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Abstract. The prospect of data misuse negatively affecting our life has
lead to the concept of responsible data science. It advocates for respon-
sibility to be built, by design, into data management, data analysis, and
algorithmic decision making techniques such that it is made difficult or
even impossible to intentionally or unintentionally cause harm. Process
mining techniques are no exception to this and may be misused and lead
to harm. Decisions based on process mining may lead to unfair deci-
sions causing harm to people by amplifying the biases encoded in the
data by disregarding infrequently observed or minority cases. Insights
obtained may lead to inaccurate conclusions due to failing to considering
the quality of the input event data. Confidential or personal information
on process stakeholders may be leaked as the precise work behavior of an
employee can be revealed. Process mining models are usually white-box
but may still be difficult to interpret correctly without expert knowledge
hampering the transparency of the analysis. This chapter structures the
topic of responsible process mining based on the FACT criteria: Fairness,
Accuracy, Confidentiality, and Transparency. For each criteria challenges
specific to process mining are provided and the current state of the art
is briefly summarized.
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1 Introduction

Data-based decisions affect our society and our daily life. Organizations leverage
data to obtain objective insights that are based on facts rather than on guess-
work. Being data-driven to guide decisions is in itself hardly new and, certainly,
decisions should be based on data rather than being based on arbitrary factors.
In fact, the scientific method itself is based on meticulously analysing data to
derive trustworthy conclusions.

What changed in recent years, and is increasingly changing every aspect of
our life, is the abundance of data and compute power available to most people
and organizations. The capability of collecting and analysing a large amount of
data is now within the reach for most organization. What used to be a costly
and time consuming operation involving a great degree of planning what data
to be collected and what methods to build, can now be done ad-hoc on large
amounts of stockpiled data.
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This abundance of data together with the emergence of a wide variety of
analysis techniques has led to the formation of the data science field. Data
science technique are not limited to giving decision support to human decision
makers but increasingly Artificial Intelligence (AI) is used to automate decisions
based on predictive models. Process mining is a data science method that focuses
on improving an organization’s processes by leveraging event logs. The core of
event logs are timestamped data about all kinds of events that occur in the
context of work or business processes [1]. Process mining techniques have been
very successfully deployed in numerous organizations and have helped to remove
inefficiencies and improve the quality of processes [2].

However, this increased use of data leads to an increased risk of creating
negative effects from its usage by accidental or intentional irresponsible usage of
data [3]. Irresponsible usage of data ranges from invading the privacy of individ-
uals over flawed analysis of data with poor quality or inappropriate methods to
unfair automated decisions of systems trained on data biased towards majority
groups. The potential misuse of this power gives rise to calls for the responsible
use of data by creating knowledge and awareness about possible negative conse-
quences and researching technical and socio-technical solutions to prevent these
negative consequences.

1.1 Responsible Data Science and AI

Many initiatives have called for research and development on methods that can
be broadly categorized under the umbrella term responsible data science under
which sub themes such as responsible AI [4] are included. Depending on the
individual perspective different criteria or principles that are relevant to obtain
responsible methods have been proposed.

– Aalst et al. and the Responsible Data Science consortium1 call for methods
that follow the FACT criteria, which stands for Fairness, Accuracy, Confi-
dentiality, Transparency [5].

– The ACM FAccT Conference2 calls for research on Fairness, Accountability,
and Transparency principles.

– In Information Retrieval, the FACTS-IR critera include Fairness, Account-
ability, Confidentiality, Transparency, and also Safety [6].

– Dignum advoates that systems should be designed to follow the principles of
Accountability, Responsibility, and Transparency (ART) [4].

– The European Commission provided Ethics Guidelines for Trustworthy Arti-
ficial Intelligence3 mentioning principles such as Human agency, Technical
Robustness, Privacy, Transparency, Fairness, and Accountability.

Several other organizations developing or using AI technology have published
manifestos or best practices also include similar principles such as fairness, pri-
vacy or confidentiality, accountability, as well as often also interpretability and
1 https://redasci.org.
2 https://facctconference.org.
3 https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai.

https://redasci.org
https://facctconference.org
https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai
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Fig. 1. Example challenges for responsible process mining in context of the 360 degree
overview on process mining [7]

safety. Whereas originating from different perspectives and following slightly dif-
ferent definitions, there is great overlap on the major principles that are deemed
relevant for leveraging data in a responsible manner. Naturally, the importance
of the criteria differs depending on the application area. Considering fairness is
crucial when designing AI systems based on machine learning that may possibly
discriminate against individuals, whereas safety would be important when using
such a system for controlling an industrial process. At the core of these “calls for
action” is the realization that methods from the standard tool set of data science
rarely follow all the desired criteria or principles by themselves. Additional effort
is required, either by the analyst or system designer, to ensure their responsible
use. This often requires ethical considerations since perfect technological solu-
tions commonly do not exist.

1.2 Responsible Process Mining

This chapter instantiates the responsible data science challenges for process min-
ing and summarises the state-of-the-art research on responsible process mining.
Some of the challenges are specific to process mining and the event log data
format whereas others are comparable to any other data science or AI approach.
The context in which process mining operates means that many of the responsi-
ble data science principles and challenges are highly relevant. Figure 1 provides
a non-comprehensive overview on some of the major challenges for responsible
process mining in the context of the different process mining tasks. We discuss
and, at least partially, answer some of these questions.

The subject of investigation in process mining is a business process, e.g.,
the handling of loan applications. So, the process mining analysis is not directly
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Fig. 2. FACT principles for responsible process mining adapted from [5]

focused on individuals. Rather it looks at the manner in which the work is orga-
nized and performed. When analysing the loan application process, event logs
are commonly not used for deciding the outcome of the loan application but for
deciding how to improve the handling of applications to create a better process.
Here, better may refer to being more efficient, less costly, more transparent, or
any other indicator of process performance. At first glance process mining seems
to not have the same impact on individuals as, e.g., deploying face recognition,
predictive policing, or automatically scoring applicants for a job using AI meth-
ods. However, the manner in which business processes are performed can have
an effect on various stakeholders (customers, employees, etc.).

As any other data science method, process mining relies on data to recon-
struct how processes were performed and how process can be improved. Thus,
the results are highly dependant on the quality of the used event data and the
possible biases contained. Some additional quality and confidentiality challenges
arise from the required sequential ordering of events, grouping of events to a
specific process cases, and events being related to activities. In principle, pro-
cess mining aims to discover human-interpretable models that are supposed to
be accurate and transparent. However, for complex process behaviour process
mining techniques often attempt to generalise from incomplete and noisy data.
This creates accuracy and transparency challenges even in the process mining
setting.

We follow the definitions of the FACT principles brought forward in [3,5] and
illustrated in Fig. 2 to structure the discussion of process mining related chal-
lenges. First, we discuss fairness and its relevance to process mining in Sect. 2.
Then, in Sect. 3, we briefly illustrate aspects of accuracy including data quality
and model quality. Section 4 is a major part of this chapter and is devoted to con-
fidentiality, which is about protecting and respecting sensitive data in event logs
including the privacy of individuals. We close the chapter in Sect. 5 with a look
at transparency focusing on generalization and the interpretability of process
mining results.



Responsible Process Mining 377

2 Fairness

Algorithmic fairness or fairness of automated systems [8] has been an increas-
ingly prominent topic [9] when it comes to the development and usage of AI
systems that are based on black-box machine learning models. Statistical biases
embedded in training data may lead to systems making unfair decisions or clearly
discriminating against certain groups of people. Prominent examples of such bias
are the COMPAS system for predicting the risk of criminals to re-offend, which
seem exhibit racial bias by having a higher false positive rate among blacks4, or
gender stereotypes exhibited by automated translation systems such as Google
Translate, which applies male gender when translating typically male dominated
job names from gender neutral Turkish to English [10]. There are many more
examples and we refer to the first chapter of the Fair ML book [10] for a com-
prehensive introduction.

An important realization regarding bias in data and their usage in any kind
of data-based system is that: “Data and data sets are not objective; they are
creations of human design” [11]. Data may be incomplete for a certain context
leading to representation bias that is reflected in the learned model or the data
analysis. Even when not being incomplete, data can reinforce existing discrim-
ination that is embodied in the available data (historical bias). This cannot be
avoided by simply discarding “problematic” attributes from the datasets since
bias may be hidden in highly correlated attributes [10]. Many more data biases
can be defined depending on the context [9], a notable one being Simpson’s Para-
dox which describe the situation that a statistic may be very different or even
opposite for subgroups of a dataset compared to the statistic on the aggregate
entire dataset including all those subgroups.

2.1 Process Mining Perspective

It seems that the discussion on algorithmic fairness is not directly relevant to
process mining. The impact of process mining on individuals is usually indirect,
so direct discrimination by a process mining analysis seems unlikely to occur.
However, the potential reach of decision made based on process mining may
have impacts on individuals. Employees working in an analysed process may be
subject to unfair decision, customers may be rejected based on predictive process
mining techniques, or processes may be redesigned in a way that is discriminating
minorities. These are unfair results that are hidden behind the scenes and may
not make headlines in the newspaper, unless discovered. Based on the process
illustrated in Fig. 3, we give two examples on how fairness challenges can be part
of a process mining project.

Automated decision making can be part of process mining as it may result
in redesigned processes with changed decision making. As shown in Fig. 3 addi-
tional extensive checks may be added to a loan application process for certain

4 https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-
sentencing.

https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
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Fig. 3. Loan application process in BPMN adapted from the process used in [12].
Additional activities that indicate the kind of checks performed on the loan application
before considering it have been added. Based on some criteria either a simple check or
a more extensive check of the application is performed and in some cases the check is
repeated.

cases leading to fairness challenges. This process re-design may be the outcome
of a process mining analysis with the goal to minimize the cost of background
checks. To further minimize the cost, methods for predictive process mining,
action-oriented process mining, or the integration with robotic process automa-
tion is used to make the decision whether additional or extensive checks are
necessary. Thus, process mining has directly affected the outcome of some pro-
cess cases. Whereas the final decision is still made by a human, some applicants
need to endure much more extensive background checks. This decision is based
on machine learning techniques and, thus, inherits all the fairness issue associ-
ated with algorithmic decision making.

A second example of a fairness challenge that may arise in a process mining
context would be affecting the employees working in the process. For example,
it may be detected that when certain workers are involved in the processing of
the loan application the throughput time is much longer. However, care must be
taken not to draw unfair conclusions as those workers may simply handle more
difficult cases [3], which leads to biased event data. If the nature of the loan
application request is not included in the event log, e.g., due to confidentiality
concerns, these confounding factors are difficult to detect and require careful
human interpretation.

Besides the obvious ethical concerns that make it relevant to investigate
fairness in the context of process mining, there are also upcoming regulations
such as the EU Artificial Intelligence Act [13] that may constitute legal threats
to consider fairness in any kind of automated data analysis. In the remainder
of Sect. 2, we summarise the relevance of fairness for process mining along the
main definitions that attempt to formalise fairness for algorithms. For each of the
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definitions, we instantiate them in the context of process mining and summarise
existing work if available.

2.2 Algorithmic Discrimination

In the literature on algorithmic fairness, several types of discrimination that
can arise from unfair algorithms have been defined. Similarly, a wide variety of
definitions on how fair algorithmic systems can be designed have been researched.
We sketch the main fairness definitions and discrimination’s in the light of how
they are relevant to the different process mining tasks as illustrated in Fig. 1.

Many possible types of discrimination are possible. It is important to realize
that discrimination or unfairness does not always need to be caused by direct dis-
crimination [9]. Direct discrimination would be a decision that is solely based on
a sensitive or protected attribute a decision is made that negatively affects them.
For example, if a predictive process monitoring would be trained on a somehow
biased dataset and learn that female applicants for a loan should always received
an extra background check causing a worse service quality or an increase rate of
rejection. Clearly, this type of discrimination would be easily detected and miti-
gated. However, often discrimination can be indirect discrimination or statistical
discrimination [9]. In these cases, some negative effect is applied but it is not
directly based on a sensitive attribute. Rather the attribute or some statistical
distribution is strongly correlated to a sensitive attribute. For example, when
analysing the performance of a process with process mining methods one may
identify a group of workers as being slower than other as they are assigned more
difficult cases [3] or receive less support than others. Similarly, when improving
a process design, one may focus on the 80% most frequent variants and, thereby,
discriminate against minority groups with special needs that trigger infrequent
activities and, thus, are often not visible in the standard process mining visual-
ization.

2.3 Algorithmic Fairness

To counter and detect discrimination, there are attempts to formalize the notion
of fairness of an algorithmic decision based on data. Again, there are many
definitions that formalize different kinds of fairness that can be provided by
algorithms [14,15]. It is important to realize that none of them is universally
applicable and that it depends on the context which one is suitable. Often fairness
definitions are introduced on the example of a simple binary classification task.
The four main types of fairness notions based on [15] are: (1) based solely on
the predicted outcome, (2) based on the predicted outcome and comparing it
with the actual outcome (ground truth), (3) taking additionally into account
the probability of the predictions, (4) notions based on similarity of the non-
sensitive attributes, and (5) notions based on causal reasoning.

We introduce a few selected of these notions in the context of process mining
and assume a simple binary classification model with the protected attribute
gender for concise presentation as done in [15].
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– Group fairness or statistical parity is of type (1) and satisfied when sub-
jects from the protected group, e.g., females, have equal probability of being
assigned a positive outcome. However, this notion is only applicable if there is
no other, unprotected, attribute that would justify a difference in probability
to be assigned a positive outcome.

– Predictive parity is of type (2) and satisfied when the precision or positive
predictive value of the classifier is equal for both groups. The fraction of
females and males that are predicted to be in the positive group from those
that are in the positive group in the ground truth is the same. So, there are
equal chances for a positive prediction for those that are in the positive group
in the training data. Thus, the definition only works if there are really similar
probabilities to be in the positive class.

– Treatment equality is of type (2) and satisfied when both groups have the
same ratio of false negative and false positives. This allows to compare if the
number of misclassifications (either positive or negative) is different between
the groups.

– Fairness through unawareness is of type (4) and satisfied if the sensitive or
protected attribute is removed from the dataset. Clearly, this will not resolve
the issue of other correlated attributes.

– Fairness through awareness is of type (4) and uses a distance metric between
individuals and compares the distance of the outcome with the distance
between individuals. However, how to define that distance measure if not
always easy.

– Counterfactual fairness is based on causal reasoning, thus, requires the defi-
nition of a causal graph instead of any binary classifier. Here the definition is
satisfied if the predicted outcome does not depend on the protected attribute
in the causal graph [15]. However, building causal graphs generally requires
domain knowledge.

Being only a small selection of possible fairness notions, we refer to [15] for a
comprehensive overview. None of the provided definitions is universally accepted
and provides fairness in every sense of the concept.

The only work so far that directly addresses the challenge of fairness from a
process mining viewpoint is written by Qafari et al. [16]. Here the problem of
creating a fair classifier for data extracted from an event log that is enriched with
process performance information is investigated. The approach firstly advocates
to exclude the sensitive attribute or feature from building the classifier and then
builds a C4.5 decision tree based on a discrimination-aware decision tree learn-
ing method. As fairness decision predictive parity is employed. An interesting
problem is raised that relabeling may not always be desirable, in which case the
fairness guarantees cannot be achieved. This is left as future work.

Though not explicitly addressing fairness, several proposals for applying
causal machine learning techniques in the context of process mining have been
made. For example, Bozorgi et al. [17,18] looked at discovering causal rules from
event logs as well as taking some form of cost into account when making sugges-
tions for intervention in running cases as part of a prescriptive process mining
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approach. By making the causalities explicit its may be feasible to include fair-
ness constraints into decisions.

2.4 Open Challenges

Many open research challenges for considering fairness in process mining exists.
So far, there is hardly any research on fairness that is specific to process mining
neither from a technological nor from an organizational perspective, with the
notable exception of [16]. A clear research challenge is to develop specific notions
for fairness in process mining from the more generic fairness definitions. Whereas
one could take the stance that the existing definitions from the wider machine
learning field are sufficient, we motivated the need to consider fairness explicitly
also regarding process mining techniques.

3 Accuracy

Models need to be accurate to be useful in the real world. An analyst relying
on a statistical analysis or an engineer developing a machine learning model for
classification needs to have confidence that the analysis or the model captures the
real-world phenomenon correctly. Differently to a model based on, e.g., physical
laws or logic that can be shown to be correct in any application setting the
kind of statistical models often used in data science can rarely be proven to
be correct. Thus, the level of accuracy with which a real-world phenomenon is
captured or the level of confidence that a user can have when using that model are
important aspects of any such model. The accuracy of models depends on many
factors and it is often not straightforward to measure it properly. A classification
model may, on average, be classifying near perfectly between pictures showing
different breeds of dogs on an independent test set but if the relevant breed is
highly underrepresented the classifier may still be unusable in the real world
due to the class imbalance. It may also be that the classifier provides very good
accuracy but makes its decision based on the wrong features picking up on
spurious correlations introduced when preparing the training data: a data quality
problem.

3.1 Process Mining Perspective

Understanding and being able to measure the accuracy of a process mining
analysis is an integral part of responsible process mining. Whereas it may seem
obvious to only use results that accurately reflect the process reality, this is
frequently impaired in practice by the need to abstract from that reality.

Process discovery techniques are often unable to create the perfectly accurate
model but are forced to balance between several quality dimensions [1] that are
competing with each other. For example, to obtain a process model that is
understandable by a human analyst, some observed behavior may need to be
omitted. In some cases, the process behavior is too complex to be captured by
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a single case notion and multi dimensional or multi entity representation are
required to avoid drawing inaccurate conclusions [19]. Conformance checking
techniques such as alignments [20] often face the challenge that there are multiple
possible explanations for a non-conformance between observed and prescribed
process behavior. However, it may be infeasible to show all of them due to the
large number of possibilities. Finally, the quality of the input data is often a
substantial issue when applying process mining in a real-world scenario [12,21].

This brief look at possible challenges for accuracy indicates that the topic is
very broad and difficult to discuss comprehensively in the scope of this chapter.
Thus, we limit ourselves to briefly describe several challenges and selected solu-
tion proposals. We categorize them into solutions for data quality and model
quality.

3.2 Data Quality

Data quality is known to be often poor [22] and this may lead to non-factual or
misleading representation of the real business process. Garbage-in garbage-out
is a often used phrase to illustrate this issue. Whereas the data quality issue is
not particular to process mining there are some peculiarities of event logs that
call for specific solutions.

Often data quality problems in process mining are related to the strict
data requirements on timestamps (R1), case identifiers (R2), and event labels
(R3) [23]. Wrong or coarse granular timestamps lead to discovering wrong causal-
ities in process models or parallelism where none exists. Inconsistent event labels
make it difficult to assign clear semantics to the activities of a discovered process
model. These are just two examples of how data quality issue impair process min-
ing. Automated repair approaches to combat some of the data quality problems
exist. For example, in [24] autoencoders are used to add missing values. However,
any such method may affect transparency [25] as it is unclear what part of the
data was inferred and what part of the data can be considered truthful beyond
doubt. A discovered process model may be perfectly accurate, but when it is
based on data with poor quality any conclusions become disputable. Notions of
data quality and remedies are already introduced and discussed in [12], therefore
we go not further into detail on the data quality challenge.

One noteworthy topic connected to data quality is uncertainty at the level of
the event log data [26], e.g., by adding metadata to express the uncertainty [27].
Pegoraro et al. [26] advocate to explicitly encode the uncertainty about events
and traces in order to leverage it in a transparent manner during the analysis.
Based on this event log with explicit uncertainty representation conformance
checking techniques can be adaped [28] to an obtain more trustworthy diagnos-
tics that also provide more transparency about the possible different scenarios
compatible with the (uncertain) observations.
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3.3 Model Quality

How to decide whether a process model is of good quality? In fact, even when
it comes to the question on how to measure accuracy there is hardly an agree-
ment in process mining. Classically, process mining quality dimensions consist
of fitness, precision, generalization, and simplicity as introduced in [1]. For most
of these quality dimensions measures have been proposed that are based on
conformance checking, e.g., through alignments as indicated in [20]. However,
this common practice of measuring model quality has been challenged at least
for precision with Tax et al. [29] proposing several axioms that the prevalent
measures do not fulfil.

The issue with initially proposed quality measures led to several new meth-
ods and definitions for measuring various model quality dimensions being pro-
posed [30–34]. Main complications for model quality in process mining are that
process models commonly exhibit infinite behaviour (through loops) and the
absence of negative examples, i.e., behaviour that the model should not con-
tain [1].

Recently, there have been several proposals that aim to extend process discov-
ery and the model quality measures to the stochastic setting in which process
models include probabilities and the likelihood of observing a certain trace is
taken into account [35,36] allowing to better estimate the relevant subset of
the behavior modelled. This may help to truly quantify the confidence that an
analyst can have in a model.

A somewhat related issue on the confidence an analyst can put in the per-
formance of a process discovery algorithm was brought up by Van der Werf et
al. [37]. They observed that process discovery techniques not always discover bet-
ter process models when provided with a better sample of the process behavior,
i.e., a larger event log with observations of process behavior.

3.4 Outlook and Challenges

The extensive discussion around how to measure quality shows that even defining
accuracy for process discovery is not straightforward. In practice, this creates the
challenge to choose which measure should be used in which context and when
can a model be considered good for an analysis purpose. Another very relevant
perspective for responsible process mining regarding model quality is how the
discovered process model representation is understood by the user of such model.
We will come back to this issue when considering transparency.

4 Confidentiality

Confidentiality generally refers to the protection of certain sensitive data or
information from disclosure. In the context of an organization many different
kind of information is usually confidential. Intellectual property such as the
design of machines or software may be confidential to protect it from competitors
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but also general information on the business such as the amount of sales in a
certain area is usually kept confidential. A subset of the confidential information
in the sphere of an organization relates to personal data. Here, the concern is
on the right to privacy for individuals of which personal data is processed by
the organization. Personal data may relate to customers, employees, suppliers
or other people that interact an organization’s processes. Privacy rights have
received a lot of attention with several high-profile data breaches and increased
regulation such as Europe’s General Data Protection Regulation (GDPR) [38].

4.1 Process Mining Perspective

In the context of process mining, the information contained in event logs may
be sensitive for several reasons. Event logs contain data providing detailed infor-
mation on the operations of an organization, e.g., the order volume or the pro-
duction capacity. Uncontrolled disclosure of such information may be undesired
as it could negatively affect the organization. Event logs contain information on
individuals, e.g., customers, which may be subject to the privacy regulations.

Assume a hospital process is analyzed. Case data is related to the individ-
ual patient and confidentiality challenges to protect sensitive data and privacy
are obvious [39]. However, the employees that work in processes are often also
directly affected by process mining results and may be directly represented in the
event logs e.g. via the resource attribute in XES. This can create an additional
confidentiality challenges to prevent work surveillance [40,41].

Protecting the privacy of individuals in event logs is difficult, as sequential
event data is highly vulnerable to re-identification [42]. In fact, when assuming
some background information, privacy leakages exists in the vast majority of
presumably anonymous event logs that are used in the process mining commu-
nity [42]. As events are linked together through a case, and often the traces in
an event log are highly unique, already very limited background knowledge on
some attributes or events can reveal the identity of an individual.

This “privacy problem” creates challenges in the practical application of pro-
cess mining. Data gathering is more difficult or impossible when privacy concerns
are raised. For example, the hospital may fear that privacy regulations (GDPR,
HIPAA [43]) are violated when analysing patient trajectories [39,44] or a works
council may object to the usage of process mining technology due to fear of
worker surveillance [41]. Regulations threaten organizations with high fines when
personal data is used without legitimate purpose or consent. The fines in GDPR
may be as high as 4% of the organizations worldwide annual revenue [38]. Thus,
there is a clear need for privacy-preserving or protecting techniques for process
mining. Such approaches aim to retain the utility of the data without the risk of
accidental disclosure of personal data. Please note that we use protection here in
the sense of anononymity and unlinkability requirements. Next to those, other
requirements such as notice, transparency, and accountability are often imposed
by regulations [45]. Note that most privacy-preserving techniques differ from the
wide variety of best-effort pseudonymization, perturbation, and generalization
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Fig. 4. The main aspects of any confidentiality scenario for process mining: What is
the sensitive information contained in the event log that needs to be protected? Which
background knowledge can be assumed (including provided by external sources)? What
are the attacks used by the adversary and which threats are posed?

methods that are used by commercial tools5. Unfortunately, it has been shown
such näıve replacement of identifiers is often not sufficient to keep information
secure in many scenarios.

For each confidentiality scenario we need to characterize at least the sensitive
information (Sect. 4.2) and the background knowledge (Sect. 4.3) of the attacker
or adversary as illustrated in Fig. 4. Then, we can identify confidentiality attacks
(Sect. 4.4) that are assumed to be employed an the resulting threats that should
be mitigated. Based on the analysis of the available threats, protection tech-
niques have been proposed to mitigate these threats under certain assumptions
(Sect. 4.5).

4.2 Sensitive Information

Several kinds of sensitive information may be derived from event logs. We con-
sider both the scenario in which an event log contains some business information
that needs to be secured as well as the scenario in which personal data of indi-
viduals that took part in the process should not be revealed. These individuals
could be customers that are the subject of the process or workers that perform
activities withing the process.

We assume that the sensitive information is contained in a given event
log as shown in Fig. 4. Sensitive information may be obtained directly from the
attribute values of individual events of or it may be derived by performing some
computation over several events in. Often, in the scenario in which personal data
of individuals is at risk the sensitive information in the event log is assumed to
be connected to the individual through the process cases each of which is about
a single individual. We now illustrate several types of sensitive information with

5 Most commercial tools provide some kind of pseudonymization technique to replace
sensitive data by a hashing or replacement. An example is given here: https://
fluxicon.com/blog/2017/11/privacy-security-and-ethics-in-process-mining-part-3-
anonymization/.

https://fluxicon.com/blog/2017/11/privacy-security-and-ethics-in-process-mining-part-3-anonymization/
https://fluxicon.com/blog/2017/11/privacy-security-and-ethics-in-process-mining-part-3-anonymization/
https://fluxicon.com/blog/2017/11/privacy-security-and-ethics-in-process-mining-part-3-anonymization/
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Table 1. Example of a loan application event log that contains several types of sensitive
information and may be subject to confidentiality attacks revealing this information
to an adversary possessing suitable background knowledge.

SSN Activity Time Resource Amount Age Type Postcode Income

617-07-5604 SA: Submit appl. 09-02-22 23:39 200k 30 Home 94121 50k

617-07-5604 SC: Simple check 11-02-22 08:38 Alice 200k 30 Home 94121 50k

617-07-5604 AA: Accept appl. 12-02-22 11:35 Joe 200k 30 Home 94121 50k

617-07-5604 SO: Send offer 12-02-22 12:32 Joe 200k 30 Home 94121 50k

617-07-5604 RO: Receive offer 13-02-22 08:14 200k 30 Home 94121 50k

617-07-5604 FA: Finalise appl. 15-02-22 16:30 Alice 200k 30 Home 94121 50k

617-07-5604 AO: Accept offer 19-02-22 23:31 200k 30 Home 94121 50k

528-41-8024 SA: Submit appl. 01-03-22 12:32 60k 42 Car 37287 75k

528-41-8024 SC: Simple check 02-03-22 15:23 Joe 60k 42 Car 37287 75k

528-41-8024 EC: Extensive check 05-03-22 07:31 John 60k 42 Car 37287 75k

528-41-8024 AA: Accept appl. 11-03-22 12:21 Alice 60k 42 Car 37287 75k

528-41-8024 SO: Send offer 11-03-22 15:44 Joe 60k 42 Car 37287 75k

528-41-8024 RO: Receive offer 12-03-22 12:33 60k 42 Car 37287 75k

528-41-8024 FA: Finalise appl. 15-03-22 16:54 Robert 60k 42 Car 37287 75k

528-41-8024 AO: Accept offer 18-03-22 18:23 60k 42 Car 37287 75k

330-80-8169 SA: Submit appl. 02-03-22 23:30 500k 22 Home 32984 45k

330-80-8169 EC: Extensive check 05-03-22 08:30 John 500k 22 Home 32984 45k

330-80-8169 DA: Decline appl. 10-03-22 11:30 John 500k 22 Home 32984 45k

526-34-5246 SA: Submit appl. 15-04-22 23:31 100k 30 Home 75755 30k

526-34-5246 SC: Simple check 17-04-22 12:47 Joe 100k 30 Home 75755 30k

526-34-5246 AA: Accept appl. 18-04-22 11:59 Alice 100k 30 Home 75755 30k

526-34-5246 SO: Send offer 18-04-22 12:29 Alice 100k 30 Home 75755 30k

526-34-5246 RO: Receive offer 19-04-22 07:52 100k 30 Home 75755 30k

526-34-5246 CO: Cancel offer 24-04-22 21:34 100k 30 Home 75755 30k

526-34-5246 SO: Send offer 28-04-22 09:21 John 100k 30 Home 75755 30k

526-34-5246 RO: Receive offer 29-04-22 10:12 100k 30 Home 75755 30k

526-34-5246 FA: Finalise appl. 02-05-22 15:43 Alice 100k 30 Home 75755 30k

526-34-5246 AA: Accept offer 05-05-22 05:23 100k 30 Home 75755 30k

the event log in Table 1 that was obtained from the previously introduced loan
application process.

An example for sensitive information related to an individual that can be
directly obtained is the social security number of the applicant stored in the
column SSN, which also acts as case identifier here. Obviously, using such direct
identifiers of individuals poses a privacy risk as it would allow to directly link all
the remaining information contained in the event log to individuals. Analogously,
the Resource column contains the full name of the employee responsible for
handling the process activities. This information would enable direct profiling of
the work performance of individual employees, which may be against company
policies or forbidden by work regulations. It is easy to remove directly personally
identifiable information such as names or identifying numbers of customers or
workers as they are not necessary for process mining. For example, it would
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be trivial to replace both the SSN column and the Resource in Table 1 with
a surrogate case identifier based on a mapping obtained through one-way hash
function or a simple lookup table.

However, it has been shown that obscuring the direct identifiers is not suffi-
cient as also not directly identifying attributes can be problematic [42,46]. Quasi-
identifiers are values not directly revealing the identity of a person but may be
used to do so in combination with other attributes. Common quasi-identifiers are
attributes such as gender, birth dates, or postcodes that taken together are often
unique for an individual. For example, in Table 1 the combination of columns
Age, Type, and Postcode would very likely be uniquely identifying a single cus-
tomer leading to disclosure of other sensitive information contained in the event
log such as the yearly Income of the applicant.

So far, we gave examples of sensitive information that is directly stored in the
event attributes. However, also the presence of a certain activity in the event
log or derived information such as the sequence of events that occurred for a
certain case may be considered sensitive. Take for instance the third case in
Table 1 in which the loan application is declined (DA) after an extensive check
(EC ). Knowledge of such details on how the loan application process was carried
out may be used against the individual. Thus, even the sequence of activities
performed for an individual case may be regarded as sensitive information. At
the same time, the sequence of activities performed may also act as a quasi-
identifier as it is often unique and identifies an individual such as an applicant
or a patient [42,47].

When it comes to sensitive business information one may think about
attributes encoding the cost of a certain activity or information on prices paid by
different customer segments (e.g., the interest offered on the loan). Similarly to
the case of personal information, the sensitive information may not only reside
in the attribute values but also be derived from the sequence of events that
occurred or their timestamps, e.g., the throughput times computed for different
organizational units may be considered sensitive.

It is important to realize that these computations may also be based on the
artefacts that are returned by the classical process mining tasks: intermediate
data structures, process models, and conformance checking results. Thus, direct
access to the original event log may not be required to gain access to sensitive
information. For example, the utilisation of a certain department or group may
be determined by considering the number of traces in a certain time period and
could be considered sensitive. The cross-organisational process mining scenario
is also commonly considered when it comes to motivating the need of protecting
sensitive information for process mining. Here, two organizations want to com-
pare their processes to learn from each other or analyse a process that is jointly
performed (e.g., supplier and integrator). However, certain sensitive data should
not be shared.
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4.3 Background Knowledge

Apart from the trivial case in which an individual or an organizational entity
can be directly identified, attackers often need to possess certain limited back-
ground knowledge about the individual, i.e., the process case, the entity, or about
remaining parts of the dataset. This is reflected in Fig. 4 by assuming the adver-
sary to use some knowledge to facilitate attacks on sensitive information. Some
protection models assume the worst-case scenario in which no restriction on the
background knowledge of an attacker is assumed and still some kind of privacy
guarantee should be given. However, in many cases it is reasonable to assume
only limited background knowledge to be available.

Background knowledge may be fully derived from the event log or it
may also contain information that is not present in the event log but related
to specific cases or events. Thus, it can be any kind of knowledge that gives
an attacker information that can be used to identify sensitive information. We
keep the definition of the background knowledge deliberately vague as it may be
defined in various ways and include arbitrary external data sources. Two more
precise definitions for event logs have been introduced in the literature.

Rafei et al. [48] provide several definitions for possible background informa-
tion in a process mining context. They assume that background knowledge is
defined over a simple view of process traces as sequences of event labels, e.g.,
the third trace in Table 1 would be seen as sequence 〈SA,EC,DA〉. Three cate-
gories are defined: Set knowledge, Multiset knowledge, and Sequence knowledge.
The knowledge refers the occurrence of activity labels in the to be attacked pro-
cess case at one of the three abstraction levels. Thus, an attacker can either know
only about the presence of activities (set abstraction), their frequency (multiset
abstraction), or have in-depth knowledge about a certain ordering of activities
(sequence abstraction). In Table 1, the third trace 〈SA,EC,DA〉 would already
be uniquely identified when having the set background knowledge {DA} since
that is the only trace in which an application is declined. As another example,
the multiset background knowledge of [SO2] would uniquely identify the fourth
case. In many setting such knowledge of process events may be easy to obtain,
e.g., one may know that their neighbours received two loan offers in a specific
time period.

Von Voigt et al. [42] quantify the re-identification risk of individual cases by
assuming different kinds of background knowledge. In addition to knowledge of
activity labels as in [48] also case-level attributes are considered to be candi-
dates for background knowledge. For example, in the well-known BPI Challenge
2018 dataset [49] case attributes have been generalized to provide some level of
privacy protection. However, still when considering the combinations of all case
attributes 84.5% of all cases are unique.

Many other similar abstraction and definitions of background knowledge are
possible but have not yet been investigated. For example, partial orders of activ-
ities or knowledge about time or resource involved. An adversary may know
that two medical diagnostic tests have been performed on the same day and
two days later the patient was re-invited for a discussion by the same doctor.
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Also knowledge on the absence of a certain activity in the case to be attacked
could be informative. As Fig. 4 illustrates also external data source may provide
complementary background knowledge. A famous example that involved using
external background knowledge is the successful attack on a Netflix dataset by
using information from the public IMBD movie ratings [50], which included full
names for some users, and compared them to the ratings in the Netflix dataset
thereby identifying users in the supposedly anonymized Netflix dataset.

In summary, a precise analysis of background knowledge assumed is impor-
tant to provide meaningful guarantees against uncovering sensitive information.

4.4 Threats and Attacks

Several attacks on confidential data in event logs are possible. We follow Elkoumy
et al. [45] and focus on a honest-but-curious attacker scenario. An adversary has
access to data or results and tries to identify some sensitive information without
trying to break into systems. So, we do not consider scenarios in which access
control or similar security measures are broken.

We structure confidentiality attacks structured according to the threat that
they pose, i.e., the kind of sensitive information that an attacker or adversary
tries to reveal. As already motivated, it is important to consider the kind of
background knowledge that is assumed in the analysis of a specific threat or
attack to find reliable mitigation strategies. Attacks on confidentiality use this
background knowledge to reveal sensitive information that is contained in the
event log as shown in Fig. 4.

So, a very general definition of a confidentiality attack on an event log can
be given as follows. Given an event log and some sensitive information that is
related to that log, a confidentiality attack uses some background knowledge,
which may be derived from the log or from other available sources, to reveal
some subset of sensitive information that is part of the log. We distinguish four
general types of threats based on the goal of an attacker and the employed attack
method following the categorization in [45].

Membership Disclosure Threats. A basic threat is that an adversary could estab-
lish that an individual was taking part of the process that is described by the
event log. A membership inference attack combines background knowledge about
the individual to the information released by an event log or a process mining
analysis. So, the sensitive information obtained from the event log would consist
of the identifiers for a subset of individuals that took part in the process. Whereas
this does not reveal the exact case in which an individual took part, it still often
allows to draw conclusions about which activities and events an individual was
involved in. Let us assume that the event log obtained in our example loan appli-
cation process scenario only contains loans for starting a business. Already, the
information that an individual is part of that event log, i.e., they were applying
for such a specific loan type can be sensitive information.
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Re-identification Threats. Threats that cause the disclosure of the identity of a
individual to which some data belongs are called re-identification threats. So,
the sensitive information is the subject of a certain case, e.g., the patient iden-
tity, or the subject of a certain event, e.g., the identity of the resource or worker
that performed the activity recorded by the event. Example attacks are linkage
attacks and intersection attacks [45]. Linkage attacks use background knowledge
to reveal the identity, e.g., a certain combination of attribute values or a cer-
tain sequence of events is known to be connected to an individual. In Table 1,
knowing that an individual received two offers, i.e., multiset background knowl-
edge of [SO2], and that their data is part of the event log uniquely re-identifies
identity of the applicant in the fourth case. Intersection attacks try to estab-
lish a mapping between two separately released event logs revealing the identity
of an individual. Here the information revealed in a second separately released
dataset is assumed to be directly linkable to an individual without containing
any sensitive information. However, in combination this information can be used
as background knowledge and reveal the sensitive information in the first event
log.

Reconstruction Threats. In some cases it may be possible to partially or fully
infer the original event from seemingly protected data. Here, the sensitive infor-
mation to be retrieved would be the entire event log. The two main attack meth-
ods for reconstruction are difference attacks and model-inversion attacks. The
basic idea for both is to repeatedly consult a model or a statistic with slightly
different queries and, thereby, uncovering sensitive data.

Cryptanalysis Threats. Data may have been pseudonymized, as often done by
commercial tools, or encrypted in an attempt to provide confidentiality. How-
ever, näıvely pseudonymized or even fully encrypted event logs are vulnerable
to attacks based on the analysis of the frequency [51]. Please note that this may
lead in turn to re-identification, membership disclosure, or reconstruction, but
may also simply leak sensitive business information such as the number of cer-
tain activity executions. The main attack method is a frequency analysis based
on background knowledge on the activities of the process and their prevalence.

4.5 Protection Approaches

Whereas still in an early stage, the research on privacy and confidentiality has
received increased attention in the past years and several protection techniques
with diverse assumptions and guarantees that protect against the mentioned
threats have been proposed. However, none of the proposed methods is gen-
erally applicable to any possible confidentiality and privacy problems. Each of
them makes certain assumptions regarding the attack scenario including the
background knowledge of the assumed attacker. Conversely, depending on the
input log the methods result in some loss of utility. Thus, the goal of the process
mining analysis (discovery, conformance, etc.), their data requirements, and the
characteristics of the process that generated the event log need to be considered.
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Fig. 5. Different protection models have been proposed that protect the data contained
in an event log by transforming it into protected representations: a protected event log,
a protected abstraction the event log, or a protected analysis result.

Protection models can work at different levels of a process mining analysis as
shown in Fig. 5. Following [48], we differentiate between several tasks for protec-
tion models. Some models protecting the event log itself and provide a protected
copy of the original event log. Other techniques provide protected abstractions
over the original event log, e.g., a directly-follows graph representation which can
only be used for certain process mining activities. In [48], these two tasks are
denoted as Privacy-Preserving Data Publishing (PPDP) and Privacy-Preserving
Process Mining (PPPM), respectively. We add a third possible task, which is to
protect process mining results, e.g. a process model or a conformance checking
result, without an intermediate representation.

Regardless of the task at hand, techniques can also be distinguished into
roughly three categories of protection models [45]: group-based privacy mod-
els, indistinguishability-based models, and confidentiality frameworks including
encryption. We now introduce the main properties of the three different protec-
tion model categories and briefly introduce exemplary techniques.

Group-Based Privacy. The prototype of a group-based privacy protection
model are those that provide k-anonymity [52]. The basic idea is that a tabu-
lar dataset containing rows with information about individuals is k-anonymous
when the values for each combination of sensitive attributes or columns (quasi-
identifiers) appear at least k times. So, data similarity is used as a criterion here.
The intuitive idea is that the individual will have the same sensitive data as the
k − 1 other individuals in the same group and, thus, with sufficiently large k it
protects against re-identification. Usually, this is achieved by data suppression
or generalization until the k − anonymity property is achieved. Whereas this
model is interpretable and easy to understand, unfortunately, it has been shown
to be suspect to certain attacks based on background knowledge [53]. Several
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extensions have been proposed that mitigate some of those including: l-
diversity [53], and t-closeness [54].

For process mining, two methods are providing group-based privacy protec-
tion models. The TLKC model by Rafaei et al. [47] and the PRETSA approach
by [55]. Both aim at the release of a proctected event log, option (A) in Fig. 5.
PRETSA utilizes generalisation based on a prefix-tree that is build on top of the
activity sequence in the event log and provides k-anonymity and t-closeness guar-
antee to prevent the disclosure (membership and re-identification) of resources
or workers that performed certain activities. The TLKC model protects the iden-
tity of cases, e.g., a customer, and provides a relaxed variant of k-anonymity.
Additional, it supports protecting information in the time and organizational
perspective. Both approaches make assumptions on the background knowledge.
Maintaining data utility is challenging for both methods when many unique
traces exist.

Indistinguishability-Based Privacy. Differently to the group-based
models providing guarantees such as k-anonymity for a given dataset,
indistinguishability-based privacy models give a guarantee that two versions of a
dataset are indistinguishable to a certain degree. A central model is Differential
Privacy (DP). The idea is that there is one datasets A without an individuals
information and another one A′ including an individuals information. A mecha-
nism provides DP with a parameter ε when the results of a (randomized) query
mechanism statistically differ between A and A′ only by a small factor that
is controlled by the ε-parameter [56]. This provides a strong guarantee that is
independent of the background knowledge as the guarantee needs to hold for
any dataset A and A′. There have been many variants of the differential privacy
concept [57]. For example, adding a relaxation parameter δ to better tuning the
utility while loosing some of its strengths ((ε, δ)-DP), only requiring the values
of the datasets to not differ too much and ignoring addition and removal of
items (bounded DP), or extending the guarantees in the case individuals appear
multiple times in the dataset (group DP), which is a possible scenario for event
logs.

For process mining, several adaptions have been proposed. The first one was
given by Mannhardt et al. in [58] who assume a protected event log to be queries
through a privacy engine. Laplacian noise is added to the counts returned by each
query, thereby guaranteeing DP with regard to the individual cases. Queries are
defined for both directly-follows relations [1] and complete activity sequences.
The method was later extended in [59] to also protect contextual information
that is encoded in the attributes of the event log. Furthermore, the guarantee
was extended to local DP, which means that a perturbed event log itself can
be released. One major issue of these methods is that obviously invalid process
behavior may be added. Recently, the approach was improved to consider the
semantic of the added noise [60]. Contextual information, in particular process
performance indicators, is also protected in the work by Kabierski et al. [61].
Finally, there is a very recent proposal by Elkoumy et al. [62] that provides only
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a bounded DP guarantee but improves the utility of the protected data by using
an oversampling approach instead of adding noise.

Confidentiality Frameworks. The third type that we distinguish are pro-
tection models that are not directly targeted at protecting individuals but any
kind of sensitive information in event logs. Here, mainly encryption schemes
have been proposed. A major family of techniques are those based on on homo-
morphic encryption [63] schemes. The goal is to enable certain computations
on an encrypted version of the data. For process mining, this idea is taken
up by Rafei et al. in [51] and embedded in a framework that aims to pro-
tect against frequency or background knowledge-based attacks by disassociating
events from their respective cases. It could be used to outsource computations
on secured data or in a cross-organizational setting. However, it does not protect
the resulting analysis results (B) and (C) from an internal process analyst. The
cross-organization setting is also targeted by Elkoumy et al. in [64]. A secure
multi-party computation [65] method is proposed that avoids to leak sensitive
information in the cross-organisational process mining scenario.

The above categorization and list of techniques covers the major share of the
work in the process mining field so far.

4.6 Outlook and Challenges

Protecting the privacy and confidentiality of data while keeping it useful for
analysis is a difficult problem. Information needs to be hidden while the objec-
tive is to get as much signal from data as possible. Unsurprisingly, many open
challenges exists for confidentiality in process mining and, apart from academic
prototypes [66,67], none of the proposed techniques has seen uptake in com-
mercial solutions. Seven main challenges for research in the field of privacy and
confidentiality in process mining are identified by [45]:

– Interpretable Quantification of Privacy Disclosure. Protection mechanisms
should be interpretable when it comes to the remaining risk. Guarantees and
attacks are often not obvious for non-experts making adoption by industry
difficult.

– Balancing Risk and Utility. Any protection mechanism may impair the utility
of the source data and poses a trade-off that needs to be made upfont. In the
exploratory process mining setting this is a challenge for adoption. In [68] it
is proposed that mechanisms need to be utlility aware.

– Level of Granularity. Process mining analyses happen at various levels of gran-
ularity and various perspectives. Some tools require only activity sequences
and timestamps, which most current protection models focus upon. Others
also consider the resource perspective including potential sensitive data on
employees. In some cases, access to an event log may not be necessary and
privacy guarantees should be given at the level of a released process model as
proposed in [69]. A one-fits-all approach to privacy is unlikely to work, which
opens opportunities for further research.
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– Distributed Privacy. In many settings attempts on data sharing between orga-
nizations are made which creates the problem of protecting privacy in an
inter-organizational setting. This setting is currently less well researched.

– Computational Challenges. Some of the approaches proposed are computa-
tionally expensive. Thus, research on making those suitable for real-life set-
tings is required.

– Traceability and Transparency Challenges. Often personal data still needs to
be collected and stored at some point during the analysis. GDPR requires
to trace the processing and usage of data to fulfill the different rights (right
to consent, right to access, right to be forgotten [38]). This is challenging
for process mining where data comes from different distributed data sources.
Similarly, GDPR requires organizations to be transparent about the usage
of data. Traceability is a pre-requisite but not sufficient for achieving trans-
parency. Investigating how to provide information on the purpose for which
data was used in process mining is a research challenge.

Many of these challenges are geared towards the improving technological solu-
tions that provide some form of privacy guarantee in various settings. However,
as already reported in [40] many aspects of privacy and confidentiality as well as
the compliance to regulations such as GDPR cannot be solved by technological
measures alone. However, there is little research from the organizational side
apart from anecdotal discussion on the role of privacy in real-life process min-
ing projects [41]. To conclude, it is notable that process mining has also been
used to check conformance to privacy regulations [70]. Thus, process mining can
also help in uncovering confidentiality issues that are present in an organizations
processes.

5 Transparency

Transparency has been a widely discussed topic for AI systems that are based on
machine learning. Often, a key concern is the explainability of black-box classi-
fiers such as Deep Learning models: Why is a certain classification or prediction
made and what features are important in the decision of the model?

The core process mining tasks of process discovery and conformance check-
ing aim to provide white-box process models that can be interpreted by process
stakeholders. Explainability of the discovered models and, thus, transparency
is key objective of process mining. Still, there are several aspects of process
mining in which transparency is at risk. In the next two section, we focus on
two exemplary transparency challenges for process mining: achieving generaliza-
tion without hampering transparency and the interpretability of the discovered
process model representations.

Besides these two transparency challenges all the common transparency
issues of predictive models are inherited when building predictive process min-
ing models. Therefore, we do not discuss this in detail since many resources on
explainable machine learning are available and [71] gives a brief overview of how
to obtain explainable predictions in the context of process mining.
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5.1 Generalization

Process discovery aims to abstract from the exact behaviour observed in the
event log and return a concise model of the underlying process. This often
requires to disregard infrequent behaviour to obtain simpler process models.
Conversely, process discovery techniques often attempt to generalize beyond the
observed behaviour since they cannot be assumed to have observed all possi-
ble incarnations of the process, particularly in the presence of parallel process
behavior. This aspiration creates a transparency challenges.

Disregarding infrequent behaviour may hide important parts of the observed
data. In particular, infrequent patterns may be of high interest [44]. Very few
techniques have been focusing on retaining infrequent data, e.g., in [72] certain
infrequent dependencies are not filtered if they can be reliably predicted from
data attributes and in [73] it is explored how to selectively include infrequent
behaviour by filtering over multiple ranges of parameter values.

In a orthogonal direction, the frequency and probability with which behaviour
is observed gets more attention in approaches that can be labeled as: stochas-
tic process mining. In [35], Leemans et al. proposed a new conformance check-
ing method with the goal of taking into account routing probabilities, which
improves the accuracy of the diagnostics.

5.2 Interpretation of Results

Interpretation of results based on process model notations or visualizations can
be difficult for stakeholders leading to transparency challenges. For example,
the presence of loops together with optional activities may enable non obvious
process behaviour and the filtering of edges in a directly-follows graph may lead
to invalid statistics as is illustrated for many commercial tools in [74].

However, also for discovery approaches based on clear semantics misinter-
pretations are possible. As an example, the models discovered by the Inductive
Miner often contain silent transitions that allow to skip certain behaviour that
in combination with loops allow any behaviour. This may be difficult to spot
for a non-expert. Whereas there exists research on the comprehension of process
models [75], little work has yet been done in the context of automated process
discovery.

Recently the question of interpretability of process mining results has been
touched upon by Mendling et al. [76] who raise the issue that the quality of
process mining results needs to be judged in light of the tasks of a process
analyst using the models. A first technical contribution for process discovery
in this direction was provided by Fahland et al. [77] with a new variant of the
Inductive Miner that was evaluated in a user study in which an analyst’s trust
in the model as considered. Overall, there has been surprisingly little research
on this topic given the claim of process mining to provide white-box models.
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6 Conclusion

This chapter defined the concept of Responsible Process Mining under the
umbrella of Responsible Data Science. Based on the FACT criteria put for-
ward in [5] (Fairness, Accuracy, Confidentiality, and Transparency), we gave an
overview of challenges related to these criteria and introduced state-of-the-art
approaches for addressing each of them. Due to the broad scope of the FACT
criteria, we can provide only a high-level introduction and discussion for each of
them. We refer to the individual work or relevant surveys for further details.

In some areas the research on responsible process mining is already much
further developed than in others. Little attention has been devoted to fairness in
the context of process mining, at least compared to its prominence in the machine
learning field. The trend to more automated decision taking in process mining
may change this in the future. In contrast, the confidentiality challenge has been
recognized in the process mining research community and has recently received
much attention in research. However, adoption by commercial process mining
tools has not yet started even though the problem has also been recognized by
industry [41].

Criteria such as accuracy and transparency are very broad and many
approaches touch these issues; however, with the notable exception of the work
on data quality [12] they are rarely addressed explicitly under the umbrella of
responsible process mining. More work is required to develop and address these
criteria more explicitly in future process mining research.
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