
Chapter 7
Two-body decay distributions beyond the
dilepton case

Throughout the previous chapters we explored in detail the properties of the angu-
lar distribution of the dilepton decay of a vector particle. We will now illustrate a
general method to calculate the shape of the angular distribution for any considered
two-body decay, and survey examples for different kinds of initial particles, with
integer or half-integer J.

We will focus on the following questions.

• How does the shape of the angular distribution depend on J and Jz? What are the
observable parameters and their allowed physical values? How does the distribu-
tion depend on the identity of the decay products?

• If the nature of the decaying particle has not yet been identified and its angular
momentum properties are unknown, how (and with what assumptions) can the
measurement of the angular distribution lead to the determination of J?

• Apart from the previously discussed smearing effects in the indirect production
from the decay of a J = 0 state, how can a J > 0 particle produce a completely
isotropic two-body decay distribution, irrespectively of its polarization? Why is
such an observation not a paradox?
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244 7 Two-body decay distributions beyond the dilepton case

7.1 Wigner rotation matrices

We saw in Chapter 1 how to calculate the dilepton decay angular distribution of a
vector particle produced in a certain angular momentum configuration (its “polar-
ization”), namely |J, Jz〉 = |1, 0〉z or |1,±1〉z, or a superposition of these three cases,
with respect to a given quantization axis z. In the following chapters we discussed
in detail the properties of this distribution. In this chapter we consider several more
decay distributions, involving initial and final particles of different categories, fo-
cusing on how they can be calculated in their general form and on how they reflect
the angular momentum properties of the decaying particle.

The principal tool in all these calculations is the set of rotation transformations
represented by the Wigner matrices [1]. Each matrix is identified by the value of
the total angular momentum of the decaying particle, J. Its elements, DJ

LL′ (ϑ, ϕ),
describe how an angular momentum state, with Jz projection L along a given axis z,
transforms to a superposition of states of all possible projections L′ along a different
set of axes, rotated with respect to the original one by the spherical coordinates ϑ
and ϕ. We introduced the Wigner matrices in Eq. 1.1 and defined them in Eq. 1.2,
here reproduced for completeness:

DJ
LL′ (ϑ, ϕ) = e−iLϕ dJ

LL′ (ϑ) eiL′ϕ . (7.1)

Before continuing with the description of these matrices, we will make a paren-
thesis to clarify that we use in this book a simpler notation than the one found in
Refs. [2, 3] and other publications, where the rotation matrix elements are functions
of the three Euler angles necessary to define a completely generic rotation in space,
D(α, β, γ). That general transformation is the succession of a rotation around the z
axis by the angle α, followed by a rotation around the (new) y axis by the angle β,
and by a third rotation around, again, the (latest) z axis, this time by the angle γ, just
as illustrated (except for the names of the angles) in Fig. 2.22, for the most generic
change of reference frame.

In all calculations considered in this book, and in the general method used to cal-
culate decay distributions, more examples of which will be seen in this chapter, the
Wigner matrices are employed to rotate a direction, the one of the quantization axis,
and not a three-dimensional shape; the number of angles parametrizing the rotation
of a direction is two, not three, as would be needed to fully define the rotation of a
generic three dimensional object with its own (not cylindrically symmetric) shape,
like a generic wave function.

In fact, while the measurement of the decay angular distribution of a particle can
be considered as a measurement of the particle’s wave function, the wave functions
of the decay products, which are the objects to which we apply the rotations in the
calculation procedure, are not observed, unless they, in turn, decay and this further
step is included as component of a higher-dimensional angular analysis.

Examples of the latter case are the cascade processes seen in Chapter 6, where
the further decaying “daughter” (a J/ψ or Υ meson, or a Z boson) was represented by
an additional Wigner matrix element changing the polarization axis of the dilepton
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system as seen in the daughter’s rest frame, therefore “giving life” to the daughter’s
three-dimensional nature and adding two more angles to the list of the observable
degrees of freedom.

However, when the decay product is the “final” one, it has no associated “three-
dimensional” structure that would justify the use of three angles for its rotation from
a quantization “frame” to another: what we rotate in this case is only its quantization
axis z and this operation depends only on the two angular coordinates defining the
direction of the new axis with respect to the old axis.

To obtain this “minimal” rotation from the potentially more generic one de-
scribed by the Wigner matrix, we have to impose that the two rotation components
(first and third) around the z axis are the opposite of each other, i.e. γ = −α. In this
way, as can be recognized by observing the passages of the “cartoon” in Fig. 2.22
and inverting the direction of the last rotation step, the net effect is effectively a ro-
tation made around the axis perpendicular to the plane containing the old and the
new z axes, which is, in fact, the only meaningful option when no information exists
about the shape of the rotated object. This is why we can use a simpler notation than
the general one:

DJ
LL′ (ϕ, ϑ,−ϕ) → DJ

LL′ (ϑ, ϕ) . (7.2)

It can now be observed that the complex exponential terms in Eq. 7.1 correspond
to the two opposite rotations around the z axis (which, as explained in Section 2.15
and represented by Eq. 2.40, can be seen as shifts of the ϕ coordinate), while the
(“reduced”) d-matrix elements, dJ

LL′ (ϑ), represent the polar-angle displacement from
the z axis caused by the rotation around the y axis.

As already mentioned in Section 1.3, the reduced Wigner matrices can be com-
puted with the expression

dJ
LL′ (ϑ) =

min(J+L,J−L′)∑
t=max(0,L−L′)

(−1)t

×

√
(J + L)! (J − L)! (J + L′)! (J − L′)!

(J + L − t)! (J − L′ − t)! t! (t − L + L′)!
(7.3)

×

(
cos

ϑ

2

)2J−(L′−L+2t) (
sin

ϑ

2

)L′−L+2t

.

We alert the reader to the fact that two alternative conventions exist in the litera-
ture for this definition [1–4], only differing for a sign in certain configurations. They
are entirely equivalent for the final physical results provided that, naturally, the same
convention is systematically used in all the steps of the calculations. In this book we
adopted and consistently used the convention of Ref. [2].

The number of computations can be significantly reduced through the use of the
following relations (equivalent to Eq. 1.4):
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dJ
L,L′ (ϑ) = dJ

−L′,−L(ϑ) ,

dJ
L,L′ (ϑ) = (−1)L′−L dJ

L′,L(ϑ) .
(7.4)

The dJ
L,L′ (ϑ) matrices are shown in Tables 7.1–7.6, respectively for J = 1/2, 3/2,

1, 2, 3, and 4. In all tables we used two abbreviations, c ≡ cos(ϑ/2) and s ≡ sin(ϑ/2)
(so that c2 + s2 = 1), to provide more compact expressions. It is worth noting that,
since 0 < ϑ < π, both c and s are always positive. With this notation, dJ

J,J = c2J

and dJ
−J,J = s2J . As clearly seen in the definition of Eq. 7.3, all matrix elements are

polynomials of order 2J in c and s.
Obviously, no table is needed for the J = 0 case, given that the only matrix

element appearing in the formulas for its calculation, d0
0,0, is independent of the

Table 7.1 The reduced Wigner matrix for the J = 1/2 case, d1/2
L,L′ (ϑ), with c ≡ cos(ϑ/2) and

s ≡ sin(ϑ/2).

L
L′

−1/2 +1/2

−1/2 c s

+1/2 −s c

Table 7.2 The reduced Wigner matrix for the J = 3/2 case, d3/2
L,L′ (ϑ).

L
L′

−3/2 −1/2 +1/2 +3/2

−3/2 c3
√

3 c2 s
√

3 c s2 s3

−1/2 −
√

3 c2 s c (1 − 3s2) −(1 − 3c2) s
√

3 c s2

+1/2
√

3 c s2 (1 − 3c2) s c (1 − 3s2)
√

3 c2 s

+3/2 −s3
√

3 c s2 −
√

3 c2 s c3

Table 7.3 The reduced Wigner matrix for the J = 1 case, d1
L,L′ (ϑ).

L
L′

−1 0 +1

−1 c2
√

2 c s s2

0 −
√

2 c s 2 c2 − 1
√

2 c s

+1 s2 −
√

2 c s c2
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Table 7.4 The reduced Wigner matrix for the J = 2 case, d2
L,L′ (ϑ).

L
L′

−2 −1 0 +1 +2

−2 c4 2 c3 s
√

6 c2 s2 2 cs3 s4

−1 −2 c3 s c2 (1 − 4 s2) −
√

6 cs (1 − 2 c2) −(1 − 4 c2) s2 2 cs3

0
√

6 c2 s2
√

6 cs (1 − 2 c2) 1 − 6 c2 s2 −
√

6 cs (1− 2 c2)
√

6 c2 s2

+1 −2 cs3 −(1 − 4 c2) s2
√

6 cs (1 − 2 c2) c2 (1 − 4 s2) 2 c3 s

+2 s4 −2 cs3
√

6 c2 s2 −2 c3 s c4

Table 7.5 The reduced Wigner matrix for the J = 3 case, d3
L,L′ (ϑ).

L
L′

−3 −2 −1 0 +1 +2 +3

−3 c6
√

6 c5 s
√

15 c4 s2 2
√

5 c3 s3
√

15 c2 s4
√

6 cs5 s6

−2 −
√

6 c5 s c4

(1 − 6 s2)

√
10 c3 s

(1 − 3 s2)
−
√

30 c2 s2

(1 − 2 c2)
−
√

10 cs3

(1 − 3 c2)
−s4

(1 − 6 c2)
√

6 cs5

−1
√

15 c4 s2 −
√

10 c3 s
(1 − 3 s2)

c2 (1 + 5 s2

(1 − 3 c2))
2
√

3 cs
(1 − 5 c2 s2)

s2 (1 + 5 c2

(1 − 3 s2))
−
√

10 cs3

(1 − 3 c2)
√

15 c2 s4

0 −2
√

5 c3 s3 −
√

30 c2 s2

(1 − 2 c2)
−2
√

3 cs
(1 − 5 c2 s2)

−(1 − 2 c2)
(1−10 c2 s2)

2
√

3 cs
(1 − 5 c2 s2)

−
√

30 c2 s2

(1 − 2 c2) 2
√

5 c3 s3

+1
√

15 c2 s4

√
10 cs3

(1 − 3 c2)
s2 (1 + 5 c2

(1 − 3 s2))
−2
√

3 cs
(1 − 5 c2 s2)

c2 (1 + 5 s2

(1 − 3 c2))

√
10 c3 s

(1 − 3 s2)
√

15 c4 s2

+2 −
√

6 cs5 −s4

(1 − 6 c2)

√
10 cs3

(1 − 3 c2)
−
√

30 c2 s2

(1 − 2 c2)
−
√

10 c3 s
(1 − 3 s2)

c4

(1 − 6 s2)
√

6 c5 s

+3 s6 −
√

6 cs5
√

15 c2 s4 −2
√

5 c3 s3
√

15 c4 s2 −
√

6 c5 s c6

polar and azimuthal decay angles, always resulting in an isotropic angular decay
distribution.

To compare these compact expressions with those used in Chapter 1 and else-
where, it is useful to keep in mind a few trigonometric identities, such as sin(ϑ) =

2 cos(ϑ/2) sin(ϑ/2), cos2(ϑ/2) = 1/2 (1 + cosϑ), and sin2(ϑ/2) = 1/2 (1 − cosϑ).
For visibility purposes, Table 7.6 is reported in truncated form, omitting the

columns corresponding to +1 ≤ L′ ≤ +4 and several of the terms in the displayed
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Table 7.6 The reduced Wigner matrix for the J = 4 case, d4
L,L′ (ϑ). The missing matrix elements

can be obtained using Eq. 7.4, as shown in the inset.
L

L′

−
4

−
3

−
2

−
1

0

−
4

c8

−
3

−
2
√

2
c7

s
c6

(1
−

8s
2 )

−
2

2
√

7
c6

s2
−
√

14
c5

s(
1
−

4s
2 )

c4
(1

5
−

42
c2

+
28

c4 )

−
1

−
2
√

14
c5

s3
√

7
c4

s2
(3
−

8s
2 )

−
√

2
c3

s(
10
−

35
c2

+
28

c4 )
c2

(−
10

+
60

c2
−

10
5c

4
+

56
c6 )

0
√

70
c4

s4
2
√

35
c3

s3
(1
−

2c
2 )

√
10

c2
(3
−

17
c2

+
28

c4
−

14
c6 )

2
√

5
cs

(1
−

9c
2

+
21

c4
−

14
c6 )

1
−

10
c2

s2
(2
−

7c
2

+
7c

4 )

+
1

−
2
√

14
c3

s5
−
√

7
c2

s4
(3
−

8c
2 )

−
√

2
cs

3
(3
−

21
c2

+
28

c4 )
−

s2
(1
−

18
c2

+
63

c4
−

56
c6 )

+
2

2
√

7
c2

s6
√

14
cs

5
(1
−

4c
2 )

s4
(1
−

14
c2

+
28

c4 )

+
3

−
2
√

2
cs

7
−

s6
(1
−

8c
2 )

+
4

s8

L
L′

−
4

−
3

−
2

−
1

0
+

1
+

2
+

3
+

4

−
4

d 4
,4
−

d 4
,3

d 4
,2
−

d 4
,1

d 4
,0
−

d 4
,−

1
d 4
,−

2
−

d 4
,−

3
d 4
,−

4

−
3

d 4
,3

d 3
,3
−

d 3
,2

d 3
,1
−

d 3
,0

d 3
,−

1
−

d 3
,−

2
d 3
,−

3
−

d 4
,−

3

−
2

d 4
,2

d 3
,2

d 2
,2
−

d 2
,1

d 2
,0
−

d 2
,−

1
d 2
,−

2
−

d 3
,−

2
d 4
,−

2

−
1

d 4
,1

d 3
,1

d 2
,1

d 1
,1
−

d 1
,0

d 1
,−

1
−

d 2
,−

1
d 3
,−

1
−

d 4
,−

1

0
d 4

,0
d 3

,0
d 2

,0
d 1

,0
d 0

,0
−

d 1
,0

d 2
,0
−

d 0
,3

d 4
,0

+
1

d 4
,−

1
d 3

,−
1

d 2
,−

1
d 1

,−
1

d 1
,0

d 1
,1
−

d 2
,1

d 3
,1
−

d 4
,1

+
2

d 4
,−

2
d 3

,−
2

d 2
,−

2
d 2
,−

1
d 2
,0

d 2
,1

d 2
,2
−

d 3
,2

d 4
,2

+
3

d 4
,−

3
d 3

,−
3

d 3
,−

2
d 3
,−

1
d 3
,0

d 3
,1

d 3
,2

d 3
,3
−

d 4
,3

+
4

d 4
,−

4
d 4
,−

3
d 4
,−

2
d 4
,−

1
d 4
,0

d 4
,1

d 4
,2

d 4
,3

d 4
,4
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columns. The missing elements can be easily derived from those shown, using the
symmetry relations presented in Eq. 7.4, as illustrated in the inset table.

7.2 Generic formulas for two-body decay distributions

To derive the shape of the dilepton decay distribution of the J/ψ, in Chapter 1, we
used the following relevant physical constraints: a) the decaying particle has total
angular momentum J = 1; b) the products are a fermion and an anti-fermion, of spin
1/2 and mass negligible with respect to that of the mother particle; c) an interme-
diate vector boson (a virtual photon) couples to the final fermions preserving their
helicities. These strong requirements effectively meant that we were considering
a transition between two J = 1 (vector) systems, with the final one being “trans-
versely polarized” (Jz′ = ±1 along the common flight direction of the two fermions
in the J/ψ rest frame). The resulting distributions and the meaning of their shape
parameters were, obviously, specific to this well defined physical case.

We will now consider the most general case of two-body decays, O → X1X2,
without any a priori constraint on the underlying physics. The result will depend
on several amplitudes, in growing number with increasing values of the angular
momentum quantum numbers of the initial (J) and final (J1 and J2) states. In this
approach, physical hypotheses can be applied a posteriori, by restricting the pos-
sible number and values of the relevant amplitudes. Vice versa, an experimental
measurement determining the observable shape parameters will put constraints on
such amplitudes and, therefore, on the admissible hypotheses for the process be-
ing observed, sometimes even helping in the determination of the properties of the
decaying particle.

For our completely generic description, we define a set of amplitudes,AM,G′1,G
′
2
.

As illustrated in Fig. 7.1-left, each coefficient represents the combined probability
that O has angular momentum projection M along the chosen quantization axis z

X  ; 
J  ,

 G’
1

1
1

z’

θ,φ

z’

z

z z’
y y’
x x’

a)

z

b)

DGG’
J

G = - J

+J
X  X  ; J, G(θ,φ)Σ 1 2

O; J, M X  X
  ; 

J, G
’ =

 G’ +
 G’

1
2

1
2

X  ; 
J  ,

 G’
2

2
2 A J, J  , J

M, G’ , G’1 2

1 2

Fig. 7.1 Diagram of the O → X1X2 decay as seen in the O rest frame, specifying notations for
axes, angles and angular momentum states of the initial and final particles.
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(for example its momentum in the laboratory, that is the HX axis, or the direction
of one or the other colliding beams, the two GJ axes, or the average of the two, the
CS axis) and X1 and X2 have angular momentum projections G′1 and G′2 along the
z′ axis, defined by their common flight direction in the O rest frame (with a purely
conventional orientation along the X1 momentum).

We will consider the AM,G′1,G
′
2

amplitudes as generic complex numbers, without
imposing any specific constraints. These are the coefficients that contain informa-
tion on the underlying process dynamics, determining both the polarization state of
O (the amplitudes aM used in Chapter 1 are included in AM,G′1,G

′
2
) and the angu-

lar momentum configurations of the decay products. They depend on the elemen-
tary couplings in the considered production and decay processes, which determine
the allowed combinations of initial- and final-state “helicities” (angular momentum
projections) and their probabilities. For example, in the decays of Standard Model
vector gauge bosons (virtual photon, Z, W, gluon) into sufficiently light fermions,
helicity conservation forbids terms with opposite fermion spin projections along z′,
so that AM,+1/2,−1/2 = AM,−1/2,+1/2 = 0. Moreover, considering for simplicity the
leading-order process of Fig. 2.2-c, dominating towards low pT, and choosing the
CS frame, helicity conservation also forbids the Jz projection M = 0 for the initial
state, that is,A 0,G′1,G

′
2

= 0.
We start by calculating the amplitude of the transition O(M) → X1(G′1) X2(G′2),

which, by definition, involves the individual coefficientAM,G′1,G
′
2
. Similarly to what

we did in Chapter 1, and as illustrated in Fig. 7.1-right, we use the Wigner matrix to
“project” the angular momentum state of the X1X2 system from the z′ axis to the z
axis:

|X1X2; J, G′1 + G′2 〉z′ =

+J∑
G=−J

DJ
G,G′1+G′2

(ϑ, ϕ) |X1X2; J, G 〉z . (7.5)

Indicating with BM,G′1,G
′
2

the transition operator, the probability amplitude of the
process can be written as

A
[
O(M)→ X1(G′1) X2(G′2)

]
= z′〈X1X2; J, G′1 + G′2 | BM,G′1,G

′
2
|O; J,M〉z

=

+J∑
G=−J

DJ∗
G,G′1+G′2

(ϑ, ϕ) z〈X1X2; J, G | BM,G′1,G
′
2
|O; J,M〉z

=

+J∑
G=−J

DJ∗
G,G′1+G′2

(ϑ, ϕ) δM,GAM,G′1,G
′
2

= DJ∗
M,G′1+G′2

(ϑ, ϕ) AM,G′1,G
′
2
,

(7.6)

where the relation z〈X1X2; J, G | BM,G′1,G
′
2
|O; J,M〉z = δM,GAM,G′1,G

′
2

contains the
conservation of Jz, in the Kronecker delta, and the process dynamics, inAM,G′1,G

′
2
.

The following step in making the calculations more and more general consists in
considering O to be produced not as a pure state having Jz = M, but as a superpo-
sition of Jz eigenstates; this is equivalent to taking the sum of all possible transition
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amplitudes given by the previous equation:

A
[
O→ X1(G′1) X2(G′2)

]
=

+J∑
M=−J

A
[
O(M)→ X1(G′1) X2(G′2)

]
. (7.7)

We note that, having defined AM,G′1,G
′
2

to include the probability that O has Jz

projection M, the sum does not contain the further coefficient aM as it did, for ex-
ample, in Eq. 1.10.

The square modulus of this amplitude gives the partial angular distribution for
the specific angular momentum configurations G′1 and G′2 of the decay products:

WG′1,G
′
2
(cosϑ, ϕ) =∑

|M| ≤ J, |N | ≤ J

A∗
[
O(M)→ X1(G′1) X2(G′2)

]
A

[
O(N)→ X1(G′1) X2(G′2)

]
(7.8)

=
∑

|M| ≤ J, |N | ≤ J

DJ
M,G′1+G′2

(ϑ, ϕ)DJ∗
N,G′1+G′2

(ϑ, ϕ)A∗M,G′1,G′2 AN,G′1,G
′
2
.

As the final step, we sum over all allowed X1 and X2 angular momentum config-
urations (which are not observed, because eventual decay distributions of X1 and X2
are not part of the analysis):

W(cosϑ, ϕ) =
∑

|G′1 | ≤ J1, |G′2 | ≤ J2

|G′1+G′2 | ≤min{J, J1+J2}

WG′1,G
′
2
(cosϑ, ϕ) . (7.9)

The sum is made over all values of G′1 and G′2 satisfying angular momentum con-
servation. Besides the obvious relations |G′1| ≤ J1 and |G′2| ≤ J2, the inequality
|G′1 + G′2| ≤ min{J, J1 + J2} accounts for the fact that the relation |J1 − J2| ≤ J ≤
J1 + J2 is not necessarily satisfied when the decay products X1 and X2 have a relative
orbital angular momentum I1,2, i.e. J = J1 + J2 + I1,2. The presence of a nonzero I1,2
explains, for example, the existence of decays like B+ → J/ψK+, where J = 0 and
|J1 − J2| = 1, so that J < |J1 − J2|. In the next sections we will address several more
cases, for example those where a particle of J = 2 decays to two spin-1/2 fermions,
or a particle of J = 1 decays to two J = 0 particles, for which J > J1 + J2. When
this latter condition happens, |G′1 +G′2| never reaches the value J, because the orbital
angular momentum I1,2 has always projection zero along the quantization axis of
the decay products (z′) and does not contribute to a possible larger magnitude of
G′1 + G′2.

The dependence of the distribution on the dynamical amplitudes AM,G′1,G
′
2

is
usually reorganized into a set of complex coefficients,

ρG′
M,N =

∑
|G′1 | ≤ J1, |G′2 | ≤ J2

G′1+G′2=G′

A∗M,G′1,G
′
2
AN,G′1,G

′
2
, (7.10)



252 7 Two-body decay distributions beyond the dilepton case

which form, for each G′, the so-called “spin density matrix”, a hermitian matrix
(ρG′

M,N = ρG′∗
N,M) with trace ∑

|G′1 | ≤ J1, |G′2 | ≤ J2

G′1+G′2=G′, |M| ≤ J

∣∣∣AM,G′1,G
′
2

∣∣∣2 = 1 . (7.11)

Therefore, the angular distribution is written, combining Eqs. 7.8, 7.9 and 7.10, as

W(cosϑ, ϕ) =
∑

|G′ | ≤min(J,J1+J2)
|M| ≤ J, |N | ≤ J

ρG′
M,N D

J
M,G′ (ϑ, ϕ)DJ∗

N,G′ (ϑ, ϕ)

=
∑

|G′ | ≤min(J,J1+J2)
|M| ≤ J, |N | ≤ J

ρG′
M,N dJ

M,G′ (cosϑ) dJ
N,G′ (cosϑ) e−i (M−N)ϕ .

(7.12)

The ultimate generalization consists in considering the sum over all possible sub-
processes contributing to the production of O, with weights proportional to their
relative yields. For this purpose it is sufficient to define the corresponding weighted
average of the density matrix,

ρG′
M,N =

∑
|G′1 | ≤ J1, |G′2 | ≤ J2

G′1+G′2=G′

〈
A∗M,G′1,G

′
2
AN,G′1,G

′
2

〉
, (7.13)

while the final expression of the angular distribution remains formally the one of
Eq. 7.12.

A note of caution is due about the possibly misleading notation used for the dy-
namical amplitudes AM,G′1,G

′
2

and for the spin density matrix elements ρG′
M,N . These

objects appear in expressions like Eqs. 7.8 and 7.12, where we see them together
with Wigner matrix elements, which are the only ones explicitly having “J” as in-
dex. However, they actually depend on all the details of the production and decay
dynamics and, in particular, on J, J1, and J2, despite the fact that these symbols are
not explicitly shown as indices.

7.3 The polar projection of the decay distribution

There are cases where only the polar angle dependence of the decay distribution
is effectively interesting for the study of the process under consideration. The az-
imuthal dependence of the distribution obviously vanishes when the particle is pro-
duced in 2→ 1 processes and the polarization axis z is chosen along the only mean-
ingful direction, that of the relative momentum of the colliding particles (CS frame).
The same happens along any other polarization axis if the particle is produced in a
single, pure Jz eigenstate along that direction. For these cases, it is convenient to
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consider directly the generic expression of the cosϑ distribution, as obtained by
averaging Eq. 7.12 over ϕ. Given that the azimuthal dependence is exclusively con-
tained in the complex exponential factor of that expression, and that

1
2π

∫ +π

−π

e−i (M−N)ϕ dϕ = δM,N , (7.14)

the resulting averaged distribution is

w(cosϑ) =
∑

|G′ |≤min(J,J1+J2)
|M|≤J

σG′
M

[
dJ

M,G′ (cosϑ)
]2
, (7.15)

which only depends on the squared moduli of the helicity amplitudes, that is, on the
“diagonal” (and real) ρG′

M,M terms:

σG′
M ≡ ρG′

M,M =
∑

|G′1 | ≤ J1, |G′2 | ≤ J2

G′1+G′2 = G′

〈 ∣∣∣AM,G′1,G
′
2

∣∣∣2 〉
. (7.16)

As can be seen in Tables 7.1–7.6, the square of any reduced d-matrix element
is, for all cases of J, both integer and half-integer, a linear combination of terms
of the kind sinQ(ϑ/2) cosP(ϑ/2) with even Q and P values, that is, of terms of the
kind (1 − cosϑ)Q/2 (1 + cosϑ)P/2. The maximum overall power Q + P in each d2

expression is 4J. Therefore, the polar angle distribution will be a polynomial of
order 2J in cosϑ, with 2J independent observable coefficients, λi,

w(cosϑ | λ) =
1
N

 1 +

2J∑
i=1

λi (cosϑ)i

 , (7.17)

where the normalization N is equal to 1 +
∑
λ j / ( j + 1), with the sum being made

only over the even natural numbers j ≤ 2J. The terms with odd powers of cosϑ are
parity violating.

We should keep in mind that any information about the interference between
the different angular momentum eigenstates composing the initial state is lost in
the polar projection of the distribution. The decaying particle can be a coherent or
an incoherent superposition of eigenstates. As seen in Chapter 1, these two phys-
ically different cases lead to different azimuthal anisotropies, properly reflected in
Eq. 7.12, but not to different polar anisotropies, thereby being indistinguishable in
the polar projection. As has been discussed a number of times in this book, neglect-
ing the possible existence of significant azimuthal anisotropies can create problems,
both for the accuracy of the measurement and for the interpretation of the results.

On the other hand, as we study cases of increasing J, the simplification of con-
sidering only the cosϑ dimension becomes more and more convenient. For J = 1,
in the most general case, including parity-violating effects, the maximum number of
observable parameters of the full distribution is eight (five of them potentially non-



254 7 Two-body decay distributions beyond the dilepton case

negligible if the particle is observed inclusively, without referring the polarization
axes to possible accompanying particles in the event), while the polar projection
only has two measurable parameters, clearly allowing for a substantial simplifica-
tion of the analysis procedure.

In the J = 2 case, the total number of parameters increases from 8 to 24, their
measurement requiring very challenging procedures, and even in the simpler option
of inclusive observation we still need to consider 14 “significant parameters”. In-
stead, when only considering the cosϑ distribution, the number of parameters drops
to four, vastly reducing the complexity of the experimental analysis.

7.4 The general J = 1 two-body decay distribution

In the derivation of the decay distribution of a vector particle into two leptons, in
Chapter 1, we have used the physical constraint of helicity conservation, which im-
poses that the final dilepton has projection G′ = G′1 + G′2 = ±1 along the decay
direction in the mother’s rest frame. By removing this constraint we can obtain, us-
ing Eq. 7.12, the most general two-body decay distribution of any J = 1 state. Its
parametrization is formally unchanged with respect to the dilepton case (Eq. 1.29):

W(cosϑ, ϕ) =
3

4π
1

(3 + λϑ)
(1 + λϑ cos2ϑ

+ λϕ sin2ϑ cos2ϕ + λϑϕ sin2ϑ cosϕ

+ λ⊥ϕ sin2ϑ sin2ϕ + λ⊥ϑϕ sin2ϑ sinϕ

+ 2Aϑ cosϑ + 2Aϕ sinϑ cosϕ + 2A⊥ϕ sinϑ sinϕ) .

(7.18)

Compared to those of Eq. 1.28, however, the shape parameters have now the
additional dependence on the G′ = 0 amplitudes (through the elements ρ0

M,N of the
spin density matrix):

λϑ = 1/D
[
ρ+1

+1,+1 + ρ−1
+1,+1 − 2 ρ0

+1,+1 + ρ+1
−1,−1 + ρ−1

−1,−1 − 2 ρ0
−1,−1

− 2
(
ρ+1

0,0 + ρ−1
0,0 − 2 ρ0

0,0

)]
,

λϕ = 2/D Re
(
ρ+1

+1,−1 + ρ−1
+1,−1 − 2 ρ0

+1,−1

)
,

λ⊥ϕ = 2/D Im
(
ρ+1

+1,−1 + ρ−1
+1,−1 − 2 ρ0

+1,−1

)
,

λϑϕ =
√

2/D Re
[
ρ+1

+1,0 + ρ−1
+1,0 − 2 ρ0

+1,0 −
(
ρ+1

0,−1 + ρ−1
0,−1 − 2 ρ0

0,−1

)]
,

λ⊥ϑϕ =
√

2/D Im
[
ρ+1

+1,0 + ρ−1
+1,0 − 2 ρ0

+1,0 −
(
ρ+1

0,−1 + ρ−1
0,−1 − 2 ρ0

0,−1

)]
,

(7.19)
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Aϑ = 1/D
(
ρ+1

+1,+1 − ρ
−1
+1,+1 + ρ−1

−1,−1 − ρ
+1
−1,−1

)
,

Aϕ =
√

2/D Re
(
ρ+1

+1,0 − ρ
−1
+1,0 + ρ+1

0,−1 − ρ
−1
0,−1

)
,

A⊥ϕ =
√

2/D Im
(
ρ+1

+1,0 − ρ
−1
+1,0 + ρ+1

0,−1 − ρ
−1
0,−1

)
,

where the denominator is

D = ρ+1
+1,+1 + ρ−1

+1,+1 + 2 ρ0
+1,+1 + ρ+1

−1,−1 + ρ−1
−1,−1 + 2 ρ0

−1,−1 + 2
(
ρ+1

0,0 + ρ−1
0,0

)
.

The parameters transform from one reference frame to another exactly as in the
dilepton case (Section 2.15). Their physically allowed domain is shown in Fig. 7.2,
where its two-dimensional projections are represented by the blue areas. Superim-
posed to these are, in gold, the corresponding projections (reproduced from Fig. 3.4)
for the dilepton (or light quark-antiquark) decay via intermediate vector boson, illus-
trating how the additional requirement of helicity conservation (ρ0

M,N = 0) restricts
the parameter domain. We also remind that the same constraint is present in the
decays to a J = 0 particle accompanied by a real photon; for example, the decays
ρ0 → `+`− and ρ0 → π0γ have identical angular distributions.

Frame-independent polarization parameters exist and are formally defined, as
functions of the λ and A parameters, exactly as those of the dilepton distribution
(Chapter 3), even if their meaning in terms of natural polarizations can be different.

This generalized J = 1 decay distribution can be used to describe many physical
decays beyond the dilepton case, such as, for instance, Z → J/ψ γ, the radiative
transitions of J = 1 mesons, like χc1 → J/ψ γ or ψ(2S) → χcJ γ (with J = 0, 1, 2),
and several hadronic decays [5].

As an illustration, we will calculate the polar anisotropy parameter of the de-
cays χc1 → J/ψ γ and Z → J/ψ γ (and the equivalent ones with the charmonium
states replaced by the corresponding bottomonium ones). The decaying particle is
the generic combination |O 〉 =

∑+1
M=−1 aM |1, M 〉. As done in Section 6.7 to cal-

culate the J/ψ decay anisotropy, we refer to the axis z′ (Fig. 6.32), along which the
J/ψ and the γ have back-to-back momenta in the mother’s rest frame, and to the
coefficients listed in Table 6.2, expressing the relative probabilities of the configu-
rations with specific Jz′ projections of J/ψ and γ. This time, the method is applied to
calculate the anisotropy of the χc1 or Z two-body decay.

Considering the column J = 1 of Table 6.2 and keeping only the lines with K′ =

±1 (transversely polarized photon), we see that there are two allowed configurations
with G′ = L′ + K′ = 0, having total weight 1/2 + 1/2 = 1, while the cases G′ = +1
and G′ = −1 only have one configuration each, with weight 1/2. The J/ψ γ state is
then “polarized”, because the three cases, G′ = −1, 0 and +1, have unequal weights:
as will be discussed in Section 7.8, this is a condition for the observability of the
polarization of the mother particle. The diagonal spin densities (i.e. the squared
amplitudes) σG′

M = ρG′
M,M are proportional to those weights, times the probability

|aM |
2 that the decaying state |O 〉 has Jz = M:
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Fig. 7.2 Allowed parameter regions of the two-body decay distribution of a J = 1 particle. The
largest areas (blue) represent the most general domain while the inner areas (gold) represent the
dilepton decay case. In the most general case there are no upper bounds on λϑ and |λϑϕ|, but the
bound λϑ < 3 was added to enable the graphical representation.

σ+1
M = σ−1

M ∝
1
2
|aM |

2 , σ0
M ∝ |aM |

2 . (7.20)

Substituted in Eq. 7.19, with the normalization |a−1|
2 + |a0|

2 + |a+1|
2 = 1, these give

λϑ = −
1 − 3 |a0|

2

3 − |a0|
2 . (7.21)

This is the polar anisotropy of the J/ψ (or photon) emission direction in the χc1
rest frame, equal (as already seen in Section 6.6) to −1/3, 0 and +1 when, respec-
tively, |a0|

2 = 0, 1/3 and 1, while values of λϑ smaller than −1/3 or larger than
+1 are forbidden. Repeating the exercise for the decay where the emitted photon
is virtual (as in the case χc1 → J/ψ γ∗), this time including in the count, therefore,
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Fig. 7.3 A longitudinally (top panels) or transversely (bottom panels) polarized vector particle O
produces two different decay angular distributions when it decays into a J = 0 meson and its
antimeson (left panels) or into a lepton-antilepton pair (right panels).

the K′ = 0 term, we can see that now the three cases, G′ = −1, 0 and +1, are
equiprobable and, for any M, the anisotropy parameters are zero: the J/ψ is emitted
isotropically in the χc rest frame, independently of the χc polarization. This confirms
the result found, with a different method, in Section 6.8.

It is interesting to consider the case where the two final particles have both spin
J = 0, illustrated by the left drawings of Fig. 7.3. This example is “complementary”
to the dilepton one (shown in the right drawings of the same figure): the Jz′ projec-
tion G′ = 0 of the final system is not only allowed, but is now the only physical
possibility, given that the relative orbital component I = 1, required by angular mo-
mentum conservation, has zero projection along the common direction of two back-
to-back products. The maximum allowed domain is not different from the general
case shown in blue in Fig. 7.2, except that the parity-violating asymmetries Aϑ, Aϕ,
and A⊥ϕ must always vanish, for the same reason why Aϑ can only be zero when
the initial state has zero Jz projection (Sections 1.3 and 1.4): the squared matrix
element (d1

M,0)2, just like (d1
0,G′ )

2, is a function of only the parity conserving expres-
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sion cos2 ϑ (Table 7.3). Relevant physical cases include, for example, the decays
ρ(770)±,0 → π±π0 / π+π−, φ(1020)→ K+K−, and Υ(4S)→ BB [5].

The particles ρ(770), φ(1020), and Υ(4S) also decay to dileptons and it is inter-
esting to compare the shapes of the angular distributions of two decay channels. The
decay into a pair of J = 0 mesons gives an interesting illustration of the seemingly
strange fact that, as seen in Fig. 7.2, λϑ (and therefore |λϑϕ|) can assume values larger
than +1. Actually, λϑ even tends to +∞ when the spin density matrix element ρ0

0,0
dominates over all others, given that, as seen in Eq. 7.19, it is the only element not
appearing in the denominator (or constant factor) D, which therefore tends to van-
ish. This limit corresponds to the hypothetical case when the vector particle ρ(770),
φ(1020), orΥ(4S) is produced longitudinally polarized (M = 0) in the chosen frame.
Equations 7.18 and 7.19 are then simply replaced by

W(cosϑ, ϕ) =
3

4π
cos2 ϑ , (7.22)

a shape very different from the one of the dilepton decay distribution (where, for
any λϑ, a significant fraction of events is emitted at around cosϑ = 0) and in partic-
ular, as shown in Fig. 7.3-a, from the one of the dilepton decay of a longitudinally
polarized vector particle, which is ∝ 1 − cos2 ϑ (Fig. 7.3-b).

In the case of transverse polarization the roles are inverted: in the di-meson decay,
when only the ρ0

M,N matrix elements with M,N = ±1 are nonzero λϑ assumes the
maximum possible negative value, −1 (Fig. 7.3-c), while λϑ = +1 in the dilepton
decay, where the nonzero elements are ρ±1

M,N (Fig. 7.3-d). For example, the Υ(4S)
resonance is produced transversely polarized in e+e− colliders because of helicity
conservation in the coupling between the colliding leptons and the intermediate vir-
tual photon; Fig. 7.3-c represents, therefore, the distribution of the emission direc-
tions of the B and B mesons with respect to the direction, z, of the beams.

A further example leading to this distribution shape is represented by the decays
of ρ and φ mesons to pion or kaon pairs, when the ρ and φ are produced (always
transversely polarized) in the radiative decays H → ρ γ or H → φ γ; in this case
the natural axis with respect to which λϑ = −1 is the meson direction in the H rest
frame (cHX frame).

7.5 Polar anisotropy of the J = 2 two-body decay distribution

Expanding Eq. 7.15 and reordering the result according to Eq. 7.17, we obtain the
polar projection of the two-body decay distribution of a J = 2 particle, described by
four independent parameters:

λ1 = 4 (β22 − 2 β11 + 4 β12) /D ,

λ2 = 6 (α22 − α00 − 2α02 − 2α11 + 4α01) /D ,
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λ3 = 4 (β22 + 4 β11 − 4 β12) /D , (7.23)

λ4 = (α22 + 9α00 + 6α02 + 16α11 − 24α01 − 8α12) /D ,

with D = α22 + α00 + 6α02 + 4α11 + 8α12 ,

and

αi, j = σ
j
i + σi

j + σ
− j
−i + σ−i

− j + σ
− j
i + σi

− j + σ
j
−i + σ−i

j

βi, j = σ
j
i + σi

j + σ
− j
−i + σ−i

− j −
(
σ
− j
i + σi

− j + σ
j
−i + σ−i

j

)
.

(7.24)

Given the, respectively, symmetric and antisymmetric definitions of αi, j and
βi, j by exchange between initial- and final-state helicities, λ2 and λ4 are parity-
conserving, while λ1 and λ3 are parity-violating.

As a simple application of these relations, along the line of the previous section,
where we considered the radiative χc1 or Z decays to J/ψ, we examine here the
analogous decay χc2 → J/ψ γ, where now | χc2〉 =

∑+2
M=−2 aM | 2, M〉. The relevant

weights in Table 6.2 are 1, 1, 1/2, 1/2, and 1/6 + 1/6 = 1/3, respectively for the
J/ψ γ configurations G′ = L′ + K′ = +2, −2, +1, −1, and 0. Therefore,

σ+2
M = σ−2

M ∝ |aM |
2 , σ+1

M = σ−1
M ∝

1
2
|aM |

2 , σ0
M ∝

1
3
|aM |

2 , (7.25)

and Eq. 7.23 gives, after some algebra, the polar anisotropy of the J/ψ emission in
the χc2 rest frame:

λ2 =

3
[

2
(
|a+2|

2 |a−2|
2
)
−

(
|a+1|

2 |a−1|
2
)
− 2 |a0|

2
]

6
(
|a+2|

2 |a−2|
2
)

+ 9
(
|a+1|

2 |a−1|
2
)

+ 10 |a0|
2
,

λ1 = λ3 = λ4 = 0 .

(7.26)

The parameter λ2 has values between −3/5 and +1, being equal to −3/5, −1/3,
and +1 when the χc2 is produced with the respective Jz projections M = 0, ±1,
and ±2, as already found in Section 6.6. When the emitted photon is virtual (χc2 →

J/ψ γ∗) and the cases with K′ = 0 are allowed, the same procedure leads to the fully
isotropic and polarization-independent result λ1 = λ2 = λ3 = λ4 = 0, as in the χc1
case and as already found in Section 6.8.

The physical domain of parameter space depends on the type of decay products
and on the production mechanism; some examples are shown in Figs. 7.4 and 7.5.
The grey contours in both figures represent the allowed regions including all pos-
sible physical cases: they reflect only angular momentum conservation and rotation
invariance, which shape the general dependences of the parameters λi on the dif-
ferent process amplitudes, as described by Eq. 7.23. The more restricted, coloured
areas represent specific physics hypotheses.
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Fig. 7.4 Allowed parameter regions of the polar projection of the two-body decay distribution of
a J = 2 particle O. The largest areas (grey) represent the most general domain. The intermediate
areas (red+blue) represent any of two equivalent cases: O decays into two real photons; O is pro-
duced alone from the scattering of two real gluons (and the measurement is made in the CS frame).
The smallest areas (blue) represent the case where both hypotheses are satisfied. There is no upper
bound on λ2 and no lower bound on λ4.

The union of the blue and red areas in Fig. 7.4 corresponds to the case where the
decay products are two real photons, a condition translating into σ±1

M = 0 for any
M, given that G′ = ±1 would mean that one of the two photons is not transversely
polarized. Known J = 2 particles seen in the photon-photon channel are, for exam-
ple, a2(1320), a2(1700), η2(1870), and X(3915), the latter with spin assignment still
uncertain between J = 0 and J = 2 [5].

Given the symmetry of the equations in Eq. 7.23, in particular the properties of
αi, j and βi, j (Eq. 7.24) by exchange of the i and j indices, identical contours (blue
plus red) are obtained by reversing the role of initial and final states, forbidding this
time that the decaying particle is produced in the M = ±1 state (σG′

±1 = 0 for any G′).
This corresponds, for example, to the production via scattering of two real gluons
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Fig. 7.5 Allowed parameter regions of the polar projection of the two-body decay distribution of
a J = 2 particle O. The largest areas (grey) represent the most general domain. The intermediate
areas (red+blue+orange) represent the case in which O decays into two J = 1/2 fermions. The blue
areas correspond to the hypothesis that O is produced alone from the scattering of two real gluons
and decays into two J = 1/2 fermions, for measurements made in the CS frame; alternatively,
they describe the decay into two J = 0 particles. The orange areas refer to the G′ = ±1 case, for
example a decay into J = 0 particle plus photon. There is no upper bound on λ2 and no lower
bound on λ4.

in 2 → 1 processes (that is, with no recoiling particle); in this case, however, the
contours refer only to a measurement where the polarization axis is chosen along
the scattering direction of the gluons (CS frame).

When either the elementary production process is initiated by two identical par-
ticles or the decay products are two identical particles, the parity-violating terms λ1
and λ3 obviously vanish, resulting in simple lines or dots as allowed regions in the
two-dimensional projected domains. The smallest, blue areas show the case when
both of these hypotheses apply: the particle is produced in gluon-gluon fusion and
decays into two photons.
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This intersection is particularly interesting in the search for unknown boson res-
onances of mass, m, higher than the mass of any known particle, as discussed in
the next section; in fact, such objects would be observed in the domain of very low
pT/m values, where the presence of a recoiling particle is not necessary nor prob-
able. The di-photon decay represented, for example, the discovery channel of the
Higgs boson.

Hypotheses on the properties of the fundamental couplings involved can, ob-
viously, further restrict the allowed regions or even fix the values of the λi pa-
rameters. For example, considering the gluon-gluon to photon-photon case (where
λ1 = λ3 = 0), the hypothesis of a graviton-like J = 2 particle interacting with
SM bosons with no helicity flip [6] (corresponding to the additional conditions
σG′

0 = σ0
M = 0 for any G′ and M: overall, only G′ = ±2 and M = ±2 are al-

lowed) leads to λ2 = 6 and λ4 = 1, the rightmost vertex of the blue triangle in the
λ2–λ4 plane.

Further examples are shown in Fig. 7.5. Here the intermediate areas, in colour
(union of blue, red, and orange), represent the case in which the particle decays into
two J = 1/2 fermions, but with no assumption of helicity conservation, therefore
only forbidding the G′ = ±2 projection: σ±2

M = 0.
The blue areas (blue plus orange in the λ4 vs. λ2 case) are obtained by, addition-

ally, imposing that also the G′ = ±1 component is absent, σ±1
M = σ±2

M = 0: this case
corresponds, for example, to decays into two J = 0 particles, as in the decays of
a2(1320) and a2(1700) to ηπ or KK [5].

Because of the symmetry of these conditions by exchange of final and initial
state, as mentioned above, the same blue contours also refer to the joint requirement
that the particle is produced alone from the scattering of two real gluons (suppres-
sion of M = ±1, in the CS frame) and decays into two J = 1/2 fermions, so that
σG′
±1 = σ±2

M = 0.
The orange areas describe the case of a decay to a final state having always Jz′

projection G′ = ±1. This happens, for example, if the daughters are a J = 0 particle
and a photon, as in the decay a2(1320)→ π±γ [5].

Figure 7.6 shows the shapes assumed by the angular distribution for the different
combinations of initial and final state angular momentum projections, in the parity-
conserving case (λ1 = λ3 = 0). Only the examples with |G′| ≤ |M| are drawn:
the remaining ones are related to these through the above-mentioned symmetry by
exchange of M with G′.

Parity violation is possible in three out of the six distinct cases shown in Fig. 7.6.
The parity asymmetry is parametrized by the amplitude combinations β11, β12 and
β22 in Eq. 7.23: whenever the initial or final state have zero Jz or J′z projections, λ1
and λ3 vanish. The corresponding distributions are shown in Fig. 7.7 for the two
maximal and opposite asymmetry effects.

The anisotropy parameters corresponding to the shapes shown in Figs. 7.6
and 7.7 are indicated on the λ2 − λ4 and λ1 − λ3 maps of Fig. 7.8. The Grail-shaped
distribution defined by M = ±1,G′ = 0 (or vice-versa) represents the asymptotic
vertex of the domain area at λ2 → +∞, λ4 → −∞, where w(cosϑ) ∝ cos2 ϑ sin2 ϑ.
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Fig. 7.6 Shapes of the angular distributions of the parity-conserving two-body decay O → X1X2
of a J = 2 particle, for all combinations of angular momentum projections of O along z (M) and
of the X1X2 system along z′ (G′). Off-diagonal combinations with |G′| > M, here omitted, can be
obtained by exchanging M with G′.

7.6 Case study: spin characterization of a heavy di-photon
resonance

The above-mentioned graviton hypothesis was one of the several models considered
as possible interpretations of the “Higgs-like” resonance observed by the ATLAS
and CMS experiments [7, 8], before its definitive identification. We will now exam-
ine this latter physical example as an illustration of how the determination of the
shape of the decay distribution can lead, with minimal assumptions, to the charac-
terization of an unknown particle.



264 7 Two-body decay distributions beyond the dilepton case

yx

z

yx

z

y
x

z

y
x

z

yx

z

yx

z

M • G’ < 0M • G’ > 0

M = ±2

M = ±1

M = ±1

G’ = ±2

G’ = ±2

G’ = ±1

M = ±2
G’ = ±1

or

Fig. 7.7 Shapes of the angular distributions of the maximally parity violating two-body decay
O → X1X2 of a J = 2 particle, for the three relevant combinations (rows) of angular momentum
projections of O along z (M) and of the X1X2 system along z′ (G′), and for the two opposite signs
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As a first step in the determination of the angular momentum quantum number
of the hypothetical new resonance, it is interesting to note that a particle assumed
to be produced with no recoil from the fusion of two real gluons and decaying into
two real photons always produces a significant polar anisotropy (λi , 0 for some i)
with respect to the scattering direction of the gluons, except, obviously, in the J = 0
case, corresponding to H→ γγ.
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Fig. 7.8 The (λ2, λ4) and (λ1, λ3) coordinates of the polarization examples shown in Figs. 7.6
and 7.7.

This effect is seen in Fig. 7.4 for the J = 2 case, being λ4 always ≥ 1. It can,
moreover, be generalized to other J values. The J = 1 case is excluded by the
Landau–Yang theorem [9, 10], stating that a J = 1 particle cannot decay into two
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real (transversely polarized) photons (nor, equivalently, be produced alone by two
transversely polarized gluons). Let us consider then J = 3 and J = 4.

The polar projection of the di-photon decay distribution of a J = 3 particle pro-
duced by gluon-gluon fusion is described by the parameters

λ2 = 3 (3α00 + 10α02 − 5α22) /D ,

λ4 = 10 (−3α00 − 6α02 + α22) /D ,

λ6 = (25α00 + 30α02 + 9α22) /D ,

(7.27)

with D = 4α22 and αi j defined as in Eq. 7.24.
The corresponding J = 4 decay parameters are

λ2 = 4 (−45α00 − 160α02 + 52α22) /D ,

λ4 = 10 (111α00 + 312α02 − 32α22) /D ,

λ6 = −140 (15α00 + 32α02 + 4α22) /D ,

λ8 = 49 (25α00 + 40α02 + 16α22) /D ,

with D = 9α00 + 40α02 + 16α22 .

(7.28)

In both cases the parity-violating λi parameters (odd i) vanish. The parameter
domains for J = 2, 3 and 4 in the CS frame are shown in Fig. 7.9. The minimum
distance from the origin (λi = 0 for any i, corresponding to J = 0) increases from
J = 2 to J = 3 to J = 4 and, in general, should increase with J, reflecting the
higher level of relative polarization represented by the limitation of the initial- and
final-state helicities to M = 0,±2 and G′ = 0,±2: the larger is the modulus of J, the
more of its projections become forbidden (for example, ±3 in the J = 3 case, ±3
and ±4 in the J = 4 case, etc.).

It is interesting to note that, as shown in Fig. 7.10, the three domains have no
intersections between them and also not with the J = 0 point (λi = 0 for any i).
Therefore, a sufficiently-precise measurement of the di-photon decay distribution
can provide an unambiguous spin characterization, independent of further specific
hypotheses on the identity of the particle and how it is produced and interacts.

Figure 7.11 illustrates the dependence of the observable cosϑ distribution on J,
for the J = 2, 3 and 4 cases. The curves were obtained by scanning the (respectively,
two-, three- and four-dimensional) physical domains of the λi parameters.

A more immediate geometrical illustration of the J dependence of the angular
distribution is given by Fig. 7.12, for each of the three allowed combinations of
gluon-gluon and photon-photon polarizations: (M = 0,G′ = 0), (M = ±2,G′ = 0)
(or vice-versa), and (M = ±2,G′ = ±2). The recognizable shape differences seen in
these figures show that it is always possible to unambiguously resolve the value of
J between the three options.

The experimental precision needed to achieve a significant discrimination obvi-
ously depends on J and on the actual values of the polarization parameters, that is,
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on the identity of the particle. Figure 7.10 includes two ellipses representing putative
measurements of different uncertainties. Both include the origin λ2 = λ4 = 0, which
corresponds to the isotropic distribution that only a J = 0 particle can yield if pro-
duced by gluon-gluon fusion. The larger experimental contour excludes the λ2 = 6,
λ4 = 1 point, eliminating the hypothesis that the decaying boson is a graviton-like
J = 2 particle of the kind mentioned above. However, it does not rule out hypothet-
ical J = 2 (or even J = 3) boson identities corresponding to the smallest values that
λ2 and λ4 can have for those angular momentum values. The inner ellipse illustrates
another hypothetical measurement, sufficiently precise to exclude the full J = 2 and
J = 3 domains, thereby leading to the model-independent spin characterization of a
J = 0 particle.
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7.7 Decay distributions of half-integer spin particles

Expanding Eq. 7.12 for J = 1/2, we find that the most general distribution is

W(cosϑ, ϕ) =
1

4π
(1 + νϑ cosϑ

+ νϕ sinϑ cosϕ (7.29)
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(7.30)

The three parameters measure differences between yields characterized by a
given spin orientation of the final state and those with the opposite spin orienta-
tion, with respect to a given initial state configuration. They clearly represent parity
asymmetries. In fact only parity-violating decays show anisotropic decay distribu-
tions. This is the case, for example, of the decays of the top quark into a W boson
and a b quark, and of the Λ hyperon into a proton and a pion.

The decay anisotropy due to parity violation is measurable only if the particle is
also produced polarized, with its spin preferentially aligned along a certain “posi-
tive” or “negative” direction in the chosen polarization frame; if this does not hap-
pen, the decay angles cannot be referred to a reference direction maintaining con-
sistent orientation event after event and the corresponding parity violation becomes
unobservable. In fact, each anisotropy parameter can be thought as the product of
two parameters, one expressing the polarization induced by the production mecha-
nism, the other being the parity-violating asymmetry of the decay, and it is nonzero
only when both are.

For example, the top quark seemingly decays almost isotropically in tt̄ produc-
tion [11, 12], because of lack of the polarization of the corresponding QCD produc-
tion mechanism; however, its intrinsic left-handed nature is revealed with significant
decay anisotropies in single-t events [13], where it is produced polarized.

The polarization of the Λ is an exception to the rule that the natural polarization
axis tends to stay, at least on average, inside the production plane. In fact, since
the mid-1970’s fixed-target experiments have been showing [14] that the polariza-
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Fig. 7.13 Allowed parameter regions of the two-body decay distribution of a J = 1/2 particle.

tion is largest along a quantization axis perpendicular to the production plane. The
implications of this unexpected observation on the underlying QCD mechanisms,
which must confer a polarization to the s quark, have been the subject of several
experimental and theoretical studies [15], but the question is still open. It remains
true that in symmetric collisions and in the limit of zero longitudinal momentum (xF
or y) the anisotropy along such axis vanishes, as confirmed by the small polarization
measured by the ALICE experiment at the LHC [16].

The physically allowed domain of the ν parameters, shown in Fig. 7.13 in its
three projections, is simply a sphere defined by the relation

ν̃ =

√
ν2
ϑ

+ ν2
ϕ + ν⊥2

ϕ ≤ 1 . (7.31)

It is easy to recognize that, under a generic rotation of the polarization frame
Rz(ω) Ry(ζ) Rz(ψ) (see Section 2.15), the parameters νϑ, νϕ, and ν⊥ϕ simply transform
according to the same rotation as the vector (z, x, y):
ν′ϑ

ν′ϕ

ν⊥′ϕ

 =


cos ζ sin ζ cosψ sin ζ sinψ

− sin ζ cosω cos ζ cosω cosψ − sinω sinψ cos ζ cosω sinψ + sinω cosψ

sin ζ sinω − cos ζ sinω cosψ − cosω sinψ − cos ζ sinω sinψ + cosω cosψ



νϑ

νϕ

ν⊥ϕ

 .
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Fig. 7.14 Shape of the decay distribution of a J = 1/2 particle produced fully polarized and
decaying with maximum parity asymmetry along the chosen z axis, when the initial and final states
have same-sign (left) or opposite-sign (right) projections M and G′.

The rotation preserves ν̃, which, therefore, represents the maximum measurable
value of the asymmetry νϑ along any chosen reference axis z and is obviously in-
variant for any frame transformation, while νϑ, νϕ and ν⊥ϕ are themselves invariant
by rotations around, respectively, the z, x and y axes.

Another way of expressing these considerations on the rotational property of the
distribution is that the three angular expressions cosϑ, sinϑ cosϕ and sinϑ sinϕ
entering Eq. 7.29 are equal, respectively, to the direction cosines cos θz, cos θx and
cos θy. It is an option for the experimental analysis to consider, in fact, the three
one-dimensional distributions of these variables, which have the form w(cos θz) ∝
1 + νϑ cos θz, etc., and yield the three parameters νϑ, νϕ and ν⊥ϕ individually, even if
with statistical correlations more difficult to be accounted for, since the number of
independent angular degrees of freedom remains only two.

Figure 7.14 shows the shape of the distribution in the extreme cases when the
production and decay asymmetries are (for best visualization) maximum along the
chosen axis, that is, w(cosϑ) = 1

2 (1 ± cosϑ).
We finally report the expressions for the polar anisotropy parameters of the decay

of a J = 3/2 particle:

λ1 =
(
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2
1
2

+ 3β 3
2

3
2
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3
2

)
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2
1
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3
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2
3
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)
/D , (7.32)
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where αi j and βi j are the parity-conserving and parity-violating amplitude combi-
nations defined in Eq. 7.24. The most general domain of these parameters is repre-
sented by the grey areas in Fig. 7.15, while the smaller red areas refer to the decay
where G′ = ±1/2, corresponding for example to the decays of the J = 3/2 N, ∆,
and Λ baryons into proton–pion and proton–kaon, and of the Ω to Λ–kaon [5].

While the decay of a J = 1/2 particle is always isotropic in the absence of parity-
violating effects, this is not true for the J = 3/2 case, where the angular distribution
in the parity-conserving case has the form ∝ 1+λ2 cos2 ϑ, with λ2 included between
−1 and +3.

The shapes assumed by the distribution for all combinations of natural polar-
izations of the initial state (along z) and of the final state (along z′) are shown in
Fig. 7.16. The first two columns refer to the maximally parity-violating cases where
initial- and final- state helicities have, respectively, always the same or always oppo-
site signs, while the third column shows the parity-conserving distributions where
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Fig. 7.16 Shape of the angular distribution produced by a J = 3/2 particle in a pure Jz state (M)
decaying into a two-body system being a pure Jz′ state (G′); the colums represent, respectively, the
two maximally and oppositely parity-violating cases and the parity-conserving case.

the signs of the helicities are uncorrelated. The (λ1, λ2, λ3) values corresponding to
these shapes are shown in Fig. 7.17.

7.8 When “polarized” and “anisotropic” are seemingly not
equivalent

After seeing expressions of the angular distribution parameters for generic decay
channels, we can discuss the relation between the concepts of “particle polariza-
tion” and “decay anisotropy” in a more complete way, with respect to what was
possible by examining the dilepton decay case in the previous chapters. Referring
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in particular to the J = 1 case (Eq. 7.19), we now see a general feature: even con-
sidering one individual production process, where the particle is fully polarized, for
example in the (longitudinal) Jz = 0 state (that is, the matrix elements ρG′

0,0 are the
only nonzero ones), if the final state can have G′ = −1, 0, or +1 with identical
probabilities (ρ−1

0,0 = ρ0
0,0 = ρ+1

0,0), then the distribution appears to be isotropic. The
same result can be seen for any other angular momentum configuration of the initial
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particle, being, for example, λϑ a sum of terms of the kind ρ+1
M,M + ρ−1

M,M − 2ρ0
M,M .

In other words and more generally, the polarization of the decaying particle is ob-
servable through a measurable anisotropy of its two-body decay distribution only
if also the final state is “polarized”, being a superposition of Jz′ eigenstates with
unequal weights. This is a completely general condition, satisfied, for example, also
by the expressions of the polar anisotropy parameters of the distribution for a J = 2
particle (Eq. 7.23): all λi coefficients can be seen to vanish when it is imposed that
σ

j
i = σk

i for any i, j, and k. As we already mentioned in Section 7.7, each anisotropy
parameter of the J = 1/2 decay reflects the product of initial state polarization and
partity-violating decay asymmetry.

It remains true that a J = 1 particle is always produced intrinsically polarized,
in the sense defined by Theorem 1.1, presented in Section 1.10: in every individual
event it has always angular projection M = ±1 along some direction. As we have
seen in Chapters 5 and 6, smearing effects, happening when that direction changes
event after event with respect to the chosen reference frame, can attenuate or even
completely hide the natural polarization. Assuming that none of such effects is at
play here, there is a general condition for the observability of the polarization of a
particle in its two-body decay: the final state must have a non-uniform pattern of
spin orientations G′, effectively providing the “analyzing power” of the decay. This
is what usually happens, as seen in the examples considered, thanks to either the
coupling properties of the involved particles (as helicity conservation in the dilepton
decay) or simply because of angular momentum conservation, which often forbids
certain Jz′ configurations of the final state.

Concerning the latter case, we have seen, in the previous sections, examples
where the polarization becomes observable because J1 + J2 < J. Another possi-
bility is that one of the decay particles has a definite polarization, as in the case of
the transverse photon.

This fact is well illustrated by the already noticed difference between the angular
distributions of the decays χcJ → J/ψ γ and χcJ → J/ψ γ∗. In the first decay the
emitted photon is real and transverse. Its Jz′ projection (Fig. 6.32), which can only
be ±1, rules out, because of angular momentum conservation, certain Jz′ projections
of the J/ψ, which is, therefore, polarized. Above all, the J/ψ γ system is polarized,
that is, the values of its total Jz′ projection, G′ = L′ + K′ = −J, . . . ,+J, are not
equally probable, leading, as seen in Sections 7.4 (χc1) and 7.5 (χc2), to anisotropic
χc decay distributions with shapes univocally correlated to the polarization.

When, instead, the photon is virtual, there is no constraint on its polarization
and these J → (J = 1) + (J = 1) transitions become a “natural” illustration of the
angular momentum addition rule J = 1⊕1, where all possible G′ combinations of the
decay system compatible with |G′| ≤ J participate with equal weights, without any
restriction imposed by the physical interaction driving the decay. This “unpolarized”
final state does not provide any analyzing power for the determination of the mother
particle’s polarization. The J/ψ is, hence, emitted isotropically in the χc polarization
frame, leading to the seemingly paradoxical case where the measurement of the
two-body decay angular distribution is blind to the polarization state of the decaying
particle.
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The solution of the paradox is that this conclusion is true only when the measure-
ment ignores the information contained in the subsequent decays of the final-state
particles. A suitable analysis of the shapes of their own decay angular distributions
will provide the necessary analyzing power.

The full information on the χc polarization state remains available in the higher-
dimensional distribution of the cascade process χcJ → J/ψ γ∗, J/ψ → `+`−, γ∗ →
`+`−, determinable either in the frame (cHX) defined in Fig. 6.1 or in the one (CC)
defined with the alternative J/ψ polarization axes of Fig. 6.3. Exploiting the full
dimensionality of the process with its underlying variable correlations is always
beneficial, also from the experimental point of view, since it minimizes the risks of
analysis biases, presented by the blind integration over physical degrees of freedom
(as we have seen in Section 2.13). In this case, however, as seen in Section 6.8,
with the choice of the CC frame the anisotropy of the J/ψ dilepton decay alone, after
integration over the angles of the χc decay, is fully sensitive to the χc polarization.
Moreover, with the same axis definition, the dilepton distribution produced by the
virtual photon is identical to the J/ψ one and carries a further “duplicate” of the χc

polarization information.

7.9 Recapitulation

In the calculation of a decay angular distribution, the functional dependence on
the decay angles is determined by the elements of the Wigner matrix, DJ

LL′ , cor-
responding to the total angular momentum J of the decaying particle O. In the
considered case of a two-body decay, the matrix transforms the angular momen-
tum projection (L′) of the final state, as defined along the common direction, z′, of
the decay products X1 and X2 in the O rest frame, into the projection (L) on the
quantization axis z chosen for O (Fig. 7.1-right), allowing us to impose the conser-
vation Jz(X1 + X2) = Jz(O). Section 7.1 describes the Wigner matrices in a form
suitable for these calculations, which depends on the two spherical angles ϑ and
ϕ defining the relative orientations of z′ and z. The dependence is factorized as
DJ

LL′ (ϑ, ϕ) = exp[−i(L − L′)ϕ] dJ
LL′ (ϑ), with the “reduced” elements dJ

LL′ (ϑ) de-
fined in Eq. 7.3. Explicit analytical expressions of the reduced matrix elements for
J between 1/2 and 4 are given in Tables 7.1–7.6.

The decay amplitude is a linear combination of Wigner matrix elements (Eqs. 7.6
and 7.7); the coefficients, AM,G′1,G

′
2
, are complex amplitudes representing the dy-

namics of both the production and the decay of O (Fig. 7.1-left). In fact they ex-
press, on one hand, the probability of a given Jz projection, M, of O, that is, the
polarization that O inherited in the production process. On the other hand, they re-
flect the properties of the final states X1 and X2, as well as of their coupling to O, by
representing the probabilities of their possible Jz′ projections, G′1 and G′2.

The general expression of the angular distribution, squared modulus of the am-
plitude (Eq. 7.12), depends linearly on the “spin” density matrix elements ρG′

M,M ,
defined in Eq. 7.13 as the sum of all relevant products between an amplitude and a
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complex-conjugate amplitude, also averaged over all possible contributing mecha-
nisms.

The polar projection of the distribution (Eq. 7.15), depending only on the di-
agonal (and real) density matrix elements σG′

M ≡ ρG′
M,M (Eq. 7.16), is a polynomial

of order 2J in cosϑ and its 2J observable parameters are certainly much easier to
handle in a measurement than those of the full distribution, which, for example, for
J = 2 are 24 instead of 4.

The most general decay distribution of a J = 1 particle into any two-body final
state (Eq. 7.18) is formally the same as for the dilepton decay of a vector parti-
cle (Eq. 1.29), depending on eight observable parameters, three of which parity-
violating and two more vanishing in inclusive observations. The difference is in the
dependence on the amplitudes (Eq. 7.19): the dilepton (helicity-conserving) case
(Eq. 1.28) corresponds to setting the density matrix elements ρ0

M,M to zero. The al-
lowed parameter space is, therefore, different (Fig. 7.2). For a given initial particle
and polarization (M), the angular distributions of the decays into dilepton and into,
for example, two J = 0 particles are as different as they could be, as shown by the
comparison made in Fig. 7.3, which applies, for example, to the decaysΥ(4S)→ BB
and Υ(4S)→ `+`−.

Further examples of how the distribution changes for different final state parti-
cles and, also, for different production channels (which determine different possible
polarizations of O) are given in Section 7.5 for the J = 2 case, considering, for
simplicity, only the polar component, that is, the pure Jz eigenstates of the decay-
ing particle (Fig. 7.6), and maximal parity violation effects (Fig. 7.7). Section 7.6
illustrates, with an example, how the identity of the production and decay channels
strongly constrains the allowed shapes of the decay distributions. In particular, an
unidentified particle produced by gluon-gluon fusion and decaying into two pho-
tons can be characterized with a measurement of its decay distribution without the
need of injecting further theoretical hypotheses on it production mechanism. The
allowed physical domains of the J = 0, 2, 3, and 4 cases (J = 1 being excluded
by the Landau–Yang theorem) are disjointed from one another and can be experi-
mentally discriminated (Fig. 7.10). In fact, the shapes of the distributions have char-
acteristic differences, essentially in the number of changes of sign of the derivative
of the cosϑ distribution (Fig 7.11), that is, in the number of “lobes” of the three-
dimensional shape (Fig. 7.12). Clearly, more specific hypotheses, completely fixing
the polarization of the produced particle, can be tested and rejected with higher sig-
nificance, since they correspond to one point, instead of a region, in the parameter
domain and to one of the possible curves or shapes seen in those figures.

The decays of half-integer spin particles are briefly illustrated in Section 7.7. In
particular, in the J = 1/2 case the cosϑ, ϕ distribution (Eq. 7.29) is either isotropic
or parity-violating, that is, its three parameters are asymmetries (Eq. 7.30), van-
ishing when either the production mechanism or the decay are parity-conserving.
Instead, for the J = 3/2 distribution, parity-conserving but strongly anisotropic
physical cases exist, where it assumes the form 1 + λ2 cos2 ϑ, with λ2 = −1 for
|M| = 1/2 and |G′| = 3/2, or vice-versa, and λ2 = +3 for |M| = |G′| = 3/2 or 1/2
(Figs. 7.16 and 7.17).
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We saw in the previous chapter that an intrinsically polarized vector particle can
appear as unpolarized if it is produced in the decay of a J = 0 state and the existence
of this first decay step is ignored in the analysis. The natural polarization of the
vector particle can, however, at least in principle, be measured, by reconstructing
the two-step decay chain in its full dimensionality. In this chapter we have provided
a further example of how an isotropic decay distribution can be observed even if the
particle is naturally polarized.

A common feature recognizable in all formulas expressing the shape parameters
of the two-body decay distribution as functions of the spin density matrix elements is
that, for any J, a fully isotropic distribution is obtained not only when O is produced
as an identical mixture of Jz = −J, . . . ,+J states, but also (alternatively) when all Jz′

projections of the system of the decay products are equally probable. In other words,
even if the decaying particle is polarized, the resulting two-body angular distribution
will appear as isotropic if the final state is “unpolarized”, and the polarization of O
will seemingly be unobservable. This is a fairly rare occurrence, since the presence
of leptons, real photons or J = 0 particles in the final state is generally sufficient to
provide the X1 + X2 system with its required “polarization”.

As concrete example we considered the decays χcJ → J/ψ γ∗, where a measure-
ment of the J/ψ emission angles in the χcJ rest frame always yields an isotropic
result, irrespectively of the χcJ polarization. As in the case of the cascade decay
from a J = 0 particle, it is actually always possible to perform an experiment that
will determine the particle’s polarization, by recovering neglected dimensions in the
problem. In this case, such dimensions are those of the subsequent step in the de-
cay: the angular analysis of the decays of X1 and X2, considering correlations with
the O → X1X2 distribution, will necessarily reveal the polarization of O, provided
that X1 and/or X2 decay into “polarized” final states. This is the case of the consid-
ered example, where the J/ψ and γ∗ produce lepton pairs having angular momentum
projections ±1 along their own directions in the J/ψ and γ∗ rest frames, because of
helicity conservation. Otherwise, the analysis of the cascade should, hypothetically,
be further extended to subsequent decay steps.
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