishi, M., Schlichter, L., Li, P. P., Parikh, S., Sen, J., Kamble, A., et al. (1997). High intracellular calcium concentrations in transformed lymphoblasts from subjects with bipolar I disorder. The American Journal of Psychiatry, 154, 976–982.

    Article  CAS  PubMed  Google Scholar 

  • Engelhardt, K., Schwarting, R. K. W., & Wöhr, M. (2018). Mapping trait-like socio-affective phenotypes in rats through 50-kHz ultrasonic vocalizations. Psychopharmacology, 235, 83–98.

    Article  CAS  Google Scholar 

  • Ermolyuk, Y. S., Alder, F. G., Surges, R., Pavlov, I. Y., Timofeeva, Y., Kullmann, D. M., et al. (2013). Differential triggering of spontaneous glutamate release by P/Q-, N- and R-type Ca2+ channels. Nature Neuroscience, 16, 1754–1763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferguson, B. R., & Gao, W. J. (2018). PV interneurons: Critical regulators of E/I balance for prefrontal cortex-dependent behavior and psychiatric disorders. Frontiers in Neural Circuits, 12, 37.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferrarelli, F., & Tononi, G. (2011). The thalamic reticular nucleus and schizophrenia. Schizophrenia Bulletin, 37, 306–315.

    Article  PubMed  Google Scholar 

  • Ferrarelli, F., Huber, R., Peterson, M. J., Massimini, M., Murphy, M., Riedner, B. A., et al. (2007). Reduced sleep spindle activity in schizophrenia patients. The American Journal of Psychiatry, 164, 483–492.

    Article  PubMed  Google Scholar 

  • Ferreira, M. A., O’Donovan, M. C., Meng, Y. A., Jones, I. R., Ruderfer, D. M., Jones, L., et al. (2008). Collaborative genome-wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder. Nature Genetics, 40, 1056–1058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Filice, F., Janickova, L., Henzi, T., Bilella, A., & Schwaller, B. (2020). The parvalbumin hypothesis of autism spectrum disorder. Frontiers in Cellular Neuroscience, 14, 577525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flint, J., & Munafò, M. R. (2007). The endophenotype concept in psychiatric genetics. Psychological Medicine, 37, 163–180.

    Article  PubMed  Google Scholar 

  • Forrest, M. P., Parnell, E., & Penzes, P. (2018). Dendritic structural plasticity and neuropsychiatric disease. Nature Reviews. Neuroscience, 19, 215–234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fox, C. A., Mansour, A., & Watson, S. J. (1994). The effects of haloperidol on dopamine receptor gene expression. Experimental Neurology, 130, 288–303.

    Article  CAS  PubMed  Google Scholar 

  • Gangarossa, G., Laffray, S., Bourinet, E., & Valjent, E. (2014). T-type calcium channel Cav3.2 deficient mice show elevated anxiety, impaired memory and reduced sensitivity to psychostimulants. Frontiers in Behavioral Neuroscience, 8, 92.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gatch, M. B. (2002). Nitrendipine blocks the nociceptive effects of chronically administered ethanol. Alcoholism, Clinical and Experimental Research, 26, 1181–1187.

    Article  CAS  PubMed  Google Scholar 

  • Geurts, H. M., Corbett, B., & Solomon, M. (2009). The paradox of cognitive flexibility in autism. Trends in Cognitive Sciences, 13, 74–82.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghoshal, A., Uygun, D. S., Yang, L., McNally, J. M., Lopez-Huerta, V. G., Arias-Garcia, M. A., et al. (2020). Effects of a patient-derived de novo coding alteration of CACNA1I in mice connect a schizophrenia risk gene with sleep spindle deficits. Translational Psychiatry, 10, 29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gitlin, M. J., & Weiss, J. (1984). Verapamil as maintenance treatment in bipolar illness: A case report. Journal of Clinical Psychopharmacology, 4, 341–343.

    Article  CAS  PubMed  Google Scholar 

  • Glen, A. I. (1985). Lithium prophylaxis of recurrent affective disorders. Journal of Affective Disorders, 8, 259–265.

    Article  CAS  PubMed  Google Scholar 

  • Goes, F. S., McGrath, J., Avramopoulos, D., Wolyniec, P., Pirooznia, M., Ruczinski, I., et al. (2015). Genome-wide association study of schizophrenia in Ashkenazi Jews. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 168, 649–659.

    Article  CAS  Google Scholar 

  • Gong, B., Wang, H., Gu, S., Heximer, S. P., & Zhuo, M. (2007). Genetic evidence for the requirement of adenylyl cyclase 1 in synaptic scaling of forebrain cortical neurons. The European Journal of Neuroscience, 26, 275–288.

    Article  PubMed  Google Scholar 

  • Goodnick, P. J. (1996). Treatment of mania: Relationship between response to verapamil and changes in plasma calcium and magnesium levels. Southern Medical Journal, 89, 225–226.

    Article  CAS  PubMed  Google Scholar 

  • Gorman, J. M. (1996). Comorbid depression and anxiety spectrum disorders. Depression and Anxiety, 4, 160–168.

    Article  PubMed  Google Scholar 

  • Green, E. K., Grozeva, D., Jones, I., Jones, L., Kirov, G., Caesar, S., et al. (2010). The bipolar disorder risk allele at CACNA1C also confers risk of recurrent major depression and of schizophrenia. Molecular Psychiatry, 15, 1016–1022.

    Article  CAS  PubMed  Google Scholar 

  • Grunze, H., Walden, J., Wolf, R., & Berger, M. (1996). Combined treatment with lithium and nimodipine in a bipolar I manic syndrome. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 20, 419–426.

    Article  CAS  Google Scholar 

  • Gulsuner, S., Walsh, T., Watts, A. C., Lee, M. K., Thornton, A. M., Casadei, S., et al. (2013). Spatial and temporal mapping of de novo mutations in schizophrenia to a fetal prefrontal cortical network. Cell, 154, 518–529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gulsuner, S., Stein, D. J., Susser, E. S., Sibeko, G., Pretorius, A., Walsh, T., et al. (2020). Genetics of schizophrenia in the South African Xhosa. Science, 367, 569–573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halassa, M. M., Siegle, J. H., Ritt, J. T., Ting, J. T., Feng, G., & Moore, C. I. (2011). Selective optical drive of thalamic reticular nucleus generates thalamic bursts and cortical spindles. Nature Neuroscience, 14, 1118–1120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall, N. A. L., & Tunbridge, E. M. (2021). Brain-enriched CACNA1C isoforms as novel, selective targets for psychiatric indications. Neuropsychopharmacology, 47(1), 393–394.

    Article  Google Scholar 

  • Hamshere, M. L., Walters, J. T., Smith, R., Richards, A. L., Green, E., Grozeva, D., et al. (2013). Genome-wide significant associations in schizophrenia to ITIH3/4, CACNA1C and SDCCAG8, and extensive replication of associations reported by the Schizophrenia PGC. Molecular Psychiatry, 18, 708–712.

    Article  CAS  PubMed  Google Scholar 

  • Harrison, P. J., Geddes, J. R., & Tunbridge, E. M. (2018). The emerging neurobiology of bipolar disorder. Trends in Neurosciences, 41, 18–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrison, P. J., Hall, N., Mould, A., Al-Juffali, N., & Tunbridge, E. M. (2019). Cellular calcium in bipolar disorder: Systematic review and meta-analysis. Molecular Psychiatry, 26(8), 4106–4116.

    Article  PubMed  PubMed Central  Google Scholar 

  • Health, N. S. O. D. U. A. (2019). Substance abuse and mental service administration.

    Google Scholar 

  • Heck, A., Fastenrath, M., Ackermann, S., Auschra, B., Bickel, H., Coynel, D., et al. (2014). Converging genetic and functional brain imaging evidence links neuronal excitability to working memory, psychiatric disease, and brain activity. Neuron, 81, 1203–1213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hefft, S., & Jonas, P. (2005). Asynchronous GABA release generates long-lasting inhibition at a hippocampal interneuron-principal neuron synapse. Nature Neuroscience, 8, 1319–1328.

    Article  CAS  PubMed  Google Scholar 

  • Heinrichs, R. W. (2005). The primacy of cognition in schizophrenia. The American Psychologist, 60, 229–242.

    Article  PubMed  Google Scholar 

  • Heyes, S., Pratt, W. S., Rees, E., Dahimene, S., Ferron, L., Owen, M. J., et al. (2015). Genetic disruption of voltage-gated calcium channels in psychiatric and neurological disorders. Progress in Neurobiology, 134, 36–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hidalgo, S., Campusano, J. M., & Hodge, J. J. L. (2021). The Drosophila ortholog of the schizophrenia-associated CACNA1A and CACNA1B voltage-gated calcium channels regulate memory, sleep and circadian rhythms. Neurobiology of Disease, 155, 105394.

    Article  CAS  PubMed  Google Scholar 

  • Hofer, N. T., Tuluc, P., Ortner, N. J., Nikonishyna, Y. V., Fernándes-Quintero, M. L., Liedl, K. R., et al. (2020). Biophysical classification of a CACNA1D de novo mutation as a high-risk mutation for a severe neurodevelopmental disorder. Molecular Autism, 11, 4.

    Article  PubMed  PubMed Central  Google Scholar 

  • Höschl, C., & Kozený, J. (1989). Verapamil in affective disorders: A controlled, double-blind study. Biological Psychiatry, 25, 128–140.

    Article  PubMed  Google Scholar 

  • Howes, O. D., McCutcheon, R., Owen, M. J., & Murray, R. M. (2017). The role of genes, stress, and dopamine in the development of schizophrenia. Biological Psychiatry, 81, 9–20.

    Article  CAS  PubMed  Google Scholar 

  • Hu, Z., Liang, M. C., & Soong, T. W. (2017). Alternative splicing of L-type CaV1.2 calcium channels: Implications in cardiovascular diseases. Genes (Basel), 8, E344.

    Article  Google Scholar 

  • Huang, A. S., Rogers, B. P., Anticevic, A., Blackford, J. U., Heckers, S., & Woodward, N. D. (2019). Brain function during stages of working memory in schizophrenia and psychotic bipolar disorder. Neuropsychopharmacology, 44, 2136–2142.

    Article  PubMed  PubMed Central  Google Scholar 

  • Huys, Q. J., Maia, T. V., & Frank, M. J. (2016). Computational psychiatry as a bridge from neuroscience to clinical applications. Nature Neuroscience, 19, 404–413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iasevoli, F., Tomasetti, C., & de Bartolomeis, A. (2013). Scaffolding proteins of the post-synaptic density contribute to synaptic plasticity by regulating receptor localization and distribution: Relevance for neuropsychiatric diseases. Neurochemical Research, 38, 1–22.

    Article  CAS  PubMed  Google Scholar 

  • Indelicato, E., & Boesch, S. (2021). From genotype to phenotype: Expanding the clinical spectrum of CACNA1A variants in the era of next generation sequencing. Frontiers in Neurology, 12, 639994.

    Article  PubMed  PubMed Central  Google Scholar 

  • Irish, S. G. C. A. T. W. T. C. C. C. (2012). Genome-wide association study implicates HLA-C*01:02 as a risk factor at the major histocompatibility complex locus in schizophrenia. Biological Psychiatry, 72, 620–628.

    Article  Google Scholar 

  • Iyer, R., Ungless, M. A., & Faisal, A. A. (2017). Calcium-activated SK channels control firing regularity by modulating sodium channel availability in midbrain dopamine neurons. Scientific Reports, 7, 5248.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jansen, P. R., Watanabe, K., Stringer, S., Skene, N., Bryois, J., Hammerschlag, A. R., et al. (2019). Genome-wide analysis of insomnia in 1,331,010 individuals identifies new risk loci and functional pathways. Nature Genetics, 51, 394–403.

    Article  CAS  PubMed  Google Scholar 

  • Jaric, I., Rocks, D., Cham, H., Herchek, A., & Kundakovic, M. (2019). Sex and estrous cycle effects on anxiety- and depression-related phenotypes in a two-hit developmental stress model. Frontiers in Molecular Neuroscience, 12, 74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jimerson, D. C., Post, R. M., Carman, J. S., van Kammen, D. P., Wood, J. H., Goodwin, F. K., et al. (1979). CSF calcium: Clinical correlates in affective illness and schizophrenia. Biological Psychiatry, 14, 37–51.

    CAS  PubMed  Google Scholar 

  • Kaar, S. J., Angelescu, I., Marques, T. R., & Howes, O. D. (2019). Pre-frontal parvalbumin interneurons in schizophrenia: A meta-analysis of post-mortem studies. Journal of Neural Transmission (Vienna), 126, 1637–1651.

    Article  CAS  Google Scholar 

  • Kabir, Z. D., Che, A., Fischer, D. K., Rice, R. C., Rizzo, B. K., Byrne, M., et al. (2017). Rescue of impaired sociability and anxiety-like behavior in adult cacna1c-deficient mice by pharmacologically targeting eIF2α. Molecular Psychiatry, 22, 1096–1109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kabitzke, P. A., Brunner, D., He, D., Fazio, P. A., Cox, K., Sutphen, J., et al. (2018). Comprehensive analysis of two Shank3 and the Cacna1c mouse models of autism spectrum disorder. Genes, Brain, and Behavior, 17, 4–22.

    Article  CAS  PubMed  Google Scholar 

  • Karlsgodt, K. H., Sun, D., & Cannon, T. D. (2010). Structural and functional brain abnormalities in schizophrenia. Current Directions in Psychological Science, 19, 226–231.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaufman, J., & Charney, D. (2000). Comorbidity of mood and anxiety disorders. Depression and Anxiety, 12(Suppl 1), 69–76.

    Article  PubMed  Google Scholar 

  • Kawaguchi, Y., & Kubota, Y. (1997). GABAergic cell subtypes and their synaptic connections in rat frontal cortex. Cerebral Cortex, 7, 476–486.

    Article  CAS  PubMed  Google Scholar 

  • Kawaguchi, Y., Katsumaru, H., Kosaka, T., Heizmann, C. W., & Hama, K. (1987). Fast spiking cells in rat hippocampus (CA1 region) contain the calcium-binding protein parvalbumin. Brain Research, 416, 369–374.

    Article  CAS  PubMed  Google Scholar 

  • Kennedy, D. P., & Adolphs, R. (2012). The social brain in psychiatric and neurological disorders. Trends in Cognitive Sciences, 16, 559–572.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kessler, R. C., Aguilar-Gaxiola, S., Alonso, J., Chatterji, S., Lee, S., Ormel, J., et al. (2009). The global burden of mental disorders: An update from the WHO World Mental Health (WMH) surveys. Epidemiologia e Psichiatria Sociale, 18, 23–33.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim, C., Jeon, D., Kim, Y. H., Lee, C. J., Kim, H., & Shin, H. S. (2009). Deletion of N-type Ca(2+) channel Ca(v)2.2 results in hyperaggressive behaviors in mice. The Journal of Biological Chemistry, 284, 2738–2745.

    Article  CAS  PubMed  Google Scholar 

  • Kisilevsky, A. E., & Zamponi, G. W. (2008). D2 dopamine receptors interact directly with N-type calcium channels and regulate channel surface expression levels. Channels (Austin, Tex.), 2, 269–277.

    Article  Google Scholar 

  • Kisilevsky, A. E., Mulligan, S. J., Altier, C., Iftinca, M. C., Varela, D., Tai, C., et al. (2008). D1 receptors physically interact with N-type calcium channels to regulate channel distribution and dendritic calcium entry. Neuron, 58, 557–570.

    Article  CAS  PubMed  Google Scholar 

  • Kisko, T. M., Braun, M. D., Michels, S., Witt, S. H., Rietschel, M., Culmsee, C., et al. (2018). Cacna1c haploinsufficiency leads to pro-social 50-kHz ultrasonic communication deficits in rats. Disease Models & Mechanisms, 11, dmm034116.

    Article  Google Scholar 

  • Kisko, T. M., Braun, M. D., Michels, S., Witt, S. H., Rietschel, M., Culmsee, C., et al. (2020). Sex-dependent effects of Cacna1c haploinsufficiency on juvenile social play behavior and pro-social 50-kHz ultrasonic communication in rats. Genes, Brain, and Behavior, 19, e12552.

    Article  CAS  PubMed  Google Scholar 

  • Knutson, B., Burgdorf, J., & Panksepp, J. (1998). Anticipation of play elicits high-frequency ultrasonic vocalizations in young rats. Journal of Comparative Psychology, 112, 65–73.

    Article  CAS  PubMed  Google Scholar 

  • Kokras, N., & Dalla, C. (2014). Sex differences in animal models of psychiatric disorders. British Journal of Pharmacology, 171, 4595–4619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolaj, M., & Renaud, L. P. (2001). Norepinephrine acts via alpha(2) adrenergic receptors to suppress N-type calcium channels in dissociated rat median preoptic nucleus neurons. Neuropharmacology, 41, 472–479.

    Article  CAS  PubMed  Google Scholar 

  • Komatsu, H. (2015). Novel therapeutic GPCRs for psychiatric disorders. International Journal of Molecular Sciences, 16, 14109–14121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krystal, A. D. (2012). Psychiatric disorders and sleep. Neurologic Clinics, 30, 1389–1413.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kubota, M., Murakoshi, T., Saegusa, H., Kazuno, A., Zong, S., Hu, Q., et al. (2001). Intact LTP and fear memory but impaired spatial memory in mice lacking Ca(v)2.3 (alpha(IE)) channel. Biochemical and Biophysical Research Communications, 282, 242–248.

    Article  CAS  PubMed  Google Scholar 

  • Kuzmin, A., Zvartau, E., Gessa, G. L., Martellotta, M. C., & Fratta, W. (1992). Calcium antagonists isradipine and nimodipine suppress cocaine and morphine intravenous self-administration in drug-naive mice. Pharmacology, Biochemistry, and Behavior, 41, 497–500.

    Article  CAS  PubMed  Google Scholar 

  • Lam, M., Trampush, J. W., Yu, J., Knowles, E., Davies, G., Liewald, D. C., et al. (2017). Large-scale cognitive GWAS meta-analysis reveals tissue-specific neural expression and potential nootropic drug targets. Cell Reports, 21, 2597–2613.

    Article  CAS  PubMed  Google Scholar 

  • Lambert, R. C., Bessaïh, T., Crunelli, V., & Leresche, N. (2014). The many faces of T-type calcium channels. Pflügers Archiv, 466, 415–423.

    Article  CAS  PubMed  Google Scholar 

  • Lee, A. S., Ra, S., Rajadhyaksha, A. M., Britt, J. K., De Jesus-Cortes, H., Gonzales, K. L., et al. (2012). Forebrain elimination of cacna1c mediates anxiety-like behavior in mice. Molecular Psychiatry, 17, 1054–1055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, A. S., De Jesús-Cortés, H., Kabir, Z. D., Knobbe, W., Orr, M., Burgdorf, C., et al. (2016). The neuropsychiatric disease-associated gene cacna1c mediates survival of young hippocampal neurons. eNeuro, 3, ENEURO.0006–16.2016.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee, P. H., Feng, Y. A., & Smoller, J. W. (2021). Pleiotropy and cross-disorder genetics among psychiatric disorders. Biological Psychiatry, 89, 20–31.

    Article  CAS  PubMed  Google Scholar 

  • Lenzi, A., Marazziti, D., Raffaelli, S., & Cassano, G. B. (1995). Effectiveness of the combination verapamil and chlorpromazine in the treatment of severe manic or mixed patients. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 19, 519–528.

    Article  CAS  Google Scholar 

  • Lett, T. A., Voineskos, A. N., Kennedy, J. L., Levine, B., & Daskalakis, Z. J. (2014). Treating working memory deficits in schizophrenia: A review of the neurobiology. Biological Psychiatry, 75, 361–370.

    Article  PubMed  Google Scholar 

  • Levine, J., Stein, D., Rapoport, A., & Kurtzman, L. (1999). High serum and cerebrospinal fluid Ca/Mg ratio in recently hospitalized acutely depressed patients. Neuropsychobiology, 39, 63–70.

    Article  CAS  PubMed  Google Scholar 

  • Lewis, D. A., Curley, A. A., Glausier, J. R., & Volk, D. W. (2012). Cortical parvalbumin interneurons and cognitive dysfunction in schizophrenia. Trends in Neurosciences, 35, 57–67.

    Article  CAS  PubMed  Google Scholar 

  • Li, J., Zhao, L., You, Y., Lu, T., Jia, M., Yu, H., et al. (2015). Schizophrenia related variants in CACNA1C also confer risk of autism. PLoS One, 10, e0133247.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, W., Fan, C. C., Mäki-Marttunen, T., Thompson, W. K., Schork, A. J., Bettella, F., et al. (2018). A molecule-based genetic association approach implicates a range of voltage-gated calcium channels associated with schizophrenia. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 177, 454–467.

    Article  CAS  Google Scholar 

  • Lieberman, J. A., Perkins, D., Belger, A., Chakos, M., Jarskog, F., Boteva, K., et al. (2001). The early stages of schizophrenia: Speculations on pathogenesis, pathophysiology, and therapeutic approaches. Biological Psychiatry, 50, 884–897.

    Article  CAS  PubMed  Google Scholar 

  • Limpitikul, W. B., Dick, I. E., Ben-Johny, M., & Yue, D. T. (2016). An autism-associated mutation in CaV1.3 channels has opposing effects on voltage- and Ca(2+)-dependent regulation. Scientific Reports, 6, 27235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin, E., Kuo, P. H., Liu, Y. L., Yu, Y. W., Yang, A. C., & Tsai, S. J. (2018). A deep learning approach for predicting antidepressant response in major depression using clinical and genetic biomarkers. Frontiers in Psychiatry, 9, 290.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lipscombe, D., & Andrade, A. (2015). Calcium channel CaVα1 splice isoforms—Tissue specificity and drug action. Current Molecular Pharmacology, 8, 22–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lipscombe, D., Kongsamut, S., & Tsien, R. W. (1989). Alpha-adrenergic inhibition of sympathetic neurotransmitter release mediated by modulation of N-type calcium-channel gating. Nature, 340, 639–642.

    Article  CAS  PubMed  Google Scholar 

  • Lipscombe, D., Allen, S. E., & Toro, C. P. (2013a). Control of neuronal voltage-gated calcium ion channels from RNA to protein. Trends in Neurosciences, 36, 598–609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lipscombe, D., Andrade, A., & Allen, S. E. (2013b). Alternative splicing: Functional diversity among voltage-gated calcium channels and behavioral consequences. Biochimica et Biophysica Acta, 1828, 1522–1529.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y., Harding, M., Pittman, A., Dore, J., Striessnig, J., Rajadhyaksha, A., et al. (2014). Cav1.2 and Cav1.3 L-type calcium channels regulate dopaminergic firing activity in the mouse ventral tegmental area. Journal of Neurophysiology, 112, 1119–1130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu, C. W., Lin, T. Y., Huang, S. K., & Wang, S. J. (2018). 5-HT1B receptor agonist CGS12066 presynaptically inhibits glutamate release in rat hippocampus. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 86, 122–130.

    Article  CAS  Google Scholar 

  • Luo, X., Rosenfeld, J. A., Yamamoto, S., Harel, T., Zuo, Z., Hall, M., et al. (2017). Clinically severe CACNA1A alleles affect synaptic function and neurodegeneration differentially. PLoS Genetics, 13, e1006905.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lupien-Meilleur, A., Jiang, X., Lachance, M., Taschereau-Dumouchel, V., Gagnon, L., Vanasse, C., et al. (2021). Reversing frontal disinhibition rescues behavioural deficits in models of CACNA1A-associated neurodevelopment disorders. Molecular Psychiatry, 26(12), 7225–7246.

    Article  CAS  PubMed  Google Scholar 

  • Malberg, J. E. (2004). Implications of adult hippocampal neurogenesis in antidepressant action. Journal of Psychiatry & Neuroscience, 29, 196–205.

    Google Scholar 

  • Mallinger, A. G., Thase, M. E., Haskett, R., Buttenfield, J., Luckenbaugh, D. A., Frank, E., et al. (2008). Verapamil augmentation of lithium treatment improves outcome in mania unresponsive to lithium alone: Preliminary findings and a discussion of therapeutic mechanisms. Bipolar Disorders, 10, 856–866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mallmann, R. T., Elgueta, C., Sleman, F., Castonguay, J., Wilmes, T., van den Maagdenberg, A., et al. (2013). Ablation of Ca(V)2.1 voltage-gated Ca2+ channels in mouse forebrain generates multiple cognitive impairments. PLoS One, 8, e78598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manoach, D. S., & Stickgold, R. (2019). Abnormal sleep spindles, memory consolidation, and schizophrenia. Annual Review of Clinical Psychology, 15, 451–479.

    Article  PubMed  PubMed Central  Google Scholar 

  • Manoach, D. S., Pan, J. Q., Purcell, S. M., & Stickgold, R. (2016). Reduced sleep spindles in schizophrenia: A treatable endophenotype that links risk genes to impaired cognition. Biological Psychiatry, 80, 599–608.

    Article  PubMed  Google Scholar 

  • Marrion, N. V., & Tavalin, S. J. (1998). Selective activation of Ca2+−activated K+ channels by co-localized Ca2+ channels in hippocampal neurons. Nature, 395, 900–905.

    Article  CAS  PubMed  Google Scholar 

  • Marschallinger, J., Sah, A., Schmuckermair, C., Unger, M., Rotheneichner, P., Kharitonova, M., et al. (2015). The L-type calcium channel Cav1.3 is required for proper hippocampal neurogenesis and cognitive functions. Cell Calcium, 58, 606–616.

    Article  CAS  PubMed  Google Scholar 

  • Martínez-Rivera, A., Hao, J., Tropea, T. F., Giordano, T. P., Kosovsky, M., Rice, R. C., et al. (2017). Enhancing VTA Cav1.3 L-type Ca2+ channel activity promotes cocaine and mood-related behaviors via overlapping AMPA receptor mechanisms in the nucleus accumbens. Molecular Psychiatry, 22, 1735–1745.

    Article  PubMed  PubMed Central  Google Scholar 

  • Medrihan, L., Sagi, Y., Inde, Z., Krupa, O., Daniels, C., Peyrache, A., et al. (2017). Initiation of behavioral response to antidepressants by cholecystokinin neurons of the dentate gyrus. Neuron, 95, 564–576.e4.

    Article  CAS  PubMed  Google Scholar 

  • Merikanto, I., Utge, S., Lahti, J., Kuula, L., Makkonen, T., Lahti-Pulkkinen, M., et al. (2019). Genetic risk factors for schizophrenia associate with sleep spindle activity in healthy adolescents. Journal of Sleep Research, 28, e12762.

    Article  PubMed  Google Scholar 

  • Metz, A. E., Jarsky, T., Martina, M., & Spruston, N. (2005). R-type calcium channels contribute to afterdepolarization and bursting in hippocampal CA1 pyramidal neurons. The Journal of Neuroscience, 25, 5763–5773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mineka, S., Watson, D., & Clark, L. A. (1998). Comorbidity of anxiety and unipolar mood disorders. Annual Review of Psychology, 49, 377–412.

    Article  CAS  PubMed  Google Scholar 

  • Moon, A. L., Haan, N., Wilkinson, L. S., Thomas, K. L., & Hall, J. (2018). CACNA1C: Association with psychiatric disorders, behavior, and neurogenesis. Schizophrenia Bulletin, 44, 958–965.

    Article  PubMed  PubMed Central  Google Scholar 

  • Moon, A. L., Brydges, N. M., Wilkinson, L. S., Hall, J., & Thomas, K. L. (2020). Cacna1c hemizygosity results in aberrant fear conditioning to neutral stimuli. Schizophrenia Bulletin, 46, sbz127.

    Article  Google Scholar 

  • Moosmang, S., Haider, N., Klugbauer, N., Adelsberger, H., Langwieser, N., Müller, J., et al. (2005). Role of hippocampal Cav1.2 Ca2+ channels in NMDA receptor-independent synaptic plasticity and spatial memory. The Journal of Neuroscience, 25, 9883–9892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mosheva, M., Serretti, A., Stukalin, Y., Fabbri, C., Hagin, M., Horev, S., et al. (2020). Association between CANCA1C gene rs1034936 polymorphism and alcohol dependence in bipolar disorder. Journal of Affective Disorders, 261, 181–186.

    Article  CAS  PubMed  Google Scholar 

  • Moskvina, V., Craddock, N., Holmans, P., Nikolov, I., Pahwa, J. S., Green, E., et al. (2009). Gene-wide analyses of genome-wide association data sets: Evidence for multiple common risk alleles for schizophrenia and bipolar disorder and for overlap in genetic risk. Molecular Psychiatry, 14, 252–260.

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee, A., Carvalho, F., Eliez, S., & Caroni, P. (2019). Long-lasting rescue of network and cognitive dysfunction in a genetic schizophrenia model. Cell, 178, 1387–1402.e14.

    Article  CAS  PubMed  Google Scholar 

  • Murat, S., Bigot, M., Chapron, J., König, G. M., Kostenis, E., Battaglia, G., et al. (2019). 5-HT2A receptor-dependent phosphorylation of mGlu2 receptor at Serine 843 promotes mGlu2 receptor-operated Gi/o signaling. Molecular Psychiatry, 24, 1610–1626.

    Article  CAS  PubMed  Google Scholar 

  • Nahar, L., Delacroix, B. M., & Nam, H. W. (2021). The role of parvalbumin interneurons in neurotransmitter balance and neurological disease. Frontiers in Psychiatry, 12, 679960.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakagawasai, O., Onogi, H., Mitazaki, S., Sato, A., Watanabe, K., Saito, H., et al. (2010). Behavioral and neurochemical characterization of mice deficient in the N-type Ca2+ channel alpha1B subunit. Behavioural Brain Research, 208, 224–230.

    Article  CAS  PubMed  Google Scholar 

  • Nandagopal, N., & Roux, P. P. (2015). Regulation of global and specific mRNA translation by the mTOR signaling pathway. Translation (Austin), 3, e983402.

    Google Scholar 

  • Nelson, R. J., & Trainor, B. C. (2007). Neural mechanisms of aggression. Nature Reviews. Neuroscience, 8, 536–546.

    Article  CAS  PubMed  Google Scholar 

  • Nestler, E. J., & Hyman, S. E. (2010). Animal models of neuropsychiatric disorders. Nature Neuroscience, 13, 1161–1169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newton, P. M., Orr, C. J., Wallace, M. J., Kim, C., Shin, H. S., & Messing, R. O. (2004). Deletion of N-type calcium channels alters ethanol reward and reduces ethanol consumption in mice. The Journal of Neuroscience, 24, 9862–9869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen, R., Venkatesan, S., Binko, M., Bang, J. Y., Cajanding, J. D., Briggs, C., et al. (2020). Cholecystokinin-expressing interneurons of the medial prefrontal cortex mediate working memory retrieval. The Journal of Neuroscience, 40, 2314–2331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nieratschker, V., Brückmann, C., & Plewnia, C. (2015). CACNA1C risk variant affects facial emotion recognition in healthy individuals. Scientific Reports, 5, 17349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Connell, K. S., McGregor, N. W., Malhotra, A., Lencz, T., Emsley, R., & Warnich, L. (2019). Variation within voltage-gated calcium channel genes and antipsychotic treatment response in a South African first episode schizophrenia cohort. The Pharmacogenomics Journal, 19, 109–114.

    Article  PubMed  Google Scholar 

  • O’Donovan, M. C., & Owen, M. J. (2016). The implications of the shared genetics of psychiatric disorders. Nature Medicine, 22, 1214–1219.

    Article  PubMed  Google Scholar 

  • O’Roak, B. J., Vives, L., Girirajan, S., Karakoc, E., Krumm, N., Coe, B. P., et al. (2012). Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature, 485, 246–250.

    Article  PubMed  PubMed Central  Google Scholar 

  • Okbay, A., Baselmans, B. M., De Neve, J. E., Turley, P., Nivard, M. G., Fontana, M. A., et al. (2016). Genetic variants associated with subjective well-being, depressive symptoms, and neuroticism identified through genome-wide analyses. Nature Genetics, 48, 624–633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oprea, T. I., & Mestres, J. (2012). Drug repurposing: Far beyond new targets for old drugs. The AAPS Journal, 14, 759–763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ortner, N. J., Kaserer, T., Copeland, J. N., & Striessnig, J. (2020). De novo CACNA1D Ca2+ channelopathies: Clinical phenotypes and molecular mechanism. Pflügers Archiv, 472, 755–773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pasparakis, E., Koiliari, E., Zouraraki, C., Tsapakis, E. M., Roussos, P., Giakoumaki, S. G., et al. (2015). The effects of the CACNA1C rs1006737 A/G on affective startle modulation in healthy males. European Psychiatry, 30, 492–498.

    Article  CAS  PubMed  Google Scholar 

  • Pazzaglia, P. J., Post, R. M., Ketter, T. A., Callahan, A. M., Marangell, L. B., Frye, M. A., et al. (1998). Nimodipine monotherapy and carbamazepine augmentation in patients with refractory recurrent affective illness. Journal of Clinical Psychopharmacology, 18, 404–413.

    Article  CAS  PubMed  Google Scholar 

  • Pelkey, K. A., Chittajallu, R., Craig, M. T., Tricoire, L., Wester, J. C., & McBain, C. J. (2017). Hippocampal GABAergic inhibitory interneurons. Physiological Reviews, 97, 1619–1747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Penzes, P., Cahill, M. E., Jones, K. A., VanLeeuwen, J. E., & Woolfrey, K. M. (2011). Dendritic spine pathology in neuropsychiatric disorders. Nature Neuroscience, 14, 285–293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perez-Reyes, E. (2003). Molecular physiology of low-voltage-activated t-type calcium channels. Physiological Reviews, 83, 117–161.

    Article  CAS  PubMed  Google Scholar 

  • Pierce, R. C., Quick, E. A., Reeder, D. C., Morgan, Z. R., & Kalivas, P. W. (1998). Calcium-mediated second messengers modulate the expression of behavioral sensitization to cocaine. The Journal of Pharmacology and Experimental Therapeutics, 286, 1171–1176.

    CAS  PubMed  Google Scholar 

  • Pinggera, A., Lieb, A., Benedetti, B., Lampert, M., Monteleone, S., Liedl, K. R., et al. (2015). CACNA1D de novo mutations in autism spectrum disorders activate Cav1.3 L-type calcium channels. Biological Psychiatry, 77, 816–822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinggera, A., Mackenroth, L., Rump, A., Schallner, J., Beleggia, F., Wollnik, B., et al. (2017). New gain-of-function mutation shows CACNA1D as recurrently mutated gene in autism spectrum disorders and epilepsy. Human Molecular Genetics, 26, 2923–2932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinggera, A., Negro, G., Tuluc, P., Brown, M. J., Lieb, A., & Striessnig, J. (2018). Gating defects of disease-causing de novo mutations in Cav1.3 Ca2+ channels. Channels (Austin, Tex.), 12, 388–402.

    Article  Google Scholar 

  • Post, R. M., & Kalivas, P. (2013). Bipolar disorder and substance misuse: Pathological and therapeutic implications of their comorbidity and cross-sensitisation. The British Journal of Psychiatry, 202, 172–176.

    Article  PubMed  PubMed Central  Google Scholar 

  • Price, W. A. (1987). Antipsychotic effects of verapamil in schizophrenia. The Hillside Journal of Clinical Psychiatry, 9, 225–230.

    CAS  PubMed  Google Scholar 

  • Price, W. A., & Pascarzi, G. A. (1987). Use of verapamil to treat negative symptoms in schizophrenia. Journal of Clinical Psychopharmacology, 7, 357.

    Article  CAS  PubMed  Google Scholar 

  • Puopolo, M., Raviola, E., & Bean, B. P. (2007). Roles of subthreshold calcium current and sodium current in spontaneous firing of mouse midbrain dopamine neurons. The Journal of Neuroscience, 27, 645–656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Purcell, S. M., Moran, J. L., Fromer, M., Ruderfer, D., Solovieff, N., Roussos, P., et al. (2014). A polygenic burden of rare disruptive mutations in schizophrenia. Nature, 506, 185–190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pushpakom, S., Iorio, F., Eyers, P. A., Escott, K. J., Hopper, S., Wells, A., et al. (2019). Drug repurposing: Progress, challenges and recommendations. Nature Reviews. Drug Discovery, 18, 41–58.

    Article  CAS  PubMed  Google Scholar 

  • Rajarajan, P., Borrman, T., Liao, W., Schrode, N., Flaherty, E., Casiño, C., et al. (2018). Neuron-specific signatures in the chromosomal connectome associated with schizophrenia risk. Science, 362, eaat4311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Randall, A. D., & Tsien, R. W. (1997). Contrasting biophysical and pharmacological properties of T-type and R-type calcium channels. Neuropharmacology, 36, 879–893.

    Article  CAS  PubMed  Google Scholar 

  • Redecker, T. M., Kisko, T. M., Schwarting, R. K. W., & Wöhr, M. (2019). Effects of Cacna1c haploinsufficiency on social interaction behavior and 50-kHz ultrasonic vocalizations in adult female rats. Behavioural Brain Research, 367, 35–52.

    Article  CAS  PubMed  Google Scholar 

  • Reid, J. G., Gitlin, M. J., & Altshuler, L. L. (2013). Lamotrigine in psychiatric disorders. The Journal of Clinical Psychiatry, 74, 675–684.

    Article  CAS  PubMed  Google Scholar 

  • Reimer, A. R., & Martin-Iverson, M. T. (1994). Nimodipine and haloperidol attenuate behavioural sensitization to cocaine but only nimodipine blocks the establishment of conditioned locomotion induced by cocaine. Psychopharmacology, 113, 404–410.

    Article  CAS  PubMed  Google Scholar 

  • Riemann, D., Krone, L. B., Wulff, K., & Nissen, C. (2020). Sleep, insomnia, and depression. Neuropsychopharmacology, 45, 74–89.

    Article  PubMed  Google Scholar 

  • Ripke, S., O’Dushlaine, C., Chambert, K., Moran, J. L., Kähler, A. K., Akterin, S., et al. (2013). Genome-wide association analysis identifies 13 new risk loci for schizophrenia. Nature Genetics, 45, 1150–1159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson, N., & Bergen, S. E. (2021). Environmental risk factors for schizophrenia and bipolar disorder and their relationship to genetic risk: Current knowledge and future directions. Frontiers in Genetics, 12, 686666.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruihua, M., Meng, Z., Nan, C., Panqi, L., Hua, G., Sijia, L., et al. (2021). Differences in facial expression recognition between unipolar and bipolar depression. Frontiers in Psychology, 12, 619368.

    Article  PubMed  PubMed Central  Google Scholar 

  • Saegusa, H., Kurihara, T., Zong, S., Kazuno, A., Matsuda, Y., Nonaka, T., et al. (2001). Suppression of inflammatory and neuropathic pain symptoms in mice lacking the N-type Ca2+ channel. The EMBO Journal, 20, 2349–2356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sagi, Y., Medrihan, L., George, K., Barney, M., McCabe, K. A., & Greengard, P. (2020). Emergence of 5-HT5A signaling in parvalbumin neurons mediates delayed antidepressant action. Molecular Psychiatry, 25, 1191–1201.

    Article  CAS  PubMed  Google Scholar 

  • Saliba, R. S., Gu, Z., Yan, Z., & Moss, S. J. (2009). Blocking L-type voltage-gated Ca2+ channels with dihydropyridines reduces gamma-aminobutyric acid type A receptor expression and synaptic inhibition. The Journal of Biological Chemistry, 284, 32544–32550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez-Roige, S., Fontanillas, P., Elson, S. L., Gray, J. C., de Wit, H., MacKillop, J., et al. (2019). Genome-wide Association studies of impulsive personality traits (BIS-11 and UPPS-P) and drug experimentation in up to 22,861 adult research participants identify loci in the CACNA1I and CADM2 genes. The Journal of Neuroscience, 39, 2562–2572.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schierberl, K., Hao, J., Tropea, T. F., Ra, S., Giordano, T. P., Xu, Q., et al. (2011). Cav1.2 L-type Ca2+ channels mediate cocaine-induced GluA1 trafficking in the nucleus accumbens, a long-term adaptation dependent on ventral tegmental area Ca(v)1.3 channels. The Journal of Neuroscience, 31, 13562–13575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schizophrenia, W. G. O. T. P. G. C. (2014). Biological insights from 108 schizophrenia-associated genetic loci. Nature, 511, 421–427.

    Article  Google Scholar 

  • Shimada, M., Miyagawa, T., Kawashima, M., Tanaka, S., Honda, Y., Honda, M., et al. (2010). An approach based on a genome-wide association study reveals candidate loci for narcolepsy. Human Genetics, 128, 433–441.

    Article  PubMed  Google Scholar 

  • Sinnegger-Brauns, M. J., Hetzenauer, A., Huber, I. G., Renström, E., Wietzorrek, G., Berjukov, S., et al. (2004). Isoform-specific regulation of mood behavior and pancreatic beta cell and cardiovascular function by L-type Ca 2+ channels. The Journal of Clinical Investigation, 113, 1430–1439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smail, M. A., Wu, X., Henkel, N. D., Eby, H. M., Herman, J. P., McCullumsmith, R. E., et al. (2021). Similarities and dissimilarities between psychiatric cluster disorders. Molecular Psychiatry, 26(9), 4853–4863.

    Article  PubMed  PubMed Central  Google Scholar 

  • Soeiro-de-Souza, M. G., Otaduy, M. C., Dias, C. Z., Bio, D. S., Machado-Vieira, R., & Moreno, R. A. (2012). The impact of the CACNA1C risk allele on limbic structures and facial emotions recognition in bipolar disorder subjects and healthy controls. Journal of Affective Disorders, 141, 94–101.

    Article  CAS  PubMed  Google Scholar 

  • Sohal, V. S., & Rubenstein, J. L. R. (2019). Excitation-inhibition balance as a framework for investigating mechanisms in neuropsychiatric disorders. Molecular Psychiatry, 24, 1248–1257.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sonnenschein, S. F., Gomes, F. V., & Grace, A. A. (2020). Dysregulation of midbrain dopamine system and the pathophysiology of schizophrenia. Frontiers in Psychiatry, 11, 613.

    Article  PubMed  PubMed Central  Google Scholar 

  • Splawski, I., Timothy, K. W., Sharpe, L. M., Decher, N., Kumar, P., Bloise, R., et al. (2004). Ca(V)1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell, 119, 19–31.

    Article  CAS  PubMed  Google Scholar 

  • Splawski, I., Timothy, K. W., Decher, N., Kumar, P., Sachse, F. B., Beggs, A. H., et al. (2005). Severe arrhythmia disorder caused by cardiac L-type calcium channel mutations. Proceedings of the National Academy of Sciences of the United States of America, 102, 8089–8096. discussion 8086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Splawski, I., Yoo, D. S., Stotz, S. C., Cherry, A., Clapham, D. E., & Keating, M. T. (2006). CACNA1H mutations in autism spectrum disorders. The Journal of Biological Chemistry, 281, 22085–22091.

    Article  CAS  PubMed  Google Scholar 

  • Stahl, E. A., Breen, G., Forstner, A. J., McQuillin, A., Ripke, S., Trubetskoy, V., et al. (2019). Genome-wide association study identifies 30 loci associated with bipolar disorder. Nature Genetics, 51, 793–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • StÄ™pnicki, P., Kondej, M., & Kaczor, A. A. (2018). Current concepts and treatments of schizophrenia. Molecules, 23, E2087.

    Article  PubMed  Google Scholar 

  • Steriade, M., Deschênes, M., Domich, L., & Mulle, C. (1985). Abolition of spindle oscillations in thalamic neurons disconnected from nucleus reticularis thalami. Journal of Neurophysiology, 54, 1473–1497.

    Article  CAS  PubMed  Google Scholar 

  • Striessnig, J., Koschak, A., Sinnegger-Brauns, M. J., Hetzenauer, A., Nguyen, N. K., Busquet, P., et al. (2006). Role of voltage-gated L-type Ca2+ channel isoforms for brain function. Biochemical Society Transactions, 34, 903–909.

    Article  CAS  PubMed  Google Scholar 

  • Strom, S. P., Stone, J. L., Ten Bosch, J. R., Merriman, B., Cantor, R. M., Geschwind, D. H., et al. (2010). High-density SNP association study of the 17q21 chromosomal region linked to autism identifies CACNA1G as a novel candidate gene. Molecular Psychiatry, 15, 996–1005.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki, S., & Rogawski, M. A. (1989). T-type calcium channels mediate the transition between tonic and phasic firing in thalamic neurons. Proceedings of the National Academy of Sciences of the United States of America, 86, 7228–7232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sykes, L., Haddon, J., Lancaster, T. M., Sykes, A., Azzouni, K., Ihssen, N., et al. (2019). Genetic variation in the psychiatric risk gene CACNA1C modulates reversal learning across species. Schizophrenia Bulletin, 45, 1024–1032.

    Article  PubMed  Google Scholar 

  • Takahashi, T., & Momiyama, A. (1993). Different types of calcium channels mediate central synaptic transmission. Nature, 366, 156–158.

    Article  CAS  PubMed  Google Scholar 

  • Takata, A., Ionita-Laza, I., Gogos, J. A., Xu, B., & Karayiorgou, M. (2016). De novo synonymous mutations in regulatory elements contribute to the genetic etiology of autism and schizophrenia. Neuron, 89, 940–947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takata, A., Miyake, N., Tsurusaki, Y., Fukai, R., Miyatake, S., Koshimizu, E., et al. (2018). Integrative analyses of de novo mutations provide deeper biological insights into autism spectrum disorder. Cell Reports, 22, 734–747.

    Article  CAS  PubMed  Google Scholar 

  • Takenaka, S., Sera, N., Tokiwa, H., Hirohata, I., & Hirohata, T. (1989). Identification of mutagens in Japanese pickles. Mutation Research, 223, 35–40.

    Article  CAS  PubMed  Google Scholar 

  • Tatti, R., Haley, M. S., Swanson, O. K., Tselha, T., & Maffei, A. (2017). Neurophysiology and regulation of the balance between excitation and inhibition in neocortical circuits. Biological Psychiatry, 81, 821–831.

    Article  PubMed  Google Scholar 

  • Temme, S. J., Bell, R. Z., Fisher, G. L., & Murphy, G. G. (2016). Deletion of the mouse homolog of CACNA1C disrupts discrete forms of hippocampal-dependent memory and neurogenesis within the dentate gyrus. eNeuro, 3, ENEURO.0118–16.2016.

    Article  PubMed  PubMed Central  Google Scholar 

  • Terrillion, C. E., Dao, D. T., Cachope, R., Lobo, M. K., Puche, A. C., Cheer, J. F., et al. (2017). Reduced levels of Cacna1c attenuate mesolimbic dopamine system function. Genes, Brain, and Behavior, 16, 495–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thankachan, S., Katsuki, F., McKenna, J. T., Yang, C., Shukla, C., Deisseroth, K., et al. (2019). Thalamic reticular nucleus parvalbumin neurons regulate sleep spindles and electrophysiological aspects of schizophrenia in mice. Scientific Reports, 9, 3607.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tigaret, C. M., Lin, T. E., Morrell, E. R., Sykes, L., Moon, A. L., O’Donovan, M. C., et al. (2021). Neurotrophin receptor activation rescues cognitive and synaptic abnormalities caused by hemizygosity of the psychiatric risk gene Cacna1c. Molecular Psychiatry, 26, 1748–1760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tombácz, D., Maróti, Z., Kalmár, T., Csabai, Z., Balázs, Z., Takahashi, S., et al. (2017). High-coverage whole-exome sequencing identifies candidate genes for suicide in victims with major depressive disorder. Scientific Reports, 7, 7106.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsuang, M. T., Bar, J. L., Stone, W. S., & Faraone, S. V. (2004). Gene-environment interactions in mental disorders. World Psychiatry, 3, 73–83.

    PubMed  PubMed Central  Google Scholar 

  • Tyagi, S., Bendrick, T. R., Filipova, D., Papadopoulos, S., & Bannister, R. A. (2019). A mutation in CaV2.1 linked to a severe neurodevelopmental disorder impairs channel gating. The Journal of General Physiology, 151, 850–859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uhrig, S., Vandael, D., Marcantoni, A., Dedic, N., Bilbao, A., Vogt, M. A., et al. (2017). Differential roles for L-type calcium channel subtypes in alcohol dependence. Neuropsychopharmacology, 42, 1058–1069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voglis, G., & Tavernarakis, N. (2006). The role of synaptic ion channels in synaptic plasticity. EMBO Reports, 7, 1104–1110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Völkening, B., Schönig, K., Kronenberg, G., Bartsch, D., & Weber, T. (2017). Deletion of psychiatric risk gene Cacna1c impairs hippocampal neurogenesis in cell-autonomous fashion. Glia, 65, 817–827.

    Article  PubMed  Google Scholar 

  • Waltz, J. A. (2017). The neural underpinnings of cognitive flexibility and their disruption in psychotic illness. Neuroscience, 345, 203–217.

    Article  CAS  PubMed  Google Scholar 

  • Wek, R. C., & Cavener, D. R. (2007). Translational control and the unfolded protein response. Antioxidants & Redox Signaling, 9, 2357–2371.

    Article  CAS  Google Scholar 

  • Whittington, M. A., Dolin, S. J., Patch, T. L., Siarey, R. J., Butterworth, A. R., & Little, H. J. (1991). Chronic dihydropyridine treatment can reverse the behavioural consequences of and prevent adaptations to, chronic ethanol treatment. British Journal of Pharmacology, 103, 1669–1676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie, Y., Huang, D., Wei, L., & Luo, X. J. (2018). Further evidence for the genetic association between CACNA1I and schizophrenia. Hereditas, 155, 16.

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu, W., Liu, Y., Chen, J., Guo, Q., Liu, K., Wen, Z., et al. (2018). Genetic risk between the CACNA1I gene and schizophrenia in Chinese Uygur population. Hereditas, 155, 5.

    Article  PubMed  Google Scholar 

  • Yatsenko, S. A., Hixson, P., Roney, E. K., Scott, D. A., Schaaf, C. P., Ng, Y. T., et al. (2012). Human subtelomeric copy number gains suggest a DNA replication mechanism for formation: Beyond breakage-fusion-bridge for telomere stabilization. Human Genetics, 131, 1895–1910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yau, S. Y., Li, A., & So, K. F. (2015). Involvement of adult hippocampal neurogenesis in learning and forgetting. Neural Plasticity, 2015, 717958.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zaitsev, A. V., Povysheva, N. V., Lewis, D. A., & Krimer, L. S. (2007). P/Q-type, but not N-type, calcium channels mediate GABA release from fast-spiking interneurons to pyramidal cells in rat prefrontal cortex. Journal of Neurophysiology, 97, 3567–3573.

    Article  CAS  PubMed  Google Scholar 

  • Zamponi, G. W., Striessnig, J., Koschak, A., & Dolphin, A. C. (2015). The physiology, pathology, and pharmacology of voltage-gated calcium channels and their future therapeutic potential. Pharmacological Reviews, 67, 821–870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, J., Tan, L., Ren, Y., Liang, J., Lin, R., Feng, Q., et al. (2016). Presynaptic excitation via GABAB receptors in habenula cholinergic neurons regulates fear memory expression. Cell, 166, 716–728.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, T., Zhu, L., Ni, T., Liu, D., Chen, G., Yan, Z., et al. (2018). Voltage-gated calcium channel activity and complex related genes and schizophrenia: A systematic investigation based on Han Chinese population. Journal of Psychiatric Research, 106, 99–105.

    Article  PubMed  Google Scholar 

  • Zharkovsky, A., Tötterman, A. M., Moisio, J., & Ahtee, L. (1993). Concurrent nimodipine attenuates the withdrawal signs and the increase of cerebral dihydropyridine binding after chronic morphine treatment in rats. Naunyn-Schmiedeberg’s Archives of Pharmacology, 347, 483–486.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, Y., Niimi, K., Li, W., & Takahashi, E. (2015). Role of Cav2. 2-mediated signaling in depressive behaviors. Integrative Molecular Medicine, 2, 369–372.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anjali M. Rajadhyaksha or Arturo Andrade .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Berry, C., Sun, H., Tkachev, V., Rajadhyaksha, A.M., Andrade, A. (2022). Novel Insights into the Role of Voltage-Gated Calcium Channel Genes in Psychiatric Disorders. In: Zamponi, G.W., Weiss, N. (eds) Voltage-Gated Calcium Channels . Springer, Cham. https://doi.org/10.1007/978-3-031-08881-0_21

Download citation

Publish with us

Policies and ethics