
Foundations of Process Discovery

Wil M. P. van der Aalst(B)

Process and Data Science (PADS), RWTH Aachen University, Aachen, Germany
wvdaalst@pads.rwth-aachen.de

http://www.vdaalst.com/

Abstract. Process discovery is probably the most interesting, but also most chal-
lenging, process mining task. The goal is to take an event log containing example
behaviors and create a process model that adequately describes the underlying
process. This chapter introduces the baseline approach used in most commercial
process mining tools. A simplified event log is used to create a so-calledDirectly-
Follows Graph (DFG). This baseline is used to explain the challenges one faces
when trying to discover a process model. After introducing DFG discovery, we
focus on techniques that are able to discover models allowing for concurrency
(e.g., Petri nets, process trees, and BPMNmodels). The chapter distinguishes two
types of approaches able to discover such models: (1) bottom-up process discov-
ery and (2) top-down process discovery. The Alpha algorithm is presented as an
example of a bottom-up technique. The approach has many limitations, but nicely
introduces the idea of discovering local constraints. The basic inductive mining
algorithm is presented as an example of a top-down technique. This approach,
combined with frequency-based filtering, works well on most event logs. These
example algorithms are used to illustrate the foundations of process discovery.

Keywords: Process discovery · Process models · Petri nets · BPMN

1 Introduction

Process discovery is typically the first step after extracting event data from source sys-
tems. Based on the selected event data, process discovery algorithms automatically
construct a process model describing the observed behavior. This may be challeng-
ing because, in most cases, the event data cannot be assumed to be complete, i.e., we
only witnessed example behaviors. There may also be conflicting requirements (e.g.,
recall, precision, generalization, and simplicity) [1,3]. This makes process discovery
both interesting and challenging.

Figure 1 positions this chapter. The input for process discovery is a collection of
events and the output is a process model. Such a process model can be used to uncover
unexpected deviations and bottlenecks. In the later stages of the process mining pipeline
shown in Fig. 1, process models are used to check compliance, compare processes,
detect concept drift, and predict performance and compliance problems.

Events may have many attributes and refer to multiple objects of different types [3].
However, in this chapter, we start from very basic event data. We assume that each event

c© The Author(s) 2022
W. M. P. van der Aalst and J. Carmona (Eds.): Process Mining Handbook, LNBIP 448, pp. 37–75, 2022.
https://doi.org/10.1007/978-3-031-08848-3_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-08848-3_2&domain=pdf
http://orcid.org/0000-0002-0955-6940
https://doi.org/10.1007/978-3-031-08848-3_2

38 W. M. P. van der Aalst

discover

align
replay
enrich

apply
compare

information
systems

extract

process
models

explore select
filter
clean

conformance
performance
diagnostics

predictions
improvements

transform

actshow
model
adapt

show
interpret

drill down

ML

+ +
event
data

Fig. 1. This chapter focuses on process discovery. This is the first step after extracting event data
from the source system(s). To set the scene, we consider only control-flow information, i.e., the
ordering of activities.

refers to a case, an activity, and has a timestamp. There may be many other attributes
(e.g., resource), but we ignore these. Initially, we assume that timestamps are only used
for the ordering of events corresponding to the same case. This implies that each case is
represented by a sequence of activities. We call this a trace. For example, σ = 〈a, b, c, e〉
represents a case for which the activities a, b, c, and e occurred. Note that there may
be many cases that have the same trace. Therefore, we represent an event log as a
multiset of traces. For example, L1 = [〈a, b, c, e〉10, 〈a, c, b, e〉5, 〈a, d, e〉] is an event
log describing 16 cases and 10 × 4 + 5 × 4 + 1 × 3 = 63 events. Note that trace
σ = 〈a, b, c, e〉 appears 10 times. In [3], we use the term simplified event log. Here
we drop the adjective “simplified” since the representation will be used throughout the
chapter.

Definition 1 (Event Log). Uact is the universe of activity names. A trace σ = 〈a1, a2,
. . . , an〉 ∈ Uact

∗ is a sequence of activities. An event log L ∈ B(Uact
∗) is a multiset of

traces.

Note that L(σ) is the number of times trace σ appears in event log L. For example,
L1(〈a, b, c, e〉) = 10,L1(〈a, c, b, e〉) = 5,L1(〈a, d, e〉) = 1,L1(〈b, a〉) = 0,L1(〈c〉) =
0, L1(〈 〉) = 0, etc.

Given an event log L ∈ B(Uact
∗), we would like to learn a process model ade-

quately capturing the observed behavior. Figure 2 shows four process models discov-
ered for L1 = [〈a, b, c, e〉10, 〈a, c, b, e〉5, 〈a, d, e〉]. The models also show frequencies.

Figure 2(b) shows a Directly-Follows Graph (DFG). The start, end, and five activi-
ties are the nodes of the graph. Activities a and e occurred 16 times, b and c occurred
15 times, and d only once. The arcs in Fig. 2(b) show how often an activity is directly
followed by another activity. For example, a is 10 times directly followed by b, a is 5
times directly followed by c, and a is once directly followed by d. To indicate the start

Foundations of Process Discovery 39

a

c

d

b

e

a

d

c

b

e

a

d

e

cb

(a) Event log L1

(c) Accepting Petri Net (APN): M2

(b) Directly-Follows Graph (DFG): M1

(d) Process Tree (PT): M3

16 5 10 16

551010

1

16

1

1

15 1616

15

15

1 1616

15

16

16 1 1

15 15

15 15

1 1

15 15

1

15

16
16 16

16

16

16

16

Fig. 2. Three process models learned from event log L1 = [〈a, b, c, e〉10, 〈a, c, b, e〉5, 〈a, d, e〉].

and end of cases, we use a start node � and an end node �. One can view � and �
as “dummy” activities or states. Although they do not present real activities, they are
needed to describe the process adequately. Since all 16 cases start with a, the arc con-
necting � to a has a frequency of 16. Note that due to the cycles in the DFG, also traces
such as 〈a, b, c, b, c, b, c, b, e〉 are possible according to the DFG (but did not appear in
the event log).

Figure 2(c) shows a Petri net discovered using the same event logL1. The transitions
(i.e., squares) correspond to the five activities in the event log. The places (i.e., circles)
constrain the behavior. The Petri net allows for the three traces in the event log and
nothing more. Initially, only transition a is enabled. When a fires (i.e., occurs), a token
is consumed from the input place and a token is produced for each of the two output
places. As a result, transitions b, c, and d become enabled. If d fires, both tokens are
removed and two tokens are produced for the input places of e. If b fires, only one token
is consumed and one token is produced. After b fires, c is still enabled, and c will fire to
enable e. Transition c can also occur before b, i.e., b and c are concurrent and can happen
at the same time or in any order. There is a choice between d and the combination of b
and c. The start of the process is modeled by the token in the source place. The end of
the process is modeled by the double-bordered sink place.

Also, the process tree discovered for event log L1 shown in Fig. 2(d) allows for the
three traces in the event log and nothing more. The root node is a sequence (→) with
three “child nodes”: activity a, a choice, and activity e. These nodes are visited 16 times
(once for each case). The choice node (×) has two “child nodes”: a parallel node ∧ and
an activity node e. The parallel node (∧) has two “child nodes”: activity b and activity
c. The whole process tree can be represented by the expression →(a,×(∧(b, c), d), e).
Note that the d node is visited only once. The ∧, b, and c nodes are visited 15 times.

40 W. M. P. van der Aalst

In this example, each node has a unique label allowing us to refer easily. Often a tree
has multiple nodes with the same label, e.g., →(a,×(→(a, a), a), a) where a appears
five times and → two times.

In Fig. 2, we just show example results. In the remainder, we will see how such
process models can be learned from event data. The goal of this chapter is not to give
a complete survey (see also [10] for a recent survey). Instead, we would like to bring
forward the essence of process discovery from event data, and introduce the main prin-
ciples in an intuitive manner.

The remainder of this chapter is organized as follows. Section 2 presents a baseline
approach that computes a Directly-Follows Graph (DFG). This approach is simple and
highly scalable, but has many limitations (e.g., producing complex underfitting process
models) [2]. In Sect. 3, we elaborate on the challenges of process discovery. Section 4
discusses higher-level representations such as Petri nets (Subsect. 4.1), process trees
(Subsect. 4.2), and BPMN (Subsect. 4.3). Section 5 introduces “bottom-up” process dis-
covery using the Alpha algorithm [1,9] as an example. Section 6 introduces “top-down”
process discovery using the basic inductive mining algorithm [22–24] as an example.
Finally, Sect. 7 concludes the chapter with pointers to other discovery approaches (e.g.,
using state-based or language-based regions).

2 Directly-Follows Graphs: A Baseline Approach

In this chapter, we present a very simple discovery approach that is supported by
most (if not all) process mining tools: Constructing a so-called Directly-Follows Graph
(DFG) by simply counting how often one activity is followed by another activity (see
Fig. 2(b)). We use this to also introduce filtering techniques to remove infrequent activ-
ities, infrequent variants, and infrequent arcs. The more advanced techniques presented
later in this chapter build upon the simple notions introduced in this section.

Let us first try to describe the process discovery problem in abstract terms, inde-
pendent of the selected process modeling notation. Therefore, we describe a model’s
behavior as a set of traces.

Definition 2 (Process Model). UM is the universe of process models. A process model
M ∈ UM defines a set of traces lang(M) ⊆ Uact

∗.

Examples of process models defined later are DFGs UG ⊆ UM (Sect. 2.1),
accepting Petri nets UAN ⊆ UM (Sect. 4.1), process trees UQ ⊆ UM (Sect. 4.2),
and BPMN models UBPMN ⊆ UM (Sect. 4.3). Consider, for example, the process
models M1 (DFG), M2 (Petri net), and M3 (process tree) in Fig. 2. lang(M2) =
lang(M3) = {〈a, b, c, e〉, 〈a, c, b, e〉, 〈a, d, e〉}. lang(M1) = {〈a, b, e〉, 〈a, c, e〉, 〈a, d,
e〉, . . . , 〈a, b, c, b, c, b, c, e〉, . . .} contains infinitely many traces due to the cycle involv-
ing b and c.

The goal of a process discovery algorithm is to produce a model that explains the
observed behavior.

Definition 3 (Process Discovery Algorithm). A process discovery algorithm is a
function disc ∈ B(Uact

∗) → UM , i.e., based on a multiset of traces, a model is
produced.

Foundations of Process Discovery 41

Given an event log L, a process discovery algorithm disc returns a model allowing
for the traces lang(disc(L)). A discovery algorithm disc guarantees perfect replay fit-
ness if for any L ∈ B(Uact

∗): {σ ∈ L} ⊆ lang(disc(L)). We write {σ ∈ L} to turn a
multiset of traces into a set of traces and make the model and the log comparable. All
three models in Fig. 2 have perfect replay fitness (also called perfect recall).

2.1 Directly-Follows Graphs: Basic Concepts

We already informally introduced DFGs, but now we formalize the concepts needed to
precisely describe the corresponding discovery algorithm.

Definition 4 (Directly-Follows Graph). A Directly-Follows Graph (DFG) is a pair
G = (A,F) where A ⊆ Uact is a set of activities and F ∈ B((A × A) ∪ ({�} × A) ∪
(A × {�}) ∪ ({�} × {�})) is a multiset of arcs. � is the start node and � is the end
node ({�, �} ∩ Uact = ∅). UG ⊆ UM is the set of all DFGs.

� and � can be viewed as artificially added activities to clearly indicate the start
and end of the process. The nodes of a DFG are � to denote the beginning, � to denote
the end, and the activities in set A. Note that � �∈ A and � �∈ A (this is also important
in later sections). There are four types of arcs: (�, a), (a1, a2), (a, �), and (�, �) (with
a, a1, a2 ∈ A). F ((�, a)) indicates how many cases start with a, F ((a1, a2)) indicates
how often activity a1 is directly followed by activity a2, F ((a, �)) indicates how many
cases end with a, and F ((�, �)) counts the number of empty cases. In the directly-
follows graph, we only consider directly-follows within the same case. For example,
F ((a, b)) = (10 × 0) + (10 × 0) + (10 × 1) + (10 × 2) + (10 × 3) = 60 given some
event log [〈a〉10, 〈b〉10, 〈a, b〉10, 〈a, b, a, b〉10, 〈a, b, a, b, a, b〉10].

The DFG in Fig. 2(b) can be described as follows: M1 = (A,F) with
A = {a, b, c, d, e} and F = [(�, a)16, (a, b)10, (a, c)5, (a, d)1, (b, c)10, (b, e)5, (c, b)5,
(c, e)10, (d, e)1, (e, �)16].

Figure 3 shows process models discovered for another event log L2 = [〈a, b, c, e〉50,
〈a, c, b, e〉40, 〈a, b, c, d, b, c, e〉30, 〈a, c, b, d, b, c, e〉20, 〈a, b, c, d, c, b, e〉10, 〈a, c, b, d, c,
b, d, b, c, e〉10]. The fact that b, c, and d occur a variable number of times per case
suggests that there is a loop. Figure 3(b) shows the corresponding DFG. This DFG
can be described as follows: M4 = (A,F) with A = {a, b, c, d, e} and F =
[(�, a)160, (a, b)90, (a, c)70, (b, c)150, (b, d)40, (b, e)50, (c, b)90, (c, d)40, (c, e)110,
(d, b)60, (d, c)20, (e, �)160].

Definition 5 (Traces of a DFG). Let G = (A,F) ∈ UG be a DFG. The set of possible
traces described by G is lang(G) = {〈a2, a3, . . . , an−1〉 | a1 = � ∧ an = � ∧
∀1≤i<n (ai, ai+1) ∈ F}.

Note that � and � have been added to the DFG to have a clear start and end. How-
ever, these “dummy activities” are not part of the language of the DFG.

Consider the DFG M1 shown in Fig. 2(b): lang(M1) = {〈a, b, e〉, 〈a, c, e〉, 〈a, d,
e〉, 〈a, b, c, e〉, 〈a, c, b, e〉, 〈a, b, c, b, e〉, 〈a, c, b, c, e〉, 〈a, b, c, b, c, e〉, . . .}. Also the DFG
M4 in Fig. 3(b) has an infinite number of possible traces: lang(M4) = {〈a, b, e〉,
〈a, c, e〉, 〈a, b, c, e〉, 〈a, c, b, e〉, 〈a, b, c, b, e〉, 〈a, c, b, c, e〉, 〈a, b, d, b, e〉, . . .}. Whenever
the DFG has a cycle, then the number of possible traces is unbounded.

42 W. M. P. van der Aalst

a

c

d

b

e

a

d

c

b

e

a

d

e

cb

(a) Event log L2

(c) Accep ng Petri Net (APN): M5

(b) Directly-Follows Graph (DFG): M4

(d) Process Tree (PT): M6

160 70 110 160

509015090

160

80

240 160160

240

240

80 160160

240

80 80

240 240

240 240

80 80

240 240

80

240

160
160 160

1602040

40

60

160

160

160160

160

Fig. 3. Three process models learned from event log L2 = [〈a, b, c, e〉50, 〈a, c, b, e〉40,
〈a, b, c, d, b, c, e〉30, 〈a, c, b, d, b, c, e〉20, 〈a, b, c, d, c, b, e〉10, 〈a, c, b, d, c, b, d, b, c, e〉10].

2.2 Baseline Discovery Algorithm

Since the event log only contains example traces, it is natural that the discovery algo-
rithm aims to generalize the observed behavior to avoid over-fitting. Therefore, we start
with a baseline discovery algorithm that ensures that all observed behavior is possible
according to the discovered process model. The algorithm used to discover the DFGs
in Fig. 2(b) and Fig. 3(b) is defined as follows.

Definition 6 (Baseline Discovery Algorithm). Let L ∈ B(Uact
∗) be an event log.

discDFG (L) = (A,F) is the DFG based on L with:

– A = {a ∈ σ | σ ∈ L} and
– F = [(σi, σi+1) | σ ∈ L′ ∧ 1 ≤ i < |σ|] with L′ = [〈�〉 · σ · 〈�〉 | σ ∈ L].

Note that L, L′, and F in Definition 6 are multisets. Each trace in the event log L is
extended with the artificially added activities. L′ adds � at the start and � at the end of
each trace in L. M1 = disc

DFG
(L1) is depicted in Fig. 2(b) and M4 = disc

DFG
(L2) is

depicted in Fig. 3(b).
A DFG can be viewed as a first-order Markov model (i.e., the state is determined

by the last activity executed). The baseline discovery algorithm (Definition 6) tends to
lead to underfitting process models. Whenever two activities are not executed in a fixed
order, a loop is introduced.

2.3 Footprints

A DFG can also be represented as a matrix, as shown in Table 1. This is simply a
tabular representation of the graph and the arc frequencies, e.g., F ((�,�)) = 0,

Foundations of Process Discovery 43

F ((�, a)) = 16, and F ((c, e)) = 10. To capture the relations between activities, we
can also create a so-called footprint matrix [1]. Table 2 shows the footprint matrix for
the DFG in Fig. 2(b). Between two activities a1 and a2, precisely one of four possible
relations holds:

– a1 → a2 (i.e., a1 is sometimes directly followed by a2, but a2 is never directly
followed by a1),

– a1 ← a2 (i.e., a2 is sometimes directly followed by a1, but a1 is never directly
followed by a2),

– a1‖a2 (i.e., a1 is sometimes directly followed by a2 and a2 is sometimes directly
followed by a1), and

– a1#a2 (i.e., a1 is never directly followed by a2 and a2 is never directly followed
by a1).

Table 1. Matrix representation of the DFG in Fig. 2(b).

� a b c d e �

� 0 16 0 0 0 0 0

a 0 0 10 5 1 0 0

b 0 0 0 10 0 5 0

c 0 0 5 0 0 10 0

d 0 0 0 0 0 1 0

e 0 0 0 0 0 0 16

� 0 0 0 0 0 0 0

Table 2. The footprint of the DFG in Fig. 2(b).

� a b c d e �

� # → # # # # #

a ← # → → → # #

b # ← # ‖ # → #

c # ← ‖ # # → #

d # ← # # # → #

e # # ← ← ← # →
� # # # # # ← #

Table 2 (based on Fig. 2(b)) shows, for example, that a → b, b ← a, b‖c, and c#d.
The creation of the footprint can be formalized as follows.

Definition 7 (Footprint). Let G = (A,F) ∈ UG be a DFG. G defines a footprint
fp(G) ∈ (A′ ×A′) → {→,←, ‖,#} such that A′ = A∪{�, �} and for any (a1, a2) ∈
A′ × A′:

44 W. M. P. van der Aalst

– fp(G)((a1, a2)) = → if (a1, a2) ∈ F and (a2, a1) �∈ F ,
– fp(G)((a1, a2)) = ← if (a1, a2) �∈ F and (a2, a1) ∈ F ,
– fp(G)((a1, a2)) = ‖ if (a1, a2) ∈ F and (a2, a1) ∈ F , and
– fp(G)((a1, a2)) = # if (a1, a2) �∈ F and (a2, a1) �∈ F .

We write a1 →
G

a2 if fp(G)((a1, a2)) = →, a1#G
a2 if fp(G)((a1, a2)) = #, etc.

We can also create the footprint of an event log by first applying the baseline
discovery algorithm: fp(L) = fp(discDFG (L)). Hence, Table 2 also shows fp(L1) =
fp(disc

DFG
(L1)) = fp(M1). This allows us to write b→L1e, b‖L1e, b#L1d, etc.

2.4 Filtering

Using the baseline discovery algorithm, an activity a appears in the discovered DFG
when it occurs at least once and two activities a1 and a2 are connected by a directed
arc if a1 is directly followed by a2 at least once in the log. Often, we do not want
to see the process model that captures all behavior. Instead, we would like to see the
dominant behavior. For example, we are interested in the most frequent activities and
paths. Therefore, we would like to filter the event log and model. Here, we consider the
three basic types of filtering:

– Activity-based filtering: project the event log on a subset of activities (e.g., remove
the least frequent activities).

– Variant-based filtering: remove selected traces (e.g., only keep the most frequent
variants).

– Arc-based filtering: remove selected arcs in the DFG (e.g., delete arcs with a fre-
quency lower than a given threshold).

To describe the different types of filtering, we introduce some notations for traces
and event logs.

Definition 8 (Frequency and Projection Functions). Let L ∈ B(Uact
∗) be an event

log.

– act(L) = {a ∈ σ | σ ∈ L} are the activities in event log L,
– var(L) = {σ ∈ L} are the trace variants in event log L,
– #act

L (a) =
∑

σ∈L |{i ∈ {1, . . . |σ|} | σi = a}| is the frequency of activity a ∈
act(L) in event log L,

– #var
L (σ) = L(σ) is the frequency of variant σ ∈ var(L) in event log L,

– for a subset of activities A ⊆ act(L) and trace σ ∈ L, we define σ↑A such that
〈〉↑A = 〈〉 and (σ · 〈a〉)↑A = σ↑A · 〈a〉 if a ∈ A, and (σ · 〈a〉)↑A = σ↑A if a �∈ A,

– L↑A = [σ↑A | σ ∈ L] is the projection of L on a subset of activities A ⊆ act(L),
– L⇑V = [σ ∈ L | σ ∈ V] is the projection of L on a subset of trace variants

V ⊆ var(L),

First, we define activity-based filtering using a threshold τact ∈ N = {1, 2, 3, . . .}.
All activities with a frequency lower than τact are removed from the event log, but all
cases are retained.

Foundations of Process Discovery 45

Definition 9 (Activity-Based Filtering). LetL ∈ B(Uact
∗) be an event log and τact ∈

N. filteract(L, τact) = L↑A with A = {a ∈ act(L) | #act
L (a) ≥ τact}.

Again we use L1 = [〈a, b, c, e〉10, 〈a, c, b, e〉5, 〈a, d, e〉] and L2 = [〈a, b, c, e〉50,
〈a, c, b, e〉40, 〈a, b, c, d, b, c, e〉30, 〈a, c, b, d, b, c, e〉20, 〈a, b, c, d, c, b, e〉10, 〈a, c, b, d, c,
b, d, b, c, e〉10] to illustrate the definition. If τact = 10, then filteract(L1, τact) =
[〈a, b, c, e〉10, 〈a, c, b, e〉5, 〈a, e〉] (only activity d is removed). If τact = 16, then
filteract(L1, τact) = [〈a, e〉16] (only activities a and e remain). If τact > 16,
then filteract(L1, τact) = [〈〉16]. Note that the number of traces is not affected
by activity-based filtering (even when all activities are removed). If τact = 200,
then filteract(L2, τact) = [〈b, c〉50, 〈c, b〉40, 〈b, c, b, c〉30, 〈c, b, b, c〉20, 〈b, c, c, b〉10,
〈c, b, c, b, b, c〉10] (only activities b and c remain).

Next, we define variant-based filtering using a threshold τvar ∈ N. All trace variants
with a frequency lower than τvar are removed from the event log.

Definition 10 (Variant-Based Filtering). Let L ∈ B(Uact
∗) be an event log and

τvar ∈ N. filtervar (L, τvar) = L⇑V with V = {σ ∈ var(L) | #var
L (σ) ≥ τvar}.

If τvar = 5, then filtervar (L1, τvar) = [〈a, b, c, e〉10, 〈a, c, b, e〉5]. If τvar = 10,
then filtervar (L1, τvar) = [〈a, b, c, e〉10]. If τvar > 10, then filtervar (L1, τvar) = [].
Note that (unlike activity-based filtering) the number of traces may decrease.

Finally, we define arc-based filtering using a threshold τarc ∈ N. Whereas activity-
based filtering and variant-based filtering operate on event logs, arc-based filtering mod-
ifies the DFG and not the event log used to generate it. All arcs with a frequency lower
than τarc are removed from the graph.

Definition 11 (Arc-Based Filtering). Let G = (A,F) ∈ UG be a DFG and τarc ∈ N.
filterarc(G, τarc) = (A,F ′) with F ′ = [(x, y) ∈ F | F ((x, y)) ≥ τarc].

In its basic form τarc retains all nodes even when they become fully disconnected
from the rest. Consider the DFG M1 = (A,F) in Fig. 2(b) with A = {a, b, c, d, e}
and F = [(�, a)16, (a, b)10, (a, c)5, (a, d)1, (b, c)10, (b, e)5, (c, b)5, (c, e)10, (d, e)1, (e,
�)16]. If τvar = 10, then filterarc(M1, τarc) = (A,F ′) with F ′ = [(�, a)16, (a, b)10,
(b, c)10, (c, e)10, (e, �)16]. If τvar = 15, then filterarc(M1, τarc) = (A,F ′′)with F ′′ =
[(�, a)16, (e, �)16]. Note that the DFG is no longer connected.

The three types of filtering can be combined. Because arc-based filtering oper-
ates on the DFG, it should be done last. It is also better to conduct activity-based
filtering before variant-based filtering. There are several reasons for this. The num-
ber of traces is affected by variant-based filtering. Moreover, activity-based filtering
may lead to variants with a higher frequency. Consider L1 with τact = 16 and
τvar = 10. If we first apply variant-based filtering, one variant remains after the
first step and none of the activities is frequent enough to be retained in the second
step: filteract(filtervar (L1, τvar), τact) = [〈〉10]. If we first apply activity-based fil-
tering, then the two most frequent activities are retained and all 16 traces are consid-
ered in the second step: filtervar (filteract(L1, τact), τvar) = [〈a, e〉16]. For L2 with
τact = 200 and τvar = 40, we find that filteract(filtervar (L2, τvar), τact) = [〈〉90] and
filtervar (filteract(L2, τact), τvar) = [〈b, c〉50, 〈c, b〉40].

46 W. M. P. van der Aalst

These examples show that the order of filtering matters. We propose a refined base-
line discovery algorithm using filtering. The algorithm first applies activity-based filter-
ing followed by variant-based filtering. Then the original baseline algorithm is applied
to the resulting event log to get a DFG (see Definition 6). Finally, arc-based filtering is
used to prune the DFG.

Definition 12 (Baseline Discovery Algorithm Using Filtering). Let L ∈ B(Uact
∗)

be an event log. Given the thresholds τact ∈ N, τvar ∈ N, and τarc ∈ N:
discτact ,τvar ,τarc

DFG
(L) = filterarc(disc

DFG
(filtervar (filteract(L, τact), τvar)), τarc).

discτact ,τvar ,τarc
DFG

(L) returns a DFG using the three filtering steps. Only the last filter-
ing step is specific for DFGs. Activity-based filtering and variant-based filtering can be
used in conjunction with any discovery technique, because they produce filtered event
logs. The footprint notion can also be extended to include these two types of filtering:
fpτact ,τvar (L) = fp(disc

DFG
(filtervar (filteract(L, τact), τvar))) is the footprint matrix

considering only frequent activities and variants.

a

d

c

b

e

(a) Event log L2
(b) Directly-Follows Graph (DFG) considering all activities

160 70 110 160

509015090

80

240 160160

240

2040

40

60

a

c

b
e

(c) Directly-Follows Graph (DFG) after simply removing activity d

160

70 110

160

50

90150

90

240

160160

240

(d) Directly-Follows Graph (DFG) based on the filtered event log

a

c

b
e160

70 110

160

50

120160

90

240

160160

240

10

30

Fig. 4. Three DFGs learned from event logL2 = [〈a, b, c, e〉50, 〈a, c, b, e〉40, 〈a, b, c, d, b, c, e〉30,
〈a, c, b, d, b, c, e〉20, 〈a, b, c, d, c, b, e〉10, 〈a, c, b, d, c, b, d, b, c, e〉10]: (b) the original DFG con-
sidering all activities, (c) the problematic DFG obtained by simply removing activity d from the
graph, and (d) the desired DFG obtained by removing activity d from the event log first.

Most process mining tools provide sliders to interactively set one or more thresh-
olds. This makes it easy to seamlessly simplify the discovered DFG. However, it is vital
that the user understands the different filtering approaches. Therefore, we highlight the
following risks.

Foundations of Process Discovery 47

– The ordering of filters may greatly impact the result. As shown before: filtervar (
filteract(L, τact), τvar) �= filteract(filtervar (L, τvar), τact). If a tool provides mul-
tiple sliders, it is important to understand how these interact and what was left out.

– Applying projections to event logs is computationally expensive. Therefore, process
mining tools may provide shortcuts that operate directly on the DFG without filter-
ing the event log. Consider, for example, Fig. 4 showing (a) the event log and (b) the
original DFG without filtering. Activity d has the lowest frequency. Simply remov-
ing node d from the graph leads to interpretation problems. Figure 4(c) shows the
problem, e.g., b occurs 240 times but the frequencies of the input arcs add up to
90 + 90 = 180 and the frequencies of output arcs add up to 50 + 150 = 200. If
we apply activity-based filtering using Definition 9, we obtain the DFG in Fig. 4(d).
Now we see the loops involving b and c. Moreover, the frequencies of the input arcs
of b add up to 90+120+30 = 240 and the frequencies of output arcs also add up to
50+160+30 = 240. Clearly, this is the DFG one would like to see after abstracting
from d.

– Using activity-based filtering and variant-based filtering as defined in this section
yields models where the frequency of a node matches the sum of the frequencies
of the input arcs and the sum of the frequencies of the output arcs. As long as the
resulting event log is not empty, the graph is connected and all activities are on a
path from start to end. This leads to models that are easy to interpret. Arc-based
filtering may lead to models that have disconnected parts and frequencies do not add
up as expected (similar to the problems in Fig. 4(c)). Therefore, arc-based filtering
should be applied with care.

– The above risks are not limited to control-flow (e.g., connectedness of the graph
and incorrect frequencies). When adding timing information (e.g., the average time
between two activities), the results are highly affected by filtering. Process mining
tools using shortcuts that operate directly on the DFG without filtering the event log,
quickly lead to misleading performance diagnostics [2].

2.5 A Larger Example

To further illustrate the concepts, we now consider a slightly larger event log L3 =
[〈ie, cu, lt , xr , fe〉285, 〈ie, cu, lt , ct , fe〉260, 〈ie, cu, ct , lt , fe〉139, 〈ie, lt , cu, xr , fe〉137,
〈ie, lt , cu, ct , fe〉124, 〈ie, cu, xr , lt , fe〉113, 〈ie, xr , cu, lt , fe〉72, 〈ie, ct , cu, xr , fe〉72,
〈ie, cu, om, am, cu, lt , xr , fe〉29, 〈ie, cu, om, am, cu, lt , ct , fe〉28, . . .]. We use the fol-
lowing abbreviations: ie = initial examination, xr = X-ray, ct = CT scan, cu = checkup,
om = order medicine, am = administer medicine, lt = lab tests, and fe = final exam-
ination. The event log contains 11761 events corresponding to 1856 cases. Each case
represents the treatment of a patient. There are 187 trace variants and 8 unique activi-
ties. For example, 〈ie, cu, lt , xr , fe〉 is the most frequent variant, i.e., 285 patients first
get an initial examination (ie), followed by a checkup (cu), lab tests (lt), X-ray (xr),
and a final examination (fe).

Figure 5 shows the DFG for L3 using the baseline discovery algorithm described in
Definition 6. The DFG was produced by ProM’s “Mine with Directly Follows visual
Miner”. Using a slider, it is possible to remove infrequent activities. Figure 6 shows
the DFG disc

DFG
(filteract(L3, τact)) with the activity threshold τact set to 1000, i.e.,

48 W. M. P. van der Aalst

Fig. 5. The discovered DFG discDFG (L3) generated by ProM.

Fig. 6. The DFG discDFG (filter
act(L3, τact)) generated by ProM using τact = 1000.

all activities with a frequency of less than 1000 are removed from the event log using
projection. In the resulting DFG, four of the eight activities remain.

The discovery of DFGs (as defined in this section) is supported by almost all process
mining tools. Figure 7 shows the DFGs discovered using the Celonis EMS using the
same settings as used in ProM. Although the layout is different, the Celonis-based DFG
in Fig. 7 (left) is identical to the ProM-based DFG in Fig. 5. The DFG in Fig. 7 (right)
is identical to the DFG in Fig. 6.

Figure 8 shows variant-based filtering using the Celonis “Variant Explorer”. The six
most frequent variants are selected. These are the variants that have a frequency above
100, i.e., the depicted DFG is disc

DFG
(filtervar (L3, τvar)) with τvar = 100. There are

1856 cases distributed over 197 variants. The top six variants (i.e., 3% of all variants)
cover 1058 cases (i.e., 57%). We also computed the DFG discDFG (filter

var (L3, τvar))
with τvar = 10. There are 22 variants meeting this lower threshold (i.e., 11% of all
variants) covering 1483 cases (i.e., 80%). Most event logs follow such a Pareto distri-
bution, i.e., a small fraction of variants explains most of the cases observed. This is also
referred to as the “80/20 rule”, although the numbers 80 and 20 are arbitrary. For our

Foundations of Process Discovery 49

activity-
based
filtering

Fig. 7. The discovered DFG in Celonis before and after activity-based filtering, i.e., discDFG (L3)
(left) and discDFG (filter

act(L3, τact)) with τact = 1000 (right).

Fig. 8. A discovered DFG in Celonis using variant-based filtering: discDFG (filter
var (L3, τvar))

with τvar = 100. There are six variants having a frequency above 100. These cover 57% of all
cases, but only 3% of all variants.

example event log L3, we could state that it satisfies the “80/11 rule” (but also the “57/3
rule”, “84/16 rule”, etc.).

If the distribution of cases over variants does not follow a Pareto distribution, then
it is best to first apply activity-based filtering. If we project L3 onto the top four
most frequent activities, only 20 variants remain. The most frequent variant explains

50 W. M. P. van der Aalst

already 51% of all cases. The DFG discDFG (filter
var (filteract(L, τact), τvar)) with

τact = 1000 and τvar = 100 combines the activity-based filter used in Fig. 7 and
the variant-based filter used in Fig. 8. The resulting DFG (not shown) explains 1672 of
the 1856 cases (90%) and 7065 of 11761 events (60%) using only five variants.

The above examples show that, using filtering, it is possible to separate the normal
(i.e., frequent) from the exceptional (i.e., infrequent) behavior. This is vital in the con-
text of process discovery and can be combined with the later bottom-up and top-down
discovery approaches.

3 Challenges

After introducing a baseline discovery algorithm and various filtering approaches, it is
possible to better explain why process discovery is so challenging. In Definition 3, we
stated that a process discovery algorithm is a function disc ∈ B(Uact

∗) → UM , i.e.,
based on a multiset of traces L, a process model M = disc(L) allowing for lang(M) ⊆
Uact

∗ is produced.
The first challenge is that the discovered process model may serve different goals.

Should the model summarize past behavior, or is the model used for predictions and
recommendations? Also, should the process model be easy to read and understand
by end-users? Answers to these questions are needed to address the trade-offs in pro-
cess discovery. We already mentioned that most event logs follow a Pareto distribution.
Hence, the process model can focus on the dominant behavior or also include excep-
tional behavior.

The second challenge is that different process model representations can be used.
These may or may not be able to capture certain behaviors. This is the so-called rep-
resentational bias of process discovery. Consider, for example, event log L = [〈a, b, c,
d〉1000, 〈a, c, b, d〉1000]. There is no DFG that is able to adequately describe this behav-
ior. The DFG will always need to introduce a loop involving b and c. Another example
is L = [〈a, b, c〉1000, 〈a, c〉1000]. It is easy to create a DFG describing this behavior.
However, when representing this as a Petri net or process tree, it is vital that one can
use so-called silent activities (to skip b) or duplicate activities (to have a c activity fol-
lowing a and another c activity following b).

Another challenge is that the event log contains just example behavior. Most event
logs have a Pareto distribution. Typically, a few trace variants are frequent and many
trace variants are infrequent. Actually, there are often trace variants that are unique
(i.e., occur only once). If one observes the process longer, new variants will appear.
Conversely, if one observes the process in a different period, some variants may no
longer appear. An event log is a sample and should be treated as such. Just like in statis-
tics, the goal is to use the sample to say something about the whole population (here,
the process). For example, when throwing a dice ten times, one may have the follow-
ing sequence observations σ = 〈4, 5, 2, 3, 6, 5, 4, 1, 2, 3〉. If we do not know that two
subsequent throws are independent, the expected value is 3.5, the minimum is 1, the
maximum is 6, and the probabilities of all six values are equal, then what can be con-
cluded from the sample σ? We could conclude that even numbers are always followed
by odd numbers. Real-life processes have many more behaviors, and the observed sam-
ple rarely covers all possibilities.

Foundations of Process Discovery 51

Although processes are stochastic, most process discovery techniques aim to dis-
cover process models that are “binary”, i.e., a trace is possible or not. This complicates
analysis. Another challenge is that event logs do not contain negative examples. Process
discovery can be seen as a classification problem: A trace σ is possible (σ ∈ lang(M))
or not (σ �∈ lang(M)). In real applications, we never witness traces that are impossible.
The event log only contains positive examples. If we also want to incorporate infrequent
behavior in the discovered model, we may require var(L) ⊆ lang(M). However, we
cannot assume the reverse lang(M) ⊆ var(L). For example, loops in models would be
impossible, and for concurrent processes we would need a factorial number of cases.

Related to the above are the challenges imposed by concept drift. The behavior
of the process that we are trying to discover may change over time in unforeseen
ways. Certain traces may increase or decrease in likelihood. New trace variants may
emerge while other variants no longer occur. Since process models already describe
dynamic behavior, concept drift introduces second-order dynamics. Various techniques
for concept-drift detection have been developed. However, this for sure complicates
process discovery. If we cannot assume that the process itself is in steady-state, then
what is the process we are trying to discover? Do we want to have a process model
describing the past week or the past year?

Next to concept drift, there are the usual data quality problems [1]. Events may
have been logged incorrectly and attributes may be missing or are imprecise. In some
applications it may be difficult to correlate events and group them into cases. There
may be different identifiers used for the same case and events may be shared by differ-
ent cases. Since process discovery depends on the ordering of events in the event log,
high-quality timestamps are important. However, the timestamp resolution may be too
low (e.g., just a date) and different source systems may use different timestamp granu-
larities or formats. Often the day and the month are swapped, e.g., 8/7/2022 is entered
as 7/8/2022.

It is important to distinguish the evaluation of a process discovery algorithm disc ∈
B(Uact

∗) → UM from the evaluation of a specific process model M in the context
of a specific event log L. To evaluate a process discovery algorithm disc, one can use
cross-validation, i.e., split an event log into a training part and an evaluation part. The
process model is trained using the training log and evaluated using the evaluation log.
Ideally, the evaluation log has both positive and negative examples. This is unrealistic
in real settings. However, it is possible to create synthetic event data with positive and
negative cases using, for example, simulation. If we assume that the evaluation log
is a multiset of positive traces L+

eval ∈ B(Uact
∗) and a multiset of negative traces

L−
eval ∈ B(Uact

∗), then evaluation is simple. Let M = disc(L+
train) be the discovered

process model using only positive training examples. Now, we can use standard notions

such as recall = |[σ∈L+
eval |σ∈lang(M)]|

|L+
eval | and precision = |[σ∈L−

eval |σ �∈lang(M)]|
|L−

eval | using the

evaluation log. Recall is high when most of the positive traces in the evaluation log
are indeed possible according to the process model. Precision is high when most of the
negative traces in the evaluation log are indeed not possible according to the process
model.

Unfortunately, the above view is very naı̈ve considering process discovery in practi-
cal settings. We cannot assume negative examples when evaluating a specific model M

52 W. M. P. van der Aalst

in the context of a specific event log L observed in reality. Splitting L into a training log
and an evaluation log does not make any sense since the model is given and we want to
use the whole event log.

In spite of these problems, there is consensus in the process mining community that
there are the following four quality dimensions to evaluate a process model M in the
context of an event log L with observed behavior [1].

– Recall, also called (replay) fitness, aims to quantify the fraction of observed behavior
that is allowed by the model.

– Precision aims to quantify the fraction of behavior allowed by the model that was
actually observed (i.e., avoids “underfitting” the event data).

– Generalization aims to quantify the probability that new unseen cases will fit the
model (i.e., avoids “overfitting” the event data).

– Simplicity refers to Occam’s Razor and can be made operational by quantifying the
complexity of the model (number of nodes, number of arcs, understandability, etc.).

There exist various measures for recall. The simplest one computes the fraction of
traces in event log L possible according to the process model M . It is also possible to
define such a notion at the level of events. There are many simplicity notions. These
do not depend on the behavior of the model, but measure its understandability and
complexity. Most challenging are the notions of precision and generalization. Also,
these notions can be quantified, but there is less consensus on what they should measure.
The goal is to strike a balance between precision (avoiding “underfitting” the sample
event data) and generalization (avoiding “overfitting” the sample event data). A detailed
discussion is outside the scope of this chapter. Therefore, we refer to [1,4,15,31] for
further information.

4 Process Modeling Notations

We have formalized the notion of an event log and the behavior represented by a DFG.
Now we focus on higher-level process models able to model sequences, choices, loops,
and concurrency. We formalize Petri nets and process trees and provide an informal
introduction to a relevant subset of BPMN.

4.1 Labeled Accepting Petri Nets

Figures 2(c) and 3(c) already showed example Petri nets. Since their inception in 1962
[28], Petri nets have been used in a wide variety of application domains. Petri nets
were the first formalism to capture concurrency in a systematic manner. See [17,18]
for a more extensive introduction. Other notations such as Business Process Model and
Notation (BPMN), Event-driven Process Chains (EPCs), and UML activity diagrams all
build on Petri nets and have semantics involving “playing the token game”. For process
mining, we need to use the so-called labeled accepting Petri nets. These are standard

Foundations of Process Discovery 53

Petri nets where transitions are labeled to refer to activities in the event log and, next to
an initial marking, these nets also have a final marking. The behavior described by such
nets are all the “paths” leading from the initial state to the final state. We explain these
concepts step-by-step.

a

c

d

b

e
p1

p3 p5

p6

p2 p4

t3

t4

t2

t5t1
a

c

d

b

e
p1

p3 p5

p6

p2 p4

t3

t4

t2

t5t1

(a) AN1 = (N1,[p1],[p6]) (b) AN2 = (N2,[p1],[p6])

b

c

a

d

p2 p3

p5

p1 p4

t2

t3

t1 t4
a

a

b

p1

p3 p5

p6

p2 p4

t3

t4

t2

t5
t1

(c) AN3 = (N3,[p1,p2],[p4,p5]) (d) AN4 = (N4,[p1],[p6])

Fig. 9. Four accepting Petri nets: (a) AN 1 = (N1, [p1], [p6]), (b) AN 2 = (N2, [p1], [p6]), (c)
AN 3 = (N3, [p1 , p2], [p4 , p5]), and (d)AN 4 = (N4, [p1], [p6]).AN 1 was discovered for L1

(see Fig. 2(c)) and AN 2 was discovered for L2 (see Fig. 3(c)).

States in Petri nets are called markings that mark certain places (represented by cir-
cles) with tokens (represented by black dots). Transitions (represented by squares) are
the active components able to move the Petri net from one marking to another marking.
Transitions may have a label referring to the corresponding activity. There may be mul-
tiple transitions that refer to the same activity and there may be transitions without an
activity label. The former is needed if the same activity can occur at multiple stages in
the process. The latter is needed if activities can be skipped. Later we will give examples
illustrating the importance of the labeling function in the context of process mining.

Definition 13 (Labeled Petri Net). A labeled Petri net is a tuple N = (P, T, F, l) with
P the set of places, T the set of transitions, P ∩T = ∅, F ⊆ (P ×T)∪(T ×P) the flow
relation, and l ∈ T �→ Uact a labeling function. We write l(t) = τ if t ∈ T\dom(l)
(i.e., t is a silent transition that cannot be observed).

Figure 9 shows four accepting Petri nets. The first two were discovered for the event
logs L1 and L2 used to introduce DFGs. Figure 9(a) shows the labeled Petri net
N1 = (P1, T1, F1, l1) with P1 = {p1 , p2 , p3 , p4 , p5 , p6} (six places),

54 W. M. P. van der Aalst

T1 = {t1 , t2 , t3 , t4 , t5} (five transitions), F1 = {(p1 , t1), (t1 , p2), (t1 , p3), . . . ,
(t5 , p6)} (fourteen arcs), and l1 = {(t1 , a), (t2 , b), (t3 , c), (t4 , d), (t5 , e)} (labeling
function).

As mentioned, there may be multiple transitions with the same label and there may
be transitions that have no label (called “silent transitions”). This is illustrated by N4 =
(P4, T4, F4, l4) in Fig. 9(d) with l4 = {(t1 , a), (t2 , b), (t3 , a)}. Note that dom(l4) =
{t1 , t2 , t3} does not include t4 and t5 which are silent. This is denoted by the two
black rectangles in Fig. 9(d). Also note that l4(t1) = l4(t3) = a, i.e., t1 and t3 refer
to the same activity.

Since a place may have multiple tokens, markings are represented by multisets.
Transitions may have input and output places. For example, t1 in Fig. 9(a) has one
input place and two output places. A transition is called enabled if each of the input
places has a token. An enabled transition may fire (i.e., occur), thereby consuming a
token from each input place and producing a token for each output place.

An accepting Petri net has an initial marking Minit ∈ B(P) and a final marking
Mfinal ∈ B(P). The accepting Petri nets AN 1 = (N1, [p1], [p6]), AN 2 = (N2, [p1],
[p6]), and AN 4 = (N4, [p1], [p6]) in Fig. 9 have the same initial and final marking.
AN 3 = (N3, [p1 , p2], [p4 , p5]) in Fig. 9(c) has an initial marking Minit = [p1 , p2]
(denoted by the black tokens) and a final marking Mfinal = [p4 , p5] (denoted by the
double-bordered places).

Definition 14 (Accepting Petri Net). An accepting Petri net is a triplet AN = (N,
Minit ,Mfinal)whereN = (P, T, F, l) is a labeled Petri net,Minit ∈ B(P) is the initial
marking, and Mfinal ∈ B(P) is the final marking. UAN ⊆ UM is the set of accepting
Petri nets.

An accepting Petri net starts in the initial marking and may move from one marking
to the next by firing enabled transitions. Consider, for example, AN 3 = (N3, [p1 , p2],
[p4 , p5]) in Fig. 9(c). Initially, three transitions are enabled in [p1 , p2]: t1 , t2 , and t3 .
Firing t1 results in marking [p2 , p4], firing t2 results in marking [p1 , p3], and firing
t3 results in marking [p3 , p4]. If t1 fires (i.e., activity a occurs), then t1 and t3 are
no longer enabled and only t2 remains enabled. If t2 fires in [p2 , p4], we reach the
marking [p3 , p4]. In this marking, only t4 is enabled. Firing t4 results in the marking
[p4 , p5]. This is also the final marking ofAN 3. A firing sequence is a sequence of tran-
sition occurrences obtained by firing enabled transitions and moving from one marking
to the next. A complete firing sequence starts in the initial marking and ends in the final
marking. AN 3 has four possible complete firing sequences: 〈t1 , t2 , t4 〉, 〈t2 , t1 , t4 〉,
〈t2 , t4 , t1 〉, and 〈t3 , t4 〉.
Definition 15 (Complete Firing Sequences). Let AN = (N,Minit ,Mfinal) ∈ UAN

be an accepting Petri net with N = (P, T, F, l). cfs(AN) ⊆ T ∗ is the set of complete
firing sequences of AN , i.e., all firing sequences starting in the initial marking Minit

and ending in the final marking Mfinal .

cfs(AN1) = {〈t1 , t2 , t3 , t5 〉, 〈t1 , t3 , t2 , t5 〉, 〈t1 , t4 , t5 〉} and cfs(AN3) =
{〈t1 , t2 , t4 〉, 〈t2 , t1 , t4 〉, 〈t2 , t4 , t1 〉, 〈t3 , t4 〉}. Note that cfs(AN2) and cfs(AN4)
contain an infinite number of complete firing sequences due to the loop involving t4 .

Foundations of Process Discovery 55

As stated in Definition 2, a process model defines a set of traces. Earlier, we defined
lang(G) ⊆ Uact

∗ for a DFG G = (A,F). Now we need to define lang(AN) ⊆ Uact
∗

for an accepting Petri net AN = (N,Minit ,Mfinal). For this purpose, we need to
be able to apply the labeling function l to firing sequences. Let σ ∈ T ∗ be a fir-
ing sequence and l ∈ T �→ Uact a labeling function. Function l is generalized to
sequences, i.e., transitions are replaced by their labels and are dropped if they do not
have a label. Formally, l(〈〉) = 〈〉, l(σ · 〈t〉) = l(σ) · 〈l(t)〉 if t ∈ dom(l), and
l(σ · 〈t〉) = l(σ) if t �∈ dom(l). Consider, for example, the complete firing sequence
σ = 〈t1 , t2 , t3 , t4 , t3 , t2 , t5 〉 ∈ cfs(AN4) of the accepting Petri net in Fig. 9(d).
l(σ) = 〈a, b, a, a, b〉, i.e., t1 , t2 , and t3 are mapped to the corresponding labels, and t4
and t5 are dropped.

Definition 16 (Traces of an Accepting Petri Net). Let AN = (N,Minit ,Mfinal) ∈
UAN be an accepting Petri net. lang(AN) = {l(σ) | σ ∈ cfs(AN)} are the traces
possible according to AN .

Now we can reason about the traces of the four accepting in Fig. 9. lang(AN 1) =
{〈a, b, c, e〉, 〈a, c, b, e〉, 〈a, d, e〉}. lang(AN 2) = {〈a, b, c, e〉, 〈a, c, b, e〉, 〈a, b, c, d, b,
c, e〉, 〈a, c, b, d, b, c, e〉, . . . , 〈a, c, b, d, b, c, d, c, b, d, c, b, e〉, . . .}. lang(AN 3) = {〈a, b,
d〉, 〈b, a, d〉, 〈b, d, a〉, 〈c, d〉}. lang(AN 4) = {〈a, b, a〉, 〈a, a, b〉, 〈a, b, a, b, a〉, 〈a, a, b,
b, a〉, . . . , 〈a, a, b, b, a, a, b, a, b〉, . . .}.

It is important to note the consequences of restricting lang(AN) to the behavior of
complete firing sequences. If AN has livelocks of deadlocks, then these are not con-
sidered to be part of the language. If we remove the arc from p4 to t4 in AN 2, then
lang(AN 2) = {〈a, b, c, e〉, 〈a, c, b, e〉}, because there are no complete firing sequences
involving t4.

In literature, Petri nets are normally not equipped with a labeling function and a
final marking. However, both the labeling function l and a defined final marking Mfinal

are vital in the context of process mining. The final marking allows us to reason about
complete firing sequences, just like traces in an event log have a clear ending. If we
would consider ordinary Petri nets rather than accepting Petri nets, the language would
also include all prefixes. This would make it impossible to describe the behavior found
in an event log such as L = [〈a, b, c〉1000], because the corresponding Petri net would
also allow for traces 〈a, b〉, 〈a〉, and 〈〉.

The labeling function l ∈ T �→ Uact also greatly improves expressiveness. The
alternative would be that transitions are uniquely identified by activities, i.e., T ⊆ Uact .
However, this would make it impossible to describe many behaviors seen in event logs.
Consider, for example, an event log such as L = [〈a, b, c〉1000, 〈a, c〉1000] where b can
be skipped. It is easy to model this behavior using a silent transition to skip b or by
using two transitions with a c label. Although it is trivial to create a DFG G such that
lang(G) = {〈a, b, c〉, 〈a, c〉} (simply apply the baseline algorithm described in Def-
inition 6), it is impossible to create an accepting Petri net AN with lang(AN) =
{〈a, b, c〉, 〈a, c〉} without using a labeling function allowing for silent or duplicate
transitions.

56 W. M. P. van der Aalst

4.2 Process Trees

The two process trees discovered for event logs L1 and L2 (see Fig. 2(c) and Fig. 3(c))
are depicted as Q1 = →(a,×(∧(b, c), d), e) and Q2 = →(a,�(∧(b, c), d), e) in
Fig. 10. Their language is the same as AN 1 and AN 2 in Fig. 9.

Process trees are not commonly used as a modeling language. However, state-of-
the-art process discovery techniques use process trees as an internal representation.
The behavior of process trees can be visualized using Petri nets, BPMN, UML activity
diagrams, EPCs, etc. However, they also have their own graphical representation, as
shown in Fig. 10.

The main reason for using process trees is that they have a hierarchical structure
and are sound by construction. This does not hold for other notations such as Petri nets
and BPMN. For example, if we remove the arc (t4 , p2) inAN 2 shown in Fig. 9(b), then
the process may deadlock. The process gets stuck in marking [p5]making it impossible
to reach the final marking. If we remove the arc (p4 , t4) in AN 2, then the process may
livelock. It is possible to put an arbitrary number of tokens in p2 and p4 , but after the
occurrence of d it is impossible to reach the final marking. If both arcs are removed,
the accepting Petri net is again sound (i.e., free of anomalies such as deadlocks and
livelocks). When discovering process model constructs locally, these potential sound-
ness problems are difficult to handle (see [6] for more details on analyzing soundness of
process models). Therefore, a range of inductive mining techniques has been developed
using process trees that are sound by construction [22–24].

a

d

e

cb

a

d

e

cb

a

τ

ab
(a) Q1 (b) Q2 (c) Q3

Fig. 10. Three process trees: (a) Q1 = →(a, ×(∧(b, c), d), e), (b) Q2 = →(a, �(∧(b, c),
d), e), and (c) Q3 = →(a, �(∧(b, a), τ)).

A process tree is a tree-like structure with one root node. The leaf nodes correspond
to activities (including the silent activity τ , which is similar to a silent transition in Petri
nets). Four types of operators can be used in a process tree: → (sequential composi-
tion), × (exclusive choice), ∧ (parallel composition), and � (redo loop). This way it is
possible to construct process trees such as the ones shown in Fig. 10.

Foundations of Process Discovery 57

Definition 17 (Process Tree). Let PTO = {→,×,∧,�} be the set of process tree
operators and let τ �∈ Uact be the so-called silent activity. Process trees are defined as
follows.

– if a ∈ Uact ∪ {τ}, then Q = a is a process tree,
– if n ≥ 1, Q1, Q2, . . . , Qn are process trees, and ⊕ ∈ {→,×,∧},

then Q = ⊕(Q1, Q2, . . . Qn) is a process tree, and
– if n ≥ 2 and Q1, Q2, . . . , Qn are process trees,
then Q = �(Q1, Q2, . . . Qn) is a process tree.

UQ ⊆ UM is the set of all process trees.

Consider the process tree Q1 = →(a,×(∧(b, c), d), e) shown in Fig. 10(a). The
leaf nodes correspond to the activities a, b, c, d, and e. The root node is a sequence
operator (→) having three children: a, ×(∧(b, c), d), and e. The root node of the subtree
×(∧(b, c), d) is a choice operator (×) having two children: ∧(b, c) and d. The root node
of the subtree ∧(b, c) is a parallel operator (∧) having two children: b and c.

sequential
composition

exclusive
choice

a

τ

parallel
composition

redo
loop

normal
activity

silent
activity

a b z...
a b z...

a b z...

start end

a b z...
start end

a b z...

a
start end

start end

a

start

z

...
b

end

a b z...

a

start

z

...
b

end

Fig. 11. The semantics of the four process tree operators, i.e., → (sequential composition), ×
(exclusive choice), ∧ (parallel composition), and � (redo loop), expressed in terms of Petri nets.

Although it is fairly straightforward to define the semantics of process trees directly
in terms of traces, we can also use the mapping onto accepting labeled Petri nets shown
in Fig. 11. A silent activity, i.e., a leaf node labeled τ , is mapped onto a silent transition.
A normal activity a is mapped onto a transition twith label l(t) = a. Sequential compo-
sition →(a, b, c, . . . , z) corresponds to the Petri net structure shown in Fig. 11, i.e., first

58 W. M. P. van der Aalst

a occurs and only if a has finished, b may start, after b completes, c can start, etc. The
sequential composition ends when the last element completes. Note that a, b, c, . . . , z do
not need to be atomic activities. These elements may correspond to large subprocesses,
each represented by a subtree of arbitrary complexity. Exclusive choice×(a, b, c, . . . , z)
and parallel composition ∧(a, b, c, . . . , z) can be mapped onto Petri nets as shown in
Fig. 11. Also here the elements do not need to be atomic and may correspond to subtrees
of arbitrary complexity. Figure 11 also shows the semantics of the redo loop operator
�. In �(a, b, c, . . . , z), first a is executed. This is called the “do” part (again a may be
a subprocess). Then there is the option to stop (fire the silent transition to go to the end
place) or one of the “redo elements” is executed. For example, b is executed. After the
completion of b, we again execute the “do” part a after which there is again the choice
to stop or pick one of the “redo elements”, etc. Note that semantically �(a, b, c, . . . , z)
and �(a,×(b, c, . . . , z)) are the same.

Definition 18 (Traces of a Process Tree). Let Q ∈ UQ be a process tree and ANQ ∈
UAN the corresponding accepting Petri net constructed by recursively applying the
patterns depicted in Fig. 11. lang(Q) = lang(ANQ) are the traces possible according
to Q.

Using the above definition, we can compute the set of traces for the three pro-
cess trees in Fig. 10: Q1 = →(a,×(∧(b, c), d), e), Q2 = →(a,�(∧(b, c), d), e),
and Q3 = →(a,�(∧(b, a), τ)). lang(Q1) = {〈a, b, c, e〉, 〈a, c, b, e〉, 〈a, d, e〉},
lang(Q2) = {〈a, b, c, e〉, 〈a, c, b, e〉, 〈a, b, c, d, b, c, e〉, 〈a, c, b, d, b, c, e〉, . . . , 〈a, c, b, d,
b, c, d, c, b, d, c, b, e〉, . . .}, and lang(Q3) = {〈a, b, a〉, 〈a, a, b〉, 〈a, b, a, b, a〉, 〈a, a, b, b,
a〉, . . . , 〈a, a, b, b, a, a, b, a, b〉, . . .}.

Some additional examples to illustrate the expressiveness of process trees:

– lang(→(a,×(b, τ), c)) = {〈a, b, c〉, 〈a, c〉} (ability to skip b).
– lang(→(a, a)) = {〈a, a〉} (ability to specify that a should occur twice).
– lang(�(a, τ)) = {〈a〉, 〈a, a〉, 〈a, a, a〉, . . .} (at least one a).
– lang(�(τ, b)) = {〈〉, 〈b〉, 〈b, b〉, . . .} (any number of b’s)
– lang(�(a, b)) = {〈a〉, 〈a, b, a〉, 〈a, b, a, b, a〉, . . .} (alternate a and b).
– lang(�(τ, a, b, c, . . . , z)) = {a, b, c, . . . , z}∗ (all traces over given set of activities).

There are also behaviors that are difficult to express in terms of a process tree.
For example, it is difficult to synchronize between subtrees. Consider, for example,
the process tree Q = ∧(→(a, b, c), →(d, e, f)) with the additional requirement that b
should be executed before e. This can only be handled by duplicating activities, e.g.,
Q = ×(→(∧(→(a, b), d),∧(c,→(e, f))),→(a, b, c, d, e, f)). Trying to capture arbi-
trary synchronizations between subprocesses leads to incomprehensible process trees
whose behavior is still easy to express in terms of a BPMNmodel or a labeled accepting
Petri net. Figure 12(a) shows how this can be expressed in terms of a labeled accepting
Petri net. Similarly, process trees cannot capture long-term dependencies (e.g., a choice
at the beginning of the process influences a choice later in the process). Figure 12(b)
shows an example where the first choice depends on the second choice. This simple
example can be modeled using the process tree Q = ×(→(a, c, d, e),→(b, c, d, f)),
which enumerates the two traces and duplicates activities c and d. In general, process-
tree based discovery techniques are unable to create such models. Nevertheless, process

Foundations of Process Discovery 59

(a) A labeled accep ng Petri net synchronizing two parallel flows using place p6.

a

p1 p3 p5

p6

p2 p4
b c

d e f

p7

p8

p9

p10 p11

(b) A labeled accep ng Petri net with long-term dependencies (p4 and p5).

p1 p3 p7

a

b

p6

e

f

c d
p2

p4

p5

Fig. 12. Two labeled accepting Petri nets with behaviors that are difficult to discover in terms of
a process tree. The top model (a) corresponds to the process tree Q = ∧(→(a, b, c), →(d, e, f))
with the additional requirement that b should be executed before e. The bottom model (b) corre-
sponds to the process tree Q = →(×(a, b), c, d, ×(e, f)) with the additional requirement that a
should be followed by e and b should be followed by f .

trees provide a powerful representational bias that can be exploited by process discovery
techniques.

4.3 Business Process Model and Notation (BPMN)

Business Process Model and Notation (BPMN) is the de facto representation for busi-
ness process modeling in industry [19,36]. The BPMN standard is maintained by the
Object Management Group (OMG) [27], is supported by a wide range of vendors, and
is used by numerous organizations. The OMG specification is 532 pages [27]. Given
our focus on process discovery, the constructs for control-flow are most relevant. More-
over, most tools only support a small subset of the BPMN standard and an even smaller
subset is actually used on a larger scale. When using the more advanced constructs
like inclusive/complex gateways and multiple instance activities, the execution seman-
tics are also not so clear (see Chapter 13 of [27]). Therefore, we only cover start and
end events, activities, exclusive gateways, parallel gateways, and sequence flows. Con-
structs such as pools, lanes, data objects, messages, subprocesses, and inclusive gate-
ways are relevant for more advanced forms of process mining, but outside the scope of
this chapter.

Figure 13 shows three BPMN models (B1, B2, and B3) and a limited set of
BPMN notations. We (informally) refer to the class of BPMN models constructed
using these building blocks as UBPMN . The behavior represented by the BPMN model

60 W. M. P. van der Aalst

a
start end

b

c

d

e

(a) BPMN model B1

a
start end

b

c

d

e

(b) BPMN model B2

a
start end

b

a

(c) BPMN model B3

aactivity

sequence
flow

start
event

end
event

exclusive
gateway

parallel
gateway

(d) core BPMN notations

Fig. 13. Three BPMN models corresponding to the accepting Petri nets AN 1, AN 2, and AN 4,
and the process trees Q1, Q2, and Q3 used before.

B1 ∈ UBPMN is the same as the accepting Petri netAN 1 = (N1, [p1], [p6]) in Fig. 9(a)
and the process tree Q1 = →(a,×(∧(b, c), d), e) in Fig. 10(a). Hence, lang(B1) =
{〈a, b, c, e〉, 〈a, c, b, e〉, 〈a, d, e〉}. BPMN model B2 ∈ UBPMN corresponds to AN 2 in
Fig. 9(b) and the process tree Q2 in Fig. 10(b). BPMN model B3 ∈ UBPMN corre-
sponds to AN 4 in Fig. 9(d) and the process tree Q3 in Fig. 10(c). We do not provide
formal semantics for these BPMN constructs. However, the examples should be self-
explaining and demonstrate that a BPMN model B ∈ UBPMN defines indeed a set of
traces lang(B).

In this chapter, we have introduced four types of models: DFGs UG ⊆ UM , accept-
ing Petri nets UAN ⊆ UM , process trees UQ ⊆ UM , and BPMNmodels UBPMN ⊆ UM .
There exist discovery approaches for all of them. Since they all specify sets of possible
complete traces, automated translations are often possible. For example, a discovery
technique may use process trees internally, but use Petri nets or BPMN models to visu-
alize the result.

5 Bottom-Up Process Discovery

In Sect. 2, we presented a baseline discovery approach to learn a DFG from an event
log. As stated in Definition 3, a process discovery algorithm is a function disc ∈
B(Uact

∗) → UM that, given an event log L, produces a model M = disc(L) that
allows for the traces in lang(M). The DFG-based baseline approach has many limita-
tions. One of the main limitations is the inability to represent concurrency. The DFG
produced tends to have an excessive number of cycles leading to Spaghetti-like under-
fitting models. Therefore, we introduced higher-level process model notations such as

Foundations of Process Discovery 61

accepting Petri nets (Sect. 4.1), process trees (Sect. 4.2), and a subset of the BPMN
notation (Sect. 4.3).

In this chapter, we group the more advanced approaches into two groups: “bottom-
up” process discovery and “top-down” process discovery. The first group aims to
uncover local patterns involving a few activities. The second group aims to find a global
structure that can be used to decompose the discovery problem into smaller problems.
In this section, we introduce “bottom-up” process discovery using the Alpha algorithm
[1,9] as an example. In Sect. 6, we introduce “top-down” process discovery using the
basic inductive mining algorithm [22–24] as an example.

Both “bottom-up” and “top-down” process discovery can be combined with the fil-
tering approaches presented in Sect. 2.4, in particular activity-based and variant-based
filtering. Without filtering, the basic Alpha algorithm and basic inductive mining algo-
rithm will not be very usable in real-life settings. Therefore, we assume that the event
logs have been preprocessed before applying “bottom-up” or “top-down” discovery
algorithms.

Definition 19 (Basic Log Preprocessing). Let L ∈ B(Uact
∗) be an event log. Given

the thresholds τact ∈ N and τvar ∈ N: Lτact ,τvar = filtervar (filteract(L, τact), τvar).

In the remainder, we assume that the event log was preprocessed and that we want
to discover a process model describing the filtered event log.

5.1 The Essence of Bottom-Up Process Discovery: Admissible Places

To explain “bottom-up” process discovery, we first introduce the notion of a “flower
model” for an event log. This is the accepting Petri net without places. We use this as a
basis and then add places one-by-one.

Definition 20 (Flower Model). Let L ∈ B(Uact
∗) be an event log with activities

A = act(L). The flower model of L is the accepting Petri net disc
flower

(L) = (N, [], [])
with N = (∅, A, ∅, {(a, a) | a ∈ A}).

Note that disc
flower

(L) contains no places and one transition per activity. The flower
model of L1 is shown in Fig. 14(a). In a Petri net, a transition is enabled if all of its input
places contain a token. Hence, a transition without an input place is always enabled.
Moreover, the Petri net is always in the final marking []. Therefore, lang(disc

flower
(L))

= A∗, i.e., all traces over activities seen in the event log. Such a flower model can
also be represented as a process tree. If A = {a1, a2, . . . , an} = act(L), then
Q = �(τ, a1, a2, . . . , an) is the process tree that allows for any behavior over A, i.e.,
lang(Q) = A∗. Although it is easy to create such a process tree, it is not so clear how
to add constraints to it. As mentioned earlier, it is impossible to synchronize activities
in different subtrees. However, when looking at the flower Petri net disc

flower
(L), it is

obvious that places can be added to constrain the behavior. Therefore, we use Petri nets
to illustrate “bottom-up” process discovery.

Next, we consider a Petri net having a single place constraining the behavior of the
flower model. The place p = (A1, A2) is characterized by a set of input activities A1

and a set of output activities A2. We would like to add places that allow for the behavior
seen in the event log. Such a place is called an admissible place.

62 W. M. P. van der Aalst

a

c

d

b

e a

c

d

b

e

p2

(a) flower model (no places, just transitions)
(b) single-place net with place ({a},{b,d})

a

c

d

b

e
p1

p3 p5

p6

p2 p4

(c) model with three redundant places

a

c

d

b

e
p1

p3 p5

p6

p2 p4

(d) AN1 = (N1,[p1],[p6]) seen before

p7

p8

p9

Fig. 14. Four accepting Petri nets: (a) a flower model, (b) AN p2 with just one place p2 =
({a}, {b, d}), (c) an accepting Petri net with three additional redundant places p7 = (∅, {e}),
p8 = ({a}, {e}), and p9 = ({a}, ∅), and (d) the accepting Petri net AN 1 already shown in
Fig. 9(a) (discovered by applying the original Alpha algorithm [1,9] to event log L1).

Definition 21 (Admissible Place). Let L ∈ B(Uact
∗) be an event log with activi-

ties A = act(L). p = (A1, A2) is a candidate place if A1 ⊆ A and A2 ⊆ A.
The corresponding single place accepting Petri net is AN p = (N,Minit ,Mfinal) with
N = (P, T, F, l), P = {p}, T = A, F = {(a, p) | a ∈ A1} ∪ {(p, a) | a ∈ A2},
l = {(a, a) | a ∈ A}), Minit = [p | A1 = ∅], and Mfinal = [p | A2 = ∅]. Candidate
place p = (A1, A2) is admissible if var(L) ⊆ lang(AN p). P

adm

(L) is the set of all
admissible places, given an event log L.

Given a candidate place p = (A1, A2), AN p is the accepting Petri net consisting of
one transition per activity and a single place p. The transitions in A1 produce tokens for
p and the transitions in A2 consume tokens from p. If p is a source place (i.e., A1 = ∅),
then it has to be initially marked to be meaningful (otherwise, it would remain empty
by definition). If p is a sink place (i.e., A2 = ∅), then it has to be marked in the final
marking to be meaningful (otherwise, it could never be marked on a path to the final
marking). We also assume that all other places are empty both at the beginning and at
the end. Hence, only source places are initially marked and only sink places are marked
in the final marking. This explains the reason that Minit = [p | A1 = ∅] (p is initially
marked if it is a source place) and Mfinal = [p | A2 = ∅] (p is marked in the final
marking if it is a sink place).

A candidate place p = (A1, A2) is admissible if the corresponding AN p allows
for all the traces seen in the event log, i.e., event log L and single-place net AN p

are perfectly fitting. Consider, for example, L1 = [〈a, b, c, e〉10, 〈a, c, b, e〉5, 〈a, d, e〉].

Foundations of Process Discovery 63

Examples of admissible candidate places are p1 = (∅, {a}), p2 = ({a}, {b, d}), p3 =
({a}, {c, d}), p4 = ({b, d}, {e}), p5 = ({c, d}, {e}), p6 = ({e}, ∅). These are the
places shown earlier in Fig. 9(a) (for convenience the accepting Petri net AN 1 is again
shown in Fig. 14(d)). However, we now consider an accepting Petri net per place, i.e.,
AN p1 ,AN p2 ,AN p3 , . . . ,AN p6 . Figure 14(b) shows AN p2 with p2 = ({a}, {b, d}).
Other admissible places (not shown in Fig. 9(a)) are p7 = (∅, {e}), p8 = ({a}, {e}),
p9 = ({a}, ∅). Examples of candidate places that are not admissible are p10 = (∅, {b})
(the initial token in p10 is not consumed when replaying 〈a, d, e〉), p11 = ({a}, {b})
(the token produced for p11 by a is not consumed when replaying 〈a, d, e〉), p12 =
({b}, {e}) (it is impossible to replay 〈a, d, e〉 because of a missing token in p12), and
p13 = ({b}, ∅) (the sink place is not marked when replaying 〈a, d, e〉).

Note that places correspond to constraints. Place p4 = ({b, d}, {e}) allows for all
the traces in L1 but does not allow for traces such as 〈a, e〉, 〈a, b, d, e〉, 〈a, b, e, e〉, etc.

Assuming that we want to ensure perfect replay fitness (i.e., 100% recall), we only
add admissible places. This is a reasonable premise if filtered the event log (cf. Defini-
tion 19) before conducting discovery. This means that process discovery is reduced to
finding a subset of P

adm

(L) (i.e., a selection of admissible places given event log L).
Why not simply add all places in P

adm

(L) to the discovered process model? There
are two reasons not to do this: redundancy and overfitting. A place is redundant if
its removal does not change the behavior. Consider, for example, Fig. 14(c) with two
source places, two sink places, and an additional place connecting a and e. The places
p7 = (∅, {e}), p8 = ({a}, {e}), and p9 = ({a}, ∅) are redundant, i.e., we can remove
them without allowing for more behavior. Moreover, adding all possible places in
P

adm

(L)may lead to overfitting. As explained in Sect. 3, the event log contains example
behavior and it would be odd to assume that behaviors that have not been observed are
not possible. Note that there are 2n × 2n = 22n candidate places with n = |act(L)|.
Hence, for a log with just ten activities there are over one million candidate places
(22×10 = 1048576)). Many of these will be admissible by accident. This problem is
comparable to “multiple hypothesis testing” in statistics. If one tests enough hypotheses,
then one will find seemingly significant results by accident (cf. Bonferroni correction).

There are many approaches to select a suitable subset of P
adm

(L). For example, it
is easy to remove redundant places and only consider places with a limited number of
input and output arcs [7,26]. However, there is the additional problem that the above
procedure requires evaluating each candidate place with respect to the whole event log.
This means that a naı̈ve approach quickly becomes intractable for larger event logs and
processes.

5.2 The Alpha Algorithm

In the remainder of this section, we present the first process discovery technique able
to discover concurrent models (e.g., Petri nets) from event logs: the Alpha algorithm
[9]. The Alpha algorithm is completely based on the footprint of the (filtered) event log
L. This implies that one pass through the event log is sufficient. Hence, the algorithm
is linear in the size of the log (a naı̈ve implementation is exponential in the number
of unique activities, but this number is typically low). One can implement the Alpha

64 W. M. P. van der Aalst

algorithm efficiently by combining → relations that meet certain constraints. These
constrains are monotonic, allowing for an apriori-style algorithm [1].

We have adapted the original presentation used in [9] to leverage the notations and
insights already provided in this chapter. We use as input a DFG and as a result also
add a dummy start (�) and end (�) activity. However, in essence, the algorithm did not
change. We elaborate on the differences with [9] later. The Alpha algorithm discovers
an accepting Petri net for any event log L.

Definition 22 (Alpha Algorithm). The alpha algorithm discalpha ∈ B(Uact
∗) →

UAN returns an accepting Petri net discalpha(L) for any event log L ∈ B(Uact
∗). Let

A = act(L) and fp(L) = fp(disc
DFG

(L)) the footprint of event log L. This allows us
to write a1 →L a2 if fp(L)((a1, a2)) = → and a1#La2 if fp(L)((a1, a2)) = # for
any a1, a2 ∈ A′ = A ∪ {�, �}.

1. Cnd = {(A1, A2) | A1 ⊆ A′ ∧ A1 �= ∅ ∧ A2 ⊆ A′ ∧ A2 �=
∅ ∧ ∀a1∈A1∀a2∈A2 a1 →L a2 ∧ ∀a1,a2∈A1 a1#La2 ∧ ∀a1,a2∈A2 a1#La2}
are the candidate places,

2. Sel = {(A1, A2) ∈ Cnd | ∀(A′
1,A′

2)∈Cnd A1 ⊆ A′
1 ∧ A2 ⊆ A′

2 =⇒ (A1, A2) =
(A′

1, A
′
2)} are the selected maximal places,

3. P = {p(A1,A2) | (A1, A2) ∈ Sel} ∪ {p�, p�} is the set of all places,
4. T = {ta | a ∈ A′} is the set of transitions,
5. F = {(ta, p(A1,A2)) | (A1, A2) ∈ Sel ∧ a ∈ A1} ∪ {(p(A1,A2), ta) | (A1, A2) ∈

Sel ∧ a ∈ A2} ∪ {(p�, t�), (t� , p�)} is the set of arcs,
6. l = {(ta, a) | a ∈ A} is the labeling function,
7. Minit = [p�] is the initial marking, Mfinal = [p�] is the final marking, and
8. discalpha(L) = ((P, T, F, l),Minit ,Mfinal) is the discovered accepting Petri net.

The complexity of the algorithm is in the first two steps building the sets Cnd and
Sel that are used to create the places in Step 3. The rest builds on the ideas and notions
introduced before. The Alpha algorithm creates a transition ta for each activity a in the
event log and also adds a start transition t� and an end transition t� (Step 4). Transitions
are labeled with the corresponding activity (Step 6). Transitions t� and t� are silent, t�
has a source place p� as input and t� has a sink place p� as output. The initial marking
only marks the source place p� and the final marking only marks the sink place p�
(Step 7). Steps 3–8 can be seen as “bookkeeping”. The essence of the algorithm is in
the first two steps.

Step 1 of the algorithm creates candidate places similar to the construction of can-
didate places used in Definition 21. (A1, A2) corresponds to a candidate place p such
that activities in A1 produce tokens for p and activities in A2 consume tokens from p.
Note that technically (A1, A2) is a pair of non-empty sets of activities (including start
and end). The requirement ∀a1∈A1∀a2∈A2 a1 →L a2 states that any activity in A1 can
be directly followed by any activity in A2, but no activity in A2 can be directly followed
by an activity in A1. The requirements ∀a1,a2∈A1 a1#La2 and ∀a1,a2∈A2 a1#La2 state
that activities in the setsA1 andA2 cannot directly follow any other member of the same
activity set. As a consequence, an activity that can follow itself directly (i.e., a‖La) can-
not be in A1 or A2. This also implies that A1 and A2 are disjoint. Cnd is the set of all

Foundations of Process Discovery 65

pairs of activity sets meeting these requirements. Sel ⊆ Cnd retains the “maximal ele-
ments”. Candidate (A1, A2) ∈ Cnd is maximal if there is no other (A′

1, A
′
2) ∈ Cnd that

is strictly larger, i.e., it cannot be that A1 ⊆ A′
1, A2 ⊆ A′

2, and (A′
1, A

′
2) �= (A1, A2).

Each selected maximal element, i.e., (A1, A2) ∈ Sel , corresponds to a place p(A1,A2)

connecting the transitions corresponding to A1 (i.e., {ta | a ∈ A1}) to the transitions
corresponding to A2 (i.e., {ta | a ∈ A2}).

a

c

d

b

e

p({a},{b,d})

(a) process model discovered for L1

p({a},{c,d})

tat tp pp({ },{a}) p({e},{ })

p({c,d},{e})

p({b,d},{e})

tb

td

tc

te

a

c

d

b

e

p({a,d},{b})

(b) process model discovered for L2

p({a,d},{c})

tat tp pp({ },{a}) p({e},{ })

p({c},{d,e})

p({b},{d,e})

tb

td

tc

te

b

ap({ },{a})

(c) process model discovered for L4

t t
p p

p({a},{ })

ta

tb

p({ },{b}) p({b},{ })

b

ap({ },{a})

(d) process model discovered for L5

t tp p

p({a},{ })

ta

tb

p({b},{ })c
tc

p({a},{b})

Fig. 15. Four accepting Petri nets created using the Alpha algorithm from Definition 22.
The place and transition names are as specified in Definition 22. The four event logs
used are: L1 = [〈a, b, c, e〉10, 〈a, c, b, e〉5, 〈a, d, e〉], L2 = [〈a, b, c, e〉50, 〈a, c, b, e〉40,
〈a, b, c, d, b, c, e〉30, 〈a, c, b, d, b, c, e〉20, 〈a, b, c, d, c, b, e〉10, 〈a, c, b, d, c, b, d, b, c, e〉10], L4 =
[〈a, b〉35, 〈b, a〉15], and L5 = [〈a〉10, 〈a, b〉8, 〈a, c, b〉6, 〈a, c, c, b〉3, 〈a, c, c, c, b〉]. Note that
unlike in [9] invisible start and end transitions are added to be more general.

Figure 15 shows some examples where the Alpha algorithm is applied to a smaller
event log. The place names reflect the elements of the set Sel created in Step 2 of the
algorithm. For L1 = [〈a, b, c, e〉10, 〈a, c, b, e〉5, 〈a, d, e〉], Sel = {({�}, {a}), ({a},
{b, d}), ({a}, {c, d}), ({b, d}, {e}), ({c, d}, {e}), ({e}, {�})}. Note that Cnd\Sel =
{({a}, {b}), ({a}, {c}), ({a}, {d}), ({b}, {e}), ({c}, {e}), ({d}, {e})}. These candi-
dates were removed because they are not maximal. Figure 15(a) shows the resulting
accepting Petri net discalpha(L1). Figure 15(b) shows discalpha(L2). Note that the
Alpha algorithm is able to discover concurrency, choices, and loops. Comparing the
process models for L1 and L2 with the accepting Petri nets in Fig. 2 (for L1) and Fig. 3
(for L2), we can see that p�, t�, t� , and p� have been added. These can be removed
if start and end activities happen only at the beginning or end. In L1 and L2, the only
start activity is a and a can only happen in the first position. Also, the only end activity
is e and e can only happen in the last position. If this is the case, we do not need to add
an artificial start � or end �.

Figure 15(c) shows why it is sometimes necessary to add an artificial start or end.
In L4 = [〈a, b〉35, 〈b, a〉15], a is a start activity in trace 〈a, b〉, but can also happen at

66 W. M. P. van der Aalst

the second position (cf. 〈b, a〉). The same holds for activity b. Therefore, we need to
add an artificial start �. a and b are also end activities, but do not appear just at the
end, e.g., b may also happen in the first position. Therefore, we need to add an artificial
end �. Note that Definition 22 is slightly different from the original algorithm in [9]
due to the addition of the dummy start and end activities. For logs where the traditional
algorithm already produces the correct result, one can simply remove p�, t�, t� , and
p� . However, the algorithm in Definition 22 is able to handle start and end activities
that can also appear in the middle of a trace. Hence, it is more general.

Figure 16 shows the model discovered for the larger event log L3 =
[〈ie, cu, lt , xr , fe〉285, 〈ie, cu, lt , ct , fe〉260, 〈ie, cu, ct , lt , fe〉139, 〈ie, lt , cu, xr , fe〉137,
〈ie, lt , cu, ct , fe〉124, 〈ie, cu, xr , lt , fe〉113, 〈ie, xr , cu, lt , fe〉72, 〈ie, ct , cu, xr , fe〉72,
〈ie, cu, om, am, cu, lt , xr , fe〉29, 〈ie, cu, om, am, cu, lt , ct , fe〉28, . . .] using the full
activity names, i.e., ie = initial examination, xr = X-ray, ct = CT scan, cu = checkup,
om = order medicine, am = administer medicine, lt = lab tests, and fe = final examina-
tion. The model was generated using the Alpha algorithm implemented in ProM. Note
that there was no need to add artificial start or end activities because ie happens only at
the beginning and fe happens only at the end.

Fig. 16. The accepting Petri net that was discovered by the Alpha algorithm implemented in
ProM, based on the larger event log L3 introduced in Sect. 2.5. Note that the artificial start and
end activities have not been added, and the full activity names are used.

The Alpha algorithm should be seen as a baseline algorithm to discover concur-
rency. It has many limitations, as pointed out in the original paper presenting the
algorithm [9]. Event log L5 = [〈a〉10, 〈a, b〉8, 〈a, c, b〉6, 〈a, c, c, b〉3, 〈a, c, c, c, b〉] is
used to illustrate two of these problems: skipping and self-loops. Figure 15(d) shows
the discovered process model discalpha(L5). The selected maximal elements are
Sel = {({�}, {a}), ({a}, {b}), ({a}, {�}), ({b}, {�})}. Note that ({a}, {b, �}) �∈
Sel , because b →L5 � and not b#L5�. Because c‖L5c (c can be directly followed
by c) and not c#L5c, activity c does not appear in Sel , implying that tc remains discon-
nected from the rest of the model. Activity b can be seen as a “skippable” activity and
the Alpha algorithm cannot handle such activities, because these require silent transi-
tions. The basic Alpha algorithm can also not discover the self-loop involving c. The
Alpha algorithm has been extended to address these problems, and there exist variants
to deal with self-loops, skipping, long-term dependencies, etc. See [1] for more infor-
mation on the limitations of the basic algorithm and pointers to extensions addressing
these problems.

Foundations of Process Discovery 67

6 Top-Down Process Discovery

The Alpha algorithm is an example of a bottom-up discovery approach that tries to add
places to the Petri net to locally constrain behavior. Top-down discovery approaches try
to recursively decompose the event log into smaller event logs until the problem gets
trivial. The whole event log L is decomposed into smaller event logs L1, L2, . . . , Ln

that have a clear relationship, e.g., Li may contain events that occur before Lj if i < j,
or Li and Lj are fully disjoint for all i �= j. Each event in L ends up in precisely
one of the sublogs. However, cases may be distributed over multiple sublogs. Each
of the smaller event logs is analyzed and (if needed) decomposed into smaller event
logs, e.g., Li is in turn decomposed into Li,1, Li,2, . . . , Li,m, etc. Again the events in
Li are partitioned over Li,1, Li,2, . . . , Li,m. This is repeated until we encounter a so-
called base case, i.e., a sublog containing just one activity, e.g., [〈a〉160], [〈a〉80, 〈〉80],
or [〈a〉80, 〈a, a〉60, 〈a, a, a〉20].

Due to the recursive decomposition of logs into smaller event logs, we automatically
get a tree-like structure where the root corresponds to the original event log and the
leaves correspond to trivial event logs (the so-called base cases). This fits well with the
process tree formalism introduced in Sect. 4.2.

Before introducing a particular approach, let’s use a few simple event logs to illus-
trate the idea of splitting an event log.

– Event log L = [〈a, b, c〉100] is decomposed into base cases L1 = [〈a〉100], L2 =
[〈b〉100], and L3 = [〈c〉100] leading to the discovery of Q = →(a, b, c).

– Event log L = [〈a〉50, 〈b〉25, 〈c〉25] is decomposed into base cases L1 = [〈a〉50],
L2 = [〈b〉25], and L3 = [〈c〉25] leading to the discovery of Q = ×(a, b, c).

– Event log L = [〈a, b, c〉30, 〈a, c, b〉20, 〈b, a, c〉20, 〈b, c, a〉10, 〈c, a, b〉10, 〈c, b, a〉10] is
decomposed into base casesL1 = [〈a〉100],L2 = [〈b〉100], andL3 = [〈c〉100] leading
to the discovery of Q = ∧(a, b, c).

– Event log L = [〈a〉50, 〈a, b, a〉25, 〈a, b, a, b, a〉25] is decomposed into base cases
L1 = [〈a〉175] and L2 = [〈b〉75] leading to the discovery of Q = �(a, b).

– Event log L = [〈a, c〉50, 〈a, b, c〉50] is decomposed into base cases L1 = [〈a〉100],
L2 = [〈〉50, 〈b〉50], andL3 = [〈c〉100] leading to the discovery ofQ = →(a,×(b, τ),
c).

– Event log L = [〈a, c〉50, 〈a, b, c〉20, 〈a, b, b, c〉20, 〈a, b, b, b, c〉10] is decomposed into
base cases L1 = [〈a〉100], L2 = [〈〉50, 〈b〉20, 〈b, b〉20, 〈b, b, b〉10], and L3 = [〈c〉100]
leading to the discovery of Q = →(a,�(τ, b), c).

In this section, we use the basic inductive mining algorithm to illustrate top-down
discovery [22–24]. This algorithm uses DFGs to find so-called cuts partitioning the set
of observed activities into subsets of activities. Set A = act(L) is partitioned into pair-
wise disjoint sets of activities A1, A2, . . . , An. These activity sets are used to distribute
the events in L over L1, L2, . . . , Ln such that A1 = act(L1), A2 = act(L2), etc.
There are cuts for all four process tree operators, i.e., → (sequential composition), ×
(exclusive choice), ∧ (parallel composition), and � (redo loop).

68 W. M. P. van der Aalst

Definition 23 (Sequence, Exclusive-Choice, Parallel, and Redo-Loop Cuts). Let
L ∈ B(Uact

∗) be an event log having a DFG disc
DFG

(L) = (A,F) based on L (note
that A = act(L)) with start activities Astart = {a ∈ A | (�, a) ∈ F} and end activi-
ties Aend = {a ∈ A | (a, �) ∈ F}. An n-ary ⊕-cut of L is a partition of A into n ≥ 2
pairwise disjoint subsets A1, A2, . . . , An (i.e., A =

⋃
i∈{1,...,n} Ai and Ai ∩ Aj = ∅

for i �= j) with ⊕ ∈ {→,×,∧,�}. Such a ⊕-cut is denoted (⊕, A1, A2, . . . An). For
each type of operator ⊕ ∈ {→,×,∧,�} specific conditions apply:

– An exclusive-choice cut of L is a cut (×, A1, A2, . . . An) such that
• ∀i,j∈{1,...n}∀a∈Ai

∀b∈Aj
i �= j ⇒ (a, b) �∈ F .

– A sequence cut of L is a cut (→, A1, A2, . . . An) such that
• ∀i,j∈{1,...n}∀a∈Ai

∀b∈Aj
i < j ⇒ ((a, b) ∈ F+ ∧ (b, a) �∈ F+).

(Note that F+ is the non-reflexive transitive closure of F , i.e., (a, b) ∈ F+

means that there is a path from a to b in the DFG.)
– A parallel cut of L is a cut (∧, A1, A2, . . . An) such that

• ∀i∈{1,...n} Ai ∩ Astart �= ∅ ∧ Ai ∩ Aend �= ∅ and
• ∀i,j∈{1,...n}∀a∈Ai

∀b∈Aj
i �= j ⇒ (a, b) ∈ F .

– A redo-loop cut of L is a cut (�, A1, A2, . . . An) such that
• Astart ∪ Aend ⊆ A1,
• ∀i,j∈{2,...n}∀a∈Ai

∀b∈Aj
i �= j ⇒ (a, b) �∈ F ,

• {a ∈ A1 | (a, b) ∈ F ∧ b �∈ A1} = Aend ,
• {a ∈ A1 | (b, a) ∈ F ∧ b �∈ A1} = Astart ,
• ∀(a,b)∈F a ∈ A1 ∧ b �∈ A1 ⇒ ∀a′∈Aend (a′, b) ∈ F , and
• ∀(b,a)∈F a ∈ A1 ∧ b �∈ A1 ⇒ ∀a′∈Astart (b, a′) ∈ F .

...

(a) exclusive-choice cut (b) sequence cut (c) parallel cut (d) redo-loop cut

...

A1

A2

An

Fig. 17. Four types of cuts: (⊕, A1, A2, . . . An) with ⊕ ∈ {×, →, ∧, �} (based on [1]).

Figure 17 illustrates the four types of cuts. There is an exclusive-choice cut when
the DFG can be split into disconnected parts after leaving out the artificial start � and
end �. (Recall that � �∈ A and � �∈ A.) There is a sequence cut when the DFG can be

Foundations of Process Discovery 69

split into sequential parts where only “forward connections” are possible. Note that we
need to use the non-reflexive transitive closure of F . There is a parallel cut when the
DFG can be split into concurrent parts where any activity in one part can be followed
by any activity in another part. The redo-loop cut has the most complex definition. All
start and end activities should be in A1 (the “do part”) and none of the “redo parts”
can have start or end activities. Moreover, the “redo parts” (A2, A3, . . . , An) are only
connected through the “do part” (A1). Bstart = {b | (a, b) ∈ F ∧ a ∈ A1 ∧ b �∈ A1}
are the start activities of the “redo parts” connected to end activities in the “do part” and
Bend = {b | (b, a) ∈ F ∧ a ∈ A1 ∧ b �∈ A1} are the end activities of the “redo
parts” connected to start activities in the “do part”. The requirements in Definition 23
imply that Aend × Bstart ⊆ F and Bend × Astart ⊆ F . This implies that all end
activities of the “do part” are connected to all start activities of the “redo parts” and all
end activities of the “redo parts” are connected to all start activities of the “do part”. For
more explanations, see [1].

How the event log L is decomposed into L1, L2, . . . , Ln based on ⊕-cut
(⊕, A1, A2, . . . An) depends on the type of cut ⊕ ∈ {→,×,∧,�}. In all log decompo-
sitions, each event ends up in precisely one event log, i.e., the number of events remains
invariant through decomposition. We use the previously introduced event logs to illus-
trate this.

First, we consider L1 = [〈a, b, c, e〉10, 〈a, c, b, e〉5, 〈a, d, e〉] and construct the cor-
responding DFG to find one of the four cuts. We check the presence of a cut using the
order in Definition 23, i.e., (1) ×, (2) →, (3) ∧, (4) �. There is no exclusive-choice
cut for L1, but there is a sequence cut (→, {a}, {b, c, d}, {e}). Using this cut, L1 is
split into La = [〈a〉16], Lb,c,d = [〈b, c〉10, 〈c, b〉5, 〈d〉], and Le = [〈e〉16]. La and Le

correspond to base cases since there is just one activity left: La is modeled by a single
occurrence of activity a, and Le is modeled by a single occurrence of activity e. Hence,
the process tree starts with →(a, ?, e), where ? corresponds to the subtree describing
Lb,c,d. Next, we create a DFG for Lb,c,d and see that we can apply an exclusive-choice
cut (×, {b, c}, {d}). Using this cut, Lb,c,d is split into Lb,c = [〈b, c〉10, 〈c, b〉5] and
Ld = [〈d〉]. Ld corresponds to a base case since there is just one activity left. Hence,
the subtree for Lb,c,d has the following structure ×(?, d), where ? corresponds to the
subtree describing Lb,c. The overall tree created thus far is →(a,×(?, d), e). Next, we
create a DFG for Lb,c and see that we can apply a parallel cut (∧, {b}, {c}). It is not
possible to apply an exclusive-choice cut or a sequence cut. Using cut (∧, {b}, {c})
sublog Lb,c is split into Lb = [〈b〉15] and Lc = [〈c〉15]. Both correspond to base cases.
Hence, the subtree for Lb,c is ∧(b, c). The overall tree is →(a,×(∧(b, c), d), e). This is
process tree Q1 in Fig. 10(a) shown before.

Next, we consider L2 = [〈a, b, c, e〉50, 〈a, c, b, e〉40, 〈a, b, c, d, b, c, e〉30, 〈a, c, b, d,
b, c, e〉20, 〈a, b, c, d, c, b, e〉10, 〈a, c, b, d, c, b, d, b, c, e〉10]. Again, we construct the cor-
responding DFG to find one of the four cuts. The first cut we find is a sequence cut (→
, {a}, {b, c, d}, {e}). Using this cut, L2 is split into La = [〈a〉160], Lb,c,d = [〈b, c〉50,
〈c, b〉40, 〈b, c, d, b, c〉30, 〈c, b, d, b, c〉20, 〈b, c, d, c, b〉10, 〈c, b, d, c, b, d, b, c〉10], and Le =
[〈e〉160]. La and Le correspond to base cases suggesting that the process has the follow-
ing structure →(a, ?, e), with ? corresponding to the subtree describing Lb,c,d. Again
we check the presence of a cut. The first cut we find is the redo loop cut (�, {b, c}, {d}).

70 W. M. P. van der Aalst

Using this cut, Lb,c,d is split into Lb,c = [〈b, c〉150, 〈c, b〉90] and Ld = [〈d〉80]. Note that
Lb,c has 240 cases because the “do part” happened 50+40+(2×30)+(2×20)+(2×
10)+(3×10) = 240 times. The “redo part” happened 30+20+10+(2×10) = 80 times.
The redo part is trivial since d is always executed once. Hence, the subtree for Lb,c,d has
the following structure �(?, d), where ? corresponds to the subtree describing Lb,c. For
Lb,c, we find the subtree ∧(b, c). The overall tree is, therefore, →(a,�(∧(b, c), d), e).
This is process tree Q2 in Fig. 10(b) shown before.

To explain the Alpha algorithm, we also used L4 and L5 in Fig. 15. Applying the
basic inductive mining algorithm to L4 = [〈a, b〉35, 〈b, a〉15] yields the process tree
∧(a, b). For L5 = [〈a〉10, 〈a, b〉8, 〈a, c, b〉6, 〈a, c, c, b〉3, 〈a, c, c, c, b〉], we find the pro-
cess tree →(a,�(τ, c),×(b, τ)). Note that the subtree �(τ, c) is created for the sublog
involving just c, because c happens 0, 1, 2, or 3 times. The subtree ×(b, τ) is created
for the sublog involving just b, because b happens at most once.

It is possible that none of the cuts in Definition 23 can be applied while the sublog
still has multiple activities. In this case, one can always apply so-called fallthroughs,
e.g., use �(τ, a1, a2, . . . , an) that allows for any behavior. Note that such fallthroughs
are not needed when the original process was expressible in terms of a process tree
(for the exact conditions, see [1,22]). Moreover, it is also possible to use smarter
fallthroughs that separate the problematic activities or behavior from the rest. Suppose
that there is a cut (⊕, A1, A2, . . . Ak) possible considering only activities Agood =
A1 ∪ A2 ∪ . . . ∪ Ak and leaving out Abad = A\Agood = {a1, a2, . . . , an}. Then one
can first apply the parallel cut (∧, Agood , Abad) followed by cut (⊕, A1, A2, . . . Ak) and
cut �(τ, a1, a2, . . . , an) applied to the two sublogs. There are many other fallthroughs,
e.g., separating the empty traces from the rest.

Definition 24 (Inductive Mining Algorithm). The basic inductive mining algorithm
discIM ∈ B(Uact

∗) → UQ returns a process tree discIM (L) for any event log L ∈
B(Uact

∗) using the four types of cuts, log decomposition, and fallthroughs described
before.

Fig. 18. Process tree discIM (L3) = →(ie, ∧(×(xr , ct), �(cu, →(om, am)), lt), fe) discov-
ered and visualized using ProM’s Inductive Visual Miner.

Earlier, we introduced event log L3, containing 11761 events corresponding to
1856 cases. Using the following abbreviations ie = initial examination, xr = X-ray,
ct = CT scan, cu = checkup, om = order medicine, am = administer medicine, lt
= lab tests, and fe = final examination, we find discIM (L3) = →(ie,∧(×(xr , ct),
�(cu,→(om, am)), lt), fe). Figure 18 shows a screenshot of ProM’s Inductive Visual

Foundations of Process Discovery 71

Miner while analyzing discIM (L3) using a BPMN-like notation. No fallthroughs were
needed. Note that also the frequencies are shown. It is also possible to show timing
information, e.g., average waiting times.

Fig. 19. Process tree discIM (L3) = →(ie, ∧(×(xr , ct), �(cu, →(om, am)), lt), fe) discov-
ered and visualized as a BPMN model using the Celonis EMS.

Figure 19 shows discIM (L3) discovered using Celonis. Celonis also uses a BPMN-
like visualization of the process tree. The translation of process trees to BPMN or Petri
nets is rather straightforward, and the resulting models are easier to interpret by most
users.

In this section, we only introduced the basic inductive mining algorithm. We assume
that the event log was filtered in advance to remove infrequent behavior. However, there
are also extended versions of the inductive mining algorithm dealing with infrequent
behavior [23]. The basic inductive mining algorithm may become intractable for huge
event logs, because repeatedly sublogs need to be created. There are also more scalable
variants that make a single pass through the event log and use a single overall DFG
[24]. These provide fewer formal guarantees. The basic inductive mining algorithm
has strong guarantees. For example, discIM (L) guarantees perfect replay fitness (i.e.,
100% recall). Formally, var(L) ⊆ lang(discIM (L)). See [22–24] for additional formal
guarantees provided by these top-down approaches.

Next two the process discovery techniques presented this chapter, there are dozens
of other techniques. In [12] additional techniques are presented.

7 Conclusion

The goal of this chapter is to introduce the foundations of process discovery without
aiming to provide a complete survey or details on specific algorithms (see also [10]).
After reading this chapter, it should be clear that process discovery is a challenging topic
with many competing requirements. We started by introducing a baseline approach that

72 W. M. P. van der Aalst

produces a Directly-Follows Graph (DFG) for an event log converted into a multiset of
traces. For real-life event logs, the DFG may have an excessive number of arcs making
the model incomprehensible. Therefore, we discussed three filtering approaches that
can also be combined to create simpler DFGs. We also showed that the interpretation
of such process models highly depends on the log preprocessing [2].

After presenting the baseline DFG discovery approach, we focused on process rep-
resentations able to capture concurrency: Petri nets, process trees, and BPMN models.
This is needed because, if activities do not occur in a fixed order due to concurrency,
then the discovered DFGs are underfitting and contain many loops. This allowed us
to introduce more advanced process discovery approaches. We characterized these as
(1) bottom-up approaches and (2) top-down approaches. Bottom-up approaches try to
find local process patterns constraining the process model to better fit the event log.
Top-down approaches tackle the problem differently and try to partition larger event
logs into smaller ones that can be analyzed more easily. Two representative approaches
we described in more detail: the Alpha algorithm and the inductive mining algorithm.
These should be seen as representative examples of both categories. However, there are
dozens of process discovery techniques, and it is impossible to name them all.

For example, there exist many extensions of the Alpha algorithm, e.g., variants
that can discover silent transitions (e.g., skipping) [34] and non-free choice constructs
(e.g., long-term dependencies) [33]. The heuristic mining approach [32] can be seen
as another bottom-up approach that incorporates frequency information. The approach
can discover complex process structures, but often leads to models that are not sound.
Region-based process-discovery approaches provide formal guarantees, but are often
not very applicable (e.g., they may produce huge and overfitting process models or take
too long to compute). There are two types of regions: state-based regions (which require
the construction of a transition system) and language-based regions (that work on sets
of traces). State-based regions were introduced by Ehrenfeucht and Rozenberg [20] in
1989 and generalized by Cortadella et al. [16]. In [8], it is shown how these state-based
regions can be applied to process mining by first creating a log-based transition system
using different abstractions. In [14,30], refinements are proposed to tailor state-based
regions towards process discovery. In parallel, several authors applied language-based
regions to process mining [13,35,37]. There are also numerous bottom-up approaches
combining different ideas. An example is the so-called split-miner [11] which aims to
balance recall and precision. This approach also starts from a filtered DFG, but iden-
tifies combinations of splits that capture the concurrency, conflict and causal relations
between neighbors in the DFG. As mentioned, there also exist different variants of the
inductive mining approach presented in this chapter [22–24].

In this chapter, we only considered a simple event log L ∈ B(Uact
∗), ignoring addi-

tional event and case attributes (e.g., resources, data, transactional information). How-
ever, other logging formats may be considered. There are process discovery approaches
that exploit timing information, data attributes, object references, partial order infor-
mation (e.g., events happening on the same day), explicit uncertainty (e.g., imprecise
timestamps or missing case identifiers), etc. We also only focused on mainstream rep-
resentations such as DFGs, Petri nets, and BPMN. However, there are also discov-
ery techniques that aim to discover stochastic process models [29], declarative process

Foundations of Process Discovery 73

models (using Declare or DCR graphs) [25], or object/artifact-centric models (e.g.,
object-centric Petri nets) [5,21].

The above illustrates that the topic of process discovery has many facets, pro-
viding interesting scientific challenges. Moreover, there are several open-source tools
(e.g., ProM, bupaR, PM4Py, and RapidProM) and over 40 commercial process mining
tools (e.g., Celonis, Disco/Fluxicon, Lana/Appian, Minit, Apromore, myInvenio/IBM,
PAFnow, Signavio/SAP, Timeline/Abby and ProcessGold/UiPath) that already provide
solid discovery approaches, and are sometimes applied to processes with billions of
events. However, as applications of process mining become more demanding, new dis-
covery approaches are needed that are better scalable and can deal with more complex
processes and data structures. Therefore, process discovery is not just a great research
topic, but also of great practical relevance.

Acknowledgment. Funded by the Alexander von Humboldt (AvH) Stiftung and the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence
Strategy – EXC 2023 Internet of Production – 390621612.

References

1. van der Aalst, W.M.P.: Process Mining: Data Science in Action. Springer, Berlin (2016).
https://doi.org/10.1007/978-3-662-49851-4

2. van der Aalst, W.M.P.: A practitioner’s guide to process mining: limitations of the directly-
follows graph. In: International Conference on Enterprise Information Systems (Centeris
2019), Volume 164 of Procedia Computer Science, pp. 321–328. Elsevier (2019)

3. van der Aalst, W.M.P.: Process mining: a 360 degrees overview. In: van der Aalst, W.M.P.,
Carmona, J. (eds.) PMSS 2022. LNBIP, vol. 448, pp. 3–34. Springer, Cham (2022)

4. van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.: Replaying history on process models
for conformance checking and performance analysis. WIREs Data Min. Knowl. Discov. 2(2),
182–192 (2012)

5. van der Aalst, W.M.P., Berti, A.: Discovering object-centric Petri nets. Fund. Inform. 175(1–
4), 1–40 (2020)

6. van der Aalst, W.M.P., et al.: Soundness of workflow nets: classification, decidability, and
analysis. Formal Aspects Comput. 23(3), 333–363 (2011). https://doi.org/10.1007/s00165-
010-0161-4

7. van der Aalst, W.M.P., DeMasellis, R., Di Francescomarino, C., Ghidini, C.: Learning hybrid
process models from events. In: Carmona, J., Engels, G., Kumar, A. (eds.) BPM 2017. LNCS,
vol. 10445, pp. 59–76. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65000-
5 4

8. van der Aalst, W.M.P., Rubin, V., Verbeek, H.M.W., van Dongen, B.F., Kindler, E., Günther,
C.W.: Process mining: a two-step approach to balance between underfitting and overfitting.
Softw. Syst. Model. 9(1), 87–111 (2010). https://doi.org/10.1007/s10270-008-0106-z

9. van der Aalst, W.M.P., Weijters, A.J.M.M., Maruster, L.: Workflow mining: discovering pro-
cess models from event logs. IEEE Trans. Knowl. Data Eng. 16(9), 1128–1142 (2004)

10. Augusto, A., et al.: Automated discovery of process models from event logs: review and
benchmark. IEEE Trans. Knowl. Data Eng. 31(4), 686–705 (2019)

11. Augusto, A., Conforti, R., Marlon, M., La Rosa, M., Polyvyanyy, A.: Split miner: automated
discovery of accurate and simple business process models from event logs. Knowl. Inf. Syst.
59(2), 251–284 (2019). https://doi.org/10.1007/s10115-018-1214-x

https://doi.org/10.1007/978-3-662-49851-4
https://doi.org/10.1007/s00165-010-0161-4
https://doi.org/10.1007/s00165-010-0161-4
https://doi.org/10.1007/978-3-319-65000-5_4
https://doi.org/10.1007/978-3-319-65000-5_4
https://doi.org/10.1007/s10270-008-0106-z
https://doi.org/10.1007/s10115-018-1214-x

74 W. M. P. van der Aalst

12. Augusto, A., Carmona, J., Verbeek, E.: Advanced process discovery techniques. In: van der
Aalst, W.M.P., Carmona, J. (eds.) PMSS 2022. LNBIP, vol. 448, pp. 76–107. Springer, Cham
(2022)

13. Bergenthum, R., Desel, J., Lorenz, R., Mauser, S.: Process mining based on regions of lan-
guages. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp.
375–383. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75183-0 27

14. Carmona, J., Cortadella, J., Kishinevsky, M.: A region-based algorithm for discovering Petri
nets from event logs. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol.
5240, pp. 358–373. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85758-
7 26

15. Carmona, J., van Dongen, B., Solti, A., Weidlich, M.: Conformance Checking: Relating
Processes and Models. Springer, Berlin (2018). https://doi.org/10.1007/978-3-319-99414-7

16. Cortadella, J., Kishinevsky, M., Lavagno, L., Yakovlev, A.: Deriving Petri nets from finite
transition systems. IEEE Trans. Comput. 47(8), 859–882 (1998)

17. Desel, J., Esparza, J.: Free Choice Petri Nets. Cambridge Tracts in Theoretical Computer
Science, vol. 40. Cambridge University Press, Cambridge (1995)

18. Desel, J., Reisig, W.: Place/transition Petri nets. In: Reisig, W., Rozenberg, G. (eds.) ACPN
1996. LNCS, vol. 1491, pp. 122–173. Springer, Heidelberg (1998). https://doi.org/10.1007/
3-540-65306-6 15

19. Dumas, M., La Rosa, M., Mendling, J., Reijers, H.: Fundamentals of Business Process Man-
agement. Springer, Berlin (2018). https://doi.org/10.1007/978-3-662-56509-4

20. Ehrenfeucht, A., Rozenberg, G.: Partial (set) 2-structures - part 1 and part 2. Acta Informatica
27(4), 315–368 (1989)

21. Fahland, D.: Describing behavior of processes with many-to-many interactions. In:
Donatelli, S., Haar, S. (eds.) PETRI NETS 2019. LNCS, vol. 11522, pp. 3–24. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-21571-2 1

22. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured process
models from event logs - a constructive approach. In: Colom, J.-M., Desel, J. (eds.) PETRI
NETS 2013. LNCS, vol. 7927, pp. 311–329. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-38697-8 17

23. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured process
models from event logs containing infrequent behaviour. In: Lohmann, N., Song, M., Wohed,
P. (eds.) BPM 2013. LNBIP, vol. 171, pp. 66–78. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-06257-0 6

24. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Scalable process discovery and con-
formance checking. Softw. Syst. Model. 17(2), 599–631 (2018). https://doi.org/10.1007/
s10270-016-0545-x

25. Maggi, F.M., Bose, R.P.J.C., van der Aalst, W.M.P.: Efficient discovery of understandable
declarative process models from event logs. In: Ralyté, J., Franch, X., Brinkkemper, S.,
Wrycza, S. (eds.) CAiSE 2012. LNCS, vol. 7328, pp. 270–285. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-31095-9 18

26. Mannel, L.L., van der Aalst, W.M.P.: Finding complex process-structures by exploiting the
token-game. In: Donatelli, S., Haar, S. (eds.) PETRI NETS 2019. LNCS, vol. 11522, pp.
258–278. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21571-2 15

27. OMG: Business Process Model and Notation (BPMN), Version 2.0.2. Object Management
Group (2014). http://www.omg.org/spec/BPMN/

28. Petri, C.A.: Kommunikation mit Automaten. Ph.D. thesis, Institut für instrumentelle Mathe-
matik, Bonn (1962)

29. Rogge-Solti, A., van der Aalst, W.M.P., Weske, M.: Discovering stochastic Petri nets with
arbitrary delay distributions from event logs. In: Lohmann, N., Song, M., Wohed, P. (eds.)

https://doi.org/10.1007/978-3-540-75183-0_27
https://doi.org/10.1007/978-3-540-85758-7_26
https://doi.org/10.1007/978-3-540-85758-7_26
https://doi.org/10.1007/978-3-319-99414-7
https://doi.org/10.1007/3-540-65306-6_15
https://doi.org/10.1007/3-540-65306-6_15
https://doi.org/10.1007/978-3-662-56509-4
https://doi.org/10.1007/978-3-030-21571-2_1
https://doi.org/10.1007/978-3-642-38697-8_17
https://doi.org/10.1007/978-3-642-38697-8_17
https://doi.org/10.1007/978-3-319-06257-0_6
https://doi.org/10.1007/978-3-319-06257-0_6
https://doi.org/10.1007/s10270-016-0545-x
https://doi.org/10.1007/s10270-016-0545-x
https://doi.org/10.1007/978-3-642-31095-9_18
https://doi.org/10.1007/978-3-030-21571-2_15
http://www.omg.org/spec/BPMN/

Foundations of Process Discovery 75

BPM 2013. LNBIP, vol. 171, pp. 15–27. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-06257-0 2

30. Solé, M., Carmona, J.: Process mining from a basis of state regions. In: Lilius, J., Penczek,
W. (eds.) PETRI NETS 2010. LNCS, vol. 6128, pp. 226–245. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-13675-7 14

31. Syring, A.F., Tax, N., van der Aalst, W.M.P.: Evaluating conformance measures in process
mining using conformance propositions. In: Koutny, M., Pomello, L., Kristensen, L.M. (eds.)
Transactions on Petri Nets and Other Models of Concurrency XIV. LNCS, vol. 11790, pp.
192–221. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-662-60651-3 8

32. Weijters, A.J.M.M., van der Aalst, W.M.P.: Rediscovering workflow models from event-
based data using little thumb. Integr. Comput.-Aided Eng. 10(2), 151–162 (2003)

33. Wen, L., van der Aalst, W.M.P., Wang, J., Sun, J.: Mining process models with non-free-
choice constructs. Data Min. Knowl. Disc. 15(2), 145–180 (2007). https://doi.org/10.1007/
s10618-007-0065-y

34. Wen, L., Wang, J., van der Aalst, W.M.P., Huang, B., Sun, J.: Mining process models with
prime invisible tasks. Data Knowl. Eng. 69(10), 999–1021 (2010)

35. van der Werf, J.M.E.M., van Dongen, B.F., Hurkens, C.A.J., Serebrenik, A.: Process discov-
ery using integer linear programming. Fundam. Informaticae 94, 387–412 (2010)

36. Weske, M.: Business Process Management: Concepts, Languages, Architectures, 3rd edn.
Springer, Berlin (2019). https://doi.org/10.1007/978-3-642-28616-2

37. van Zelst, S.J., van Dongen, B.F., van der Aalst, W.M.P., Verbeek, H.M.W.: Discover-
ing workflow nets using integer linear programming. Computing 100(5), 529–556 (2018).
https://doi.org/10.1007/s00607-017-0582-5

Open Access This chapter is licensed under the terms of the Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

https://doi.org/10.1007/978-3-319-06257-0_2
https://doi.org/10.1007/978-3-319-06257-0_2
https://doi.org/10.1007/978-3-642-13675-7_14
https://doi.org/10.1007/978-3-662-60651-3_8
https://doi.org/10.1007/s10618-007-0065-y
https://doi.org/10.1007/s10618-007-0065-y
https://doi.org/10.1007/978-3-642-28616-2
https://doi.org/10.1007/s00607-017-0582-5
http://creativecommons.org/licenses/by/4.0/

	Foundations of Process Discovery
	1 Introduction
	2 Directly-Follows Graphs: A Baseline Approach
	2.1 Directly-Follows Graphs: Basic Concepts
	2.2 Baseline Discovery Algorithm
	2.3 Footprints
	2.4 Filtering
	2.5 A Larger Example

	3 Challenges
	4 Process Modeling Notations
	4.1 Labeled Accepting Petri Nets
	4.2 Process Trees
	4.3 Business Process Model and Notation (BPMN)

	5 Bottom-Up Process Discovery
	5.1 The Essence of Bottom-Up Process Discovery: Admissible Places
	5.2 The Alpha Algorithm

	6 Top-Down Process Discovery
	7 Conclusion
	References

