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1 Introduction

Predictive Process Monitoring [29] is a branch of process mining that aims at
predicting the future of an ongoing (uncompleted) process execution. Typical
examples of predictions of the future of an execution trace relate to the outcome
of a process execution, to its completion time, or to the sequence of its future
activities.

Being able to predict in advance the outcome of a process execution, the time
that a process instance will require to complete, or the activities that will be
executed next can be extremely valuable in several domains and scenarios, e.g.,
for production processes, allowing organizations to prevent undesired outcomes,
issues and delays. Indeed, differently from the problem of monitoring business
processes in a reactive way [28], i.e., so that the violation or the delay is iden-
tified only after its occurrence, predicting the violation or the issue before it
occurs, would allow for supporting users and organizations in preventing it by
taking the appropriate preventive countermeasures. Fueled also by the wave of
technical developments in Data Science, Predictive Analytics, and data driven
Artificial Intelligence, the development of predictive techniques tailored to the
field of Process Mining has rapidly established itself both as a vibrant research
topic and as an impactful functionality with a direct application in innovative
organizational contexts and process mining tools, which often go hand in hand.
Examples are the development of new Predictive Process Monitoring pipelines
for specific organizations (such as hospitals) [3] and the investigation of explain-
able Predictive Process Monitoring techniques performed together with leading
Process Mining companies such as myInvenio1 [18] with the aim of incorporating
the features within their Process Mining tools (see also [36]).

Predictive Process Monitoring approaches usually leverage past historical
complete executions in order to provide predictions about the future of an ongo-
ing (incomplete) case. They usually have two phases: a training or learning phase,
in which a predictive model is learned from historical (complete) execution traces
and a runtime or prediction phase, in which the predictive model is queried for
predicting the future of an ongoing case.

1 Recently acquired by IBM as part of the IBM Process Mining suite. See www.ibm.
com/cloud/cloud-pak-for-business-automation/process-mining/.
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The chapter is structured as follows:2 after an introduction of a simple
explanatory example (Sect. 2) and of the main dimensions characterizing the
family of the Predictive Process Monitoring approaches for business processes
(Sect. 3), the typical encodings and approaches used for the prediction of out-
comes (Sect. 4), numeric values (Sect. 5), and sequences of activities - and related
payloads - (Sect. 6), are described in the next three sections, respectively. Finally,
Sect. 7 presents new relevant trends in the context of operational support tech-
niques based on Machine Learning and Sect. 8 introduces the main available open
source tools supporting Predictive Process Monitoring tasks. We assume as pre-
requisite for the next sections that the reader has some machine/deep learning
knowledge, especially on classification and regression algorithms, as well as on
recurrent neural networks. The interested reader can refer to [5,19,20].

2 Running Example

During the execution of a business process, process participants cooperate to
satisfy certain business constraints. At any stage of the process enactment, deci-
sions are taken aimed at achieving the satisfaction of these constraints. Being
able to predict in advance certain aspects of a process execution allows organi-
zations to take advantage or adapt to desirable future enfolding or to react and
be able to prevent an undesirable scenario by taking the appropriate preventive
countermeasures.

In this chapter we will illustrate the potential and characteristics of Predictive
Process Monitoring by means of a running example in a healthcare scenario.3

The example describes the process of a patient going to a hospital to perform
a radiology exam and related medical checks. The process covers both the clin-
ical aspects, such as the visit(s) and the radiology exam(s) and administrative
issues, such as the admission to the radiology department, the computation of
the medical bill and its payment. During the process execution, the doctor has to
make decisions on whether further exams are required, and - if possible - issued.
Depending on the examinations visits can precede and/or follow the radiology
exam, which vary in range from Ultrasound, to X-ray, to Pet, MRI, Breast Imag-
ing, and so on. The process typically starts with the admission, the execution of
the medical activities (exams and visits) and the computation and paying of the
bills. Different executions are nonetheless possible such as a payment in advance,
before the visit.

In this scenario, historical information about past executions of the process,
and in particular data related to the clinical history of other patients with similar
characteristics, could be used to support the hospital predicting the unfolding
of a certain execution. As an example, at a certain time during the process
execution, one could predict whether a certain patient will require ultrasounds
2 In this chapter we mostly focus on the main pipeline, omitting aspects mainly related

to the preprocessing and evaluation phase.
3 This example and its instantiations in the following sections are taken and inspired

from the running example used in [25].
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Fig. 1. Predictive Process Monitoring along three dimensions.

and/or at what time. This may be used by the hospital staff to improve or adapt
the scheduling of their facilities.

3 The Family of Predictive Process Monitoring
Approaches

Although Predictive business Process Monitoring is a relatively young field, it
has been growing fast in the latest years, as it is also witnessed by recent surveys
on the topic [13,31]. As depicted in Fig. 1, the literature on predictive business
process monitoring can be roughly classified along three main dimensions:

• type of prediction (i.e., the type of predictions provided as output);
• type of adopted approach and technique;
• type of information exploited in order to get predictions (i.e., the type of

information taken as input).

Concerning the type of prediction, according to the literature [13,46], we can
classify the existing prediction types into three main big categories:

• predictions related to predefined categorical or boolean outcome values
(outcome-based predictions);

• predictions related to measures of interest taking numeric or continuous values
(numeric value predictions);

• predictions related to sequences of future activities and related data payloads
(next event predictions).
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Fig. 2. Types of predictions.

Figure 2 shows an example of an execution trace describing the activities
carried out by John. Let us assume that it is 8:54 a.m now. At 8:00 a.m. John
has registered to the hospital to undergo some health checks, at 8:10 he was taken
to the radiology department where he was visited at 8:15 and he is now having
X-rays. Predictive Process Monitoring would allow us to answer different types of
questions on the future of John. For instance, we could predict whether John will
undergo an ultrasound scan in the future. The answer to this specific question
will be a boolean value (e.g., it is true that John will undergo an ultrasound in
the future). This is a typical example of an outcome-based prediction. However,
this class of predictions also includes predictions assuming categorical values,
that is, values that range in a limited and fixed number of possible options.
Examples are the class of discount that will be applied to a customer at the end
of his shopping, the class of risk of a given execution, or, in our scenario, the
specific exam out of a number of options. Another typical question Predictive
Process Monitoring could allow us to answer about John’s future is, once we
know that he will undergo an ultrasound, in how much time he is going to have
it. The answer to this question is generally provided in terms of a numeric value
(e.g., John is going to have an ultrasound exam in 26 min) and is an example
of a numeric-value prediction. Typical examples in this settings are predictions
related to the remaining time of an ongoing execution, predictions related to the
duration or to the cost of an ongoing case. Finally, we could even predict what
John is going to do from now on. The answer to this question is a sequence of
future activities (e.g., John will undergo an ultrasound, will ask for his bill and
will pay it). Typical examples of predictions falling under this category refer to
the prediction of the sequence of the future activities (and of their data payloads)
of a process case upon its completion.

Predictive Process Monitoring approaches are usually characterized by two
phases. In a first phase, the training or learning phase (see the light blue part in
Fig. 3), one or more models are built or enriched by leveraging the information
contained in the execution log. In the second phase, the runtime or prediction
phase (see the light green part in Fig. 3), the learned model(s) is(are) exploited
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Fig. 3. Types of PPM approaches.

in order to get predictions related to an ongoing execution trace. We can identify
two main groups of approaches dealing with the prediction problem:

• approaches relying on an explicit model (model-based approaches), e.g., anno-
tated transition systems. The explicit model can either be discovered from
the event log and then enriched with the information the log contains or
directly be enriched, if an explicit model is already available. In model-based
approaches, the model that is then leveraged at runtime in order to get pre-
dictions is an (enriched) model in which the process control flow is somehow
made explicit (see the blue box in the middle on the right of Fig. 3).

• approaches leveraging machine learning and statistical techniques, e.g., clas-
sification and regression models, as well as neural networks. These approaches
only rely on (implicit) predictive models built by encoding event log infor-
mation in terms of features to be used as input for machine/deep learning
techniques (see the blue box at the top on the right of Fig. 3).

Finally, we can identify four different types of information that can be used
as input to the Predictive Process Monitoring approaches, e.g., for building a
model annotated with execution information or for building the features to be
used by machine learning approaches:

• information related to the control flow - i.e., the sequence of events. As
depicted in the fourth row of Fig. 4, in the example of John’s history this
is the information related to the activities carried out by John (e.g., check in
to the hospital, go to the radiology department, . . . ).

• information related to the structured data payload associated to the events.
This information usually include the timestamp of the events, but it can also
include other types of data attributes. For instance, in John’s history, besides
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Fig. 4. Information used for making predictions.

the timestamp associated to each event, the data payload of the event Visit
patient also includes the doctor who has visited John, i.e., Alice (see the
third row in Fig. 4).

• information related to unstructured (textual) content, which can be available
together with the event log. Indeed, it often happens that, together with the
structured information related to the events and data payload, some unstruc-
tured information is also available. In John’s example, for instance, the text
of Alice’s medical report is available together with the event visit patient
(see the second row in Fig. 4) and could provide useful information on what
John is going to do later on.

• information related to process context, such as workload or resource availabil-
ity. In John’s example, this kind of information could be related for instance
to the availability of free ultrasound scan machines (first row in Fig. 4). Con-
textual information could provide useful information on what John is going to
do later on and when. For example, the time required to John to perform an
ultrasound could be related to the immediate availability of a scan equipment.

In several approaches, more than one of these types of information is used in
order to learn from the past.

After reporting few more details on the model-based approaches and
approaches leveraging machine learning in the next subsection, in the following
sections, we will mainly focus on machine-learning approaches and on encodings
taking into account event and data payload features. We will look in more detail
at each of the three prediction type macro-categories, i.e., predicting outcomes,
numeric values and sequences of activities (and related payloads), respectively.
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Fig. 5. Overview of the typical phases of model-based approaches.

Fig. 6. Running example model-based approaches.

3.1 Predictive Process Monitoring Approaches

We report here an overview of the main phases related to the two main families
of Predictive Process Monitoring approaches, i.e., model-based approaches and
approaches based on machine learning.

Figure 5 shows the main phases characterizing the model-based approaches.
At training time, an explicit and conformant model (see [7]) can either be already
available or can be discovered from the historical traces (see [2,4]) using the
optional Model discovery phase in Fig. 5. The model is then enriched with infor-
mation related to the data (Model enrichment), as for instance the remaining
time extracted from the historical traces. At runtime, the enriched model is used
in order to return a prediction.

One of the main model-based approaches leverages a transition system as
explicit control-flow model (see Definition 1 in [4]). The transitions system is
built based on a given abstraction of the representation of the events in the
traces (e.g., the name of the activity), as well as of the representation of the
state of the transition system, as for instance the sequence of activities executed
so far or the set of activities occurred so far. For instance, let us consider the
simple event log reported in Fig. 6 related to the example described in Sect. 2.
Each case relates to a different patient and the corresponding sequence of events
indicates the activities executed for a medical treatment of that patient. Given
the variability of the process, different interplays are possible between the clinical
and administrative activities. In particular in sequence σ1 the process starts
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Fig. 7. Annotated transition system obtained from the log reported in Fig. 6.

directly with a visit (possibly due to urgency), while the administrative part
is executed in the middle of the process; instead in sequence σ3, the process
starts with a computation of the overall price (possibly due to the request of
having a quote) before proceeding further. The event timestamp of each event
is reported among brackets nearby the activity. For example, trace σ2 refers to
a process execution in which the activity Visit patient is executed at time
08:00, the activity Compute rate at time 10:00 and so on. Figure 7 shows the
transition system computed using as event representation abstraction the name
of the activity and as state representation the activity set.

The transition system is then annotated, given a certain measurement func-
tion, as for instance the elapsed time or the remaining time, with the correspond-
ing information extracted from the event log. For instance, information about
the remaining time can be extracted from the traces and reported for each state
of the transition system. This information is then used for making predictions,
e.g., on the completion time of an ongoing trace, given a certain prediction func-
tion, as for example the average remaining execution time. The transition system
in Fig. 7, for instance, is annotated (in blue) with the remaining time of each
trace in the event log of Fig. 6. Moreover, for each state, the average of these
values is also computed and reported. For example, the state corresponding to
the empty set of activities , is annotated with the remaining time of each trace
at the beginning of the execution, i.e., 11 h for σ1, 8 h for σ2 and so on.

When, at runtime, a prediction about the completion time of a new ongoing
trace is required, the annotated transition system can be queried by looking at
the state of the transition system corresponding to the ongoing case, and the
value of the chosen prediction function returned. For instance, let us assume
we want to predict the completion time of an ongoing case σt = (Compute rate
(CR) {12:00}, Visit patient (VP) {13:00}). Two measurements are associated
to the corresponding state of the transition system in Fig. 7 (see the state in
light green), i.e., 6 and 2 hours. Considering the average as prediction function,
the average value of the measurements (4 hours) can be used to compute the
predicted completion time, i.e., according to the prediction, the patient will
complete his process at 17:00.

Several extensions have been proposed to the original approach, such as anno-
tating the transition systems with machine learning models like Näıve Bayes
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Fig. 8. Overview of the typical phases of approaches based on machine learning.

and Support Vector Regression models [34], taking into account also data pay-
loads [35], combining the annotated transition systems with a context-driven
predictive clustering approach [16,17]. Other model-based approaches consider,
instead sequence trees [9] or stochastic Petri nets [40,41] as explicit models to
predict the remaining execution time of a process instance.

Figure 8 sketches the main phases of the typical approaches based on machine
learning. These approaches usually require that trace prefixes are extracted from
the historical execution traces (Prefix extraction phase). This is due to the fact
that at runtime predictions are made on incomplete traces, so that correla-
tions between incomplete traces and what we want to predict (target variables
or labels) have to be learned in the training phase. After prefixes have been
extracted, prefix traces and labels (i.e., the information that has to be predicted)
are encoded in the form of feature vectors (Encoding phase). Encoded traces are
then passed to the (supervised learning) techniques in charge of learning from the
encoded data one (or more) predictive model(s) (Encoding phase). At runtime,
the incomplete execution traces i.e., the traces whose future is unknown, should
also be encoded as feature vectors and used to query the predictive model(s) so
as to get the prediction (Predicting phase).

In this chapter we will mainly focus on approaches leveraging machine learn-
ing - and in particular supervised learning - techniques.

4 Predicting Outcomes

Outcome predictions are predictions related to (categorical) case outcomes [46].
Typical examples of outcome predictions in the Predictive Process Monitoring
literature are predictions related to risks or related the fulfilment of a predi-
cate [11,29].

Given an event log L and a prefix execution trace σm
i = <e1, . . . , em> of

length m, the overall idea is learning a function fc(L, σm
i ) returning a categorical
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Fig. 9. Running example with an outcome label

value labeli, which is as close as possible to labeli, i.e., the actual (categorical)
value of the variable that we aim to predict (e.g., whether the predicate will be
actually fulfilled).

As described in the previous section, when dealing with approaches based on
machine learning, one of the main steps to be carried out deals with encoding the
information contained in (prefix) execution traces and corresponding labels in a
format that is understandable by machine learning techniques. This would allow
the technique to train, and hence learn, from encoded data a predictive model.
In order to train a model, each (prefix) execution trace σi, (and its corresponding
label) have to be represented through a feature vector gi = (gi1, gi2, ...gih, labeli).

In this section (and in the next two sections) we will present first the typical
encodings used with the corresponding type of predictions4 and then the main
(machine-learning) pipelines/approaches used to build the predictive model and
query it.

4.1 Typical Data Encodings

To exemplify the different data encoding techniques, we consider the very simple
log in Fig. 9 pertaining to our running example of Sect. 2. Similarly to the log
used in Sect. 3.1, also in this log each case relates to a different patient and the
corresponding sequence of events indicates the activities executed for a medical
treatment of that patient. Visit patient is the first event of sequence σ1. Its
data payload “{33, radiology}” corresponds to the data associated to attributes
age and department5. Note that the value of age is static: it is the same for all
the events in a case, while the value of department is different for every event.
In the payload of an event, the entire set of attributes available in the log is
considered as well. In case for some event the value for a specific attribute is not
available, the value ⊥ (unknown) is specified for it.

Given a case prefix, we aim at predicting whether the patient will recover soon
(true), or not (false). We report the corresponding value, i.e., the corresponding
label, for each case after the semicolon in Fig. 9.

Boolean Encoding. In the boolean encoding sequences of events are represented as
feature vectors, in such a way that each feature corresponds to an event class (an
activity) from the log. In particular, the boolean encoding represents a sequence
4 Please note that some types of encodings can be used for different types of predic-

tions. For instance encodings related to outcome-based and numerical predictions
are exactly the same - except for the type of the label.

5 We omit here for simplicity the information related to timestamps.
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Table 1. Typical outcome-based encodings for the example in Fig. 9.

Visit patient Perform ultrasound ... Get Payment label

σ1 1 1 ... 0 false

...

σk 0 0 ... 1 true

(a) boolean encoding.

Visit patient Perform ultrasound ... Get Payment label

σ1 2 1 ... 0 false

...

σk 0 0 ... 4 true

(b) frequency-based encoding.

event 1 ... event m label

σ1 Visit patient Perform ultrasound false

...

σk Compute rate Get Payment true

(c) simple-index encoding.

age department last label

σ1 33 radiology false

...

σk 56 admin true

(d) latest-payload encoding.

age event 1 ... event m ... department last label

σ1 33 Visit patient Perform ultrasound ... radiology false

...

σk 56 Compute rate Get Payment ... admin true

(e) index latest-payload encoding.

age event 1 ... event m ... department 1 ... department m label

σ1 33 Visit patient Perform ultrasound clinic radiology false

...

σj 56 Compute rate Get Payment general lab admin true

(f) complex index-based encoding.

σi through a feature vector gi = (gi1A , gi2A , ...gihA
, labeli), where hA is the size

of the event class alphabet A = {a1A , . . . , ahA
} and if gijA corresponds to the

event class ajA ∈ A then:

gij =
{

1 if ajA occurs in σi

0 if ajA does not occur in σi

For instance, the encoding of the example reported in Fig. 9 with the boolean
encoding is shown in Table 1a.

Frequency-Based Encoding. The frequency-based encoding, instead of boolean
values, represents the control flow in a case with the frequency of each event
class in the case. The frequency-based encoding gi = (gi1A , gi2A , ...gihA

, labeli)
of σi, is such that, if gijA corresponds to the event class ajA ∈ A then:

gij =
{

n if ajAoccurs n times in σi

0 if ajAdoes not occur in σi

Table 1b shows the frequency-based encoding for the example in Fig. 9, assuming
that Visit patient occurs two times in σi and Get Payment occur four times
in σk.
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Simple-Index Encoding. Another way of encoding a sequence is by taking into
account also information about the order in which events occur in the sequence,
as in the simple-index encoding. Here, each feature corresponds to a position in
the sequence and the possible values for each feature are the event classes. The
resulting feature vector gi of the simple-index encoding of an execution trace
σi of length m is gi = (ai1, ai2, ...aim, labeli), such that aik corresponds to the
event class of the event at position k in σi. By using this type of encoding the
example in Fig. 9 would be encoded as reported in Table 1c.

Latest-Payload Encoding. The latest-payload encoding takes into account both
the static and the dynamic data attributes of the traces. The value of static
attributes (trace attributes) is the same for all the events in the sequence, while
the value of dynamic data attributes (event attributes) changes for different
events. However, in this encoding, data attributes, also the dynamic ones, are all
treated as static features without taking into consideration their evolution over
time. Indeed, the latest-payload encoding encodes the data attributes and the
data of the latest payload. The latest-payload encoding gi of an execution trace
σi of length m is gi = (s1i , . . . , s

u
i , d1im, . . . , drim, labeli), where each si is a static

feature and each dim is a dynamic feature associated to the last event, i.e., the
event at position m. Table 1d shows this encoding for the example in Fig. 9.

Index Latest-Payload Encoding. The index latest-payload encoding adds the lat-
est encoding to the simple-index encoding. The resulting feature vector gi, for a
sequence gi = σi, is gi = (s1i , . . . , s

u
i , ai1, ai2, . . . , aim, d1im, . . . , drim, labeli), where

each si is a static feature, each aij is the event class at position j and each dim
is a dynamic feature associated to the event at position m. Table 1e reports this
encoding for the example in Fig. 9.

Complex Index-Based Encoding. In the complex-based encoding, the dynamic
nature of the dynamic information is considered and its evolution over time is
taken into account. The resulting feature vector gi, for a sequence σi, is gi =
(s1i , .., s

u
i , ai1, ai2, ..aim, d1i1, d

1
i2, . . . , d

1
im, . . . , dri1, d

r
i2, ...d

r
im, labeli), where each si

is a static feature, each aij is the event class at position j and each dij is a
dynamic feature associated to an event. The example in Fig. 9 is transformed
into the encoding shown in Table 1f.

4.2 Mostly Used Approaches: Classification-Based Approaches

Different pipelines and frameworks have been proposed for providing outcome
predictions. Most of them relies on classification techniques6 (e.g., Decision Tree,
Random Forest, Support Vector Machine) for the supervised learning phase [12,
23,25,29]. Moreover, most of these pipelines have been enriched with a Bucketing
phase [46] (see the orange blocks in Fig. 10). The idea is that at training time

6 Note that deep learning techniques can also be used for predicting outcomes [52],
however we focus here on the mostly used approaches.
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Fig. 10. Typical outcome-based pipeline

multiple predictive models are trained. Specifically, the log of prefix traces is
divided in multiple buckets and each bucket is used to train a different classifier.
At runtime, the most suitable bucket is identified and the corresponding classifier
used for predicting the outcome.

The Bucketing phase has been instantiated in different ways in the Predictive
Process Monitoring literature. For instance, in [12] trace clustering has been used
to group prefix traces. Specifically, at training time, a clustering algorithm has
been leveraged to cluster together prefix traces sharing a similar control flow. For
each cluster, the data payload of the prefix traces in the cluster, once encoded
in the proper format, has then been used to train a classifier. At runtime, the
cluster of the incomplete ongoing trace is identified, i.e., the cluster containing
the trace prefixes closest to the current incomplete trace, and the corresponding
classifier queried in order to get the prediction. In [25], instead, a bucket consists
of a set of prefix traces of the same length. Also in this case, at training time,
a classifier for each prefix length k is built by learning from all prefix traces of
length k. At runtime, the classifier of the same length of the ongoing trace is
identified and the prediction returned.

5 Predicting Numeric Values

Numeric value predictions are predictions related to quantitative measures of
interest of business process executions. Typical examples of numeric predictions
in the Predictive Process Monitoring literature are predictions related to time,
cost or generic process performance [1,8,48].

Given an event log L and a prefix execution trace σm
i = <e1, . . . , em> of

length m, the overall idea is learning a function fn(L, σm
i ) returning a numerical

value labeli, which is as close as possible to labeli, i.e., the actual (numerical)
value of the variable that we aim to predict (e.g., the remaining cycle time until
the completion of the execution).
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Fig. 11. Running example with a numeric label

Table 2. Typical numeric-based encodings for the example in Fig. 9.

Visit patient Perform ultrasound ... Get Payment label

σ1 1 1 ... 0 3.5

...

σk 0 0 ... 1 5

(a) boolean encoding.

Visit patient Perform ultrasound ... Get Payment label

σ1 2 1 ... 0 3.5

...

σk 0 0 ... 4 5

(b) frequency-based encoding.

event 1 ... event m label

σ1 Visit patient Perform ultrasound 3.5

...

σk Compute rate Get Payment 5

(c) simple index encoding.

age department last label

σ1 33 radiology 3.5

...

σk 56 clinic 5

(d) latest payload encoding.

age event 1 ... event m ... department last label

σ1 33 Visit patient Perform ultrasound ... radiology 3.5

...

σk 56 Compute rate Get Payment ... clinic 5

(e) index latest payload encoding.

age event 1 ... event m ... department 1 ... department m label

σ1 33 Visit patient Perform ultrasound clinic radiology 3.5

...

σj 56 Compute rate Get Payment general lab clinic 5

(f) complex index-based encoding.

5.1 Typical Data Encodings

Let us consider the running example of Fig. 9 and let us assume that this time we
would like to predict the time required for completing the execution (reported
in Fig. 11 after the semicolon).

Encodings typically used for numeric predictions are the same as the ones
used for categorical predictions, except for the label, which is a numerical value
rather than a boolean or a categorical value. Table 2 summarizes the boolean,
frequency, simple-index, latest-payload, index latest-payload and complex-index
encodings for numeric-based predictions.
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5.2 Mostly Used Approaches: Regression-Based Approaches

Pipelines and frameworks proposed for numeric predictions are quite similar to
the ones for outcome predictions. Most of them relies on regression techniques7

(e.g., Regression Trees, Random Forest, XGBoost) for the supervised learning
phase [23,29].

6 Predicting Next Events

Next event predictions are predictions related to the unfolding of the future
events - until the end - of an incomplete ongoing trace [45]. Next event predictions
can be related to the sequence of next event classes, but also to the next data
payloads associated to the events, as for instance, the timestamps or the resources
associated to the next event(s).

In case of activity predictions, given an event log L and a prefix execution
trace σm

i = <e1, . . . , em> of length m, the overall idea is learning a function
fsa(L, σm) returning a sequence of next event classes that is as close as possible
to am+1, . . . , ω, i.e., to the activity suffix of the current ongoing trace.

Most of the approaches for next activity predictions typically first learn a
function f1a that, given the first m events of a trace σm

i , predicts the next event
class, i.e., the event class that will occur at time step m + 1. The suffix of the
ongoing trace σm

i is then predicted until the last event ω, by predicting the next
event iteratively, that is by learning the function fsa:

fsa(L, σm
i ) =

⎧⎨
⎩

f1a(σm) if f1a(L, σm
i ) = ω

fsa(L,< e1, e2, ..., em, e >) otherwise
with f1a(L, σm

i ) as e’s event class
(1)

Similarly, when predicting the values of the next events’ data attribute x,
e.g., the next timestamps, the idea is learning a function fsx(L, σm) returning
a sequence of values of the data attribute x that is as close as possible to the
sequence of values actually held by the attribute x in the next events of the
ongoing trace.

In the next subsection describing the typical data encodings, we mainly focus
on the encoding for the next event class prediction. The results can then be
extended to the prediction of other data attributes related to the next event, as
well as to predictions related to next events, as described in (1).

6.1 Typical Data Encodings

Let us consider the running example described in Fig. 9 enriched with timestamp
information and let us assume that we want to predict the next activity related
to the next time step (i.e., the activity at time step m+1). The actual activity at
time step m+1 is reported after the semicolon for the training traces in Fig. 12.
7 Note that deep learning techniques can also be used for predicting numeric predic-

tions [45], however we focus here on the mostly used approaches.
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Fig. 12. Running example with next activity as label

Table 3. Typical sequence-based encodings for the example in Fig. 12.

event 1 ... event m label

σ1 1 0 0 0 0 0 ... 0 1 0 0 0 0 0 0 0 0 1 0

...

σk 0 0 1 0 0 0 ... 0 0 0 1 0 0 0 0 0 0 0 1

(a) one-hot encoding

event 1
...

event m
label

a 1 δ1 h1 w1 a m δm hm wm

σ1 1 0 0 0 0 0 0 8 Mon ... 0 1 0 0 0 0 1 11 Mon 0 0 0 0 1 0

...

σk 0 0 0 0 1 0 0 13 Sat ... 0 0 0 0 0 1 2 18 Sat 0 0 0 0 0 1

(b) one-hot with temporal features encoding

One-Hot Encoding. The one-hot encoding allows categorical data to be trans-
formed into a numeric format. It relies on the existence of an alphabet of activ-
ities. Given the set A = {a1A , . . . ahA

} of all possible activities, an ordering
function idx : A → {1, . . . , |A|} ⊆ N is defined on it, such that aiA <> ajA if
and only if iA <> jA, i.e., two activities have the same A-index if and only if
they are the same activity.

For instance, in the example in Fig. 12, if the activity alphabet is A =
{Visit patient, Perform ultrasound, Compute rate, Get Payment, Check
X-ray, Emit receipt}, the function idx :A → {1, 2, 3, 4, 5, 6} can be
defined such that idx(Visit patient) = 1, idx(Perform ultrasound) = 2,
idx(Computerate) = 3 and so on. Each event eij ∈ σi is then encoded as a vector
(Aij) where the features are all set to 0, except the one occurring at the index of
its event class, which is set to 1. In the training phase, the event class of the next
event em+1, which represents the target variable or label, is also encoded in the
corresponding vector (Aim). The trace is finally encoded by composing the vec-
tors obtained from all activities in the trace and the next activity into a matrix.
The encoding of the trace σi is hence given by gi = ((Ai1), ..., (Aim), (Aim+1)).
The one-hot encoding related to the example in Fig. 12 is reported in Table 3a.

One-Hot Encoding with Temporal Features. The one-hot encoding, which takes
into account only the activities, can be enriched with other information. For
instance, another encoding used with activity sequences combines the one-hot
encoding of features related to event classes and features related to time [45]. In
the one-hot encoding with temporal features, given the set A = {a1A , . . . amA

} of
all possible activities, each event eij ∈ σi is encoded as the one-hot encoding of
its event class enriched with three additional features pertaining to time. The
first one relates to the time difference between the considered event and the
one of the previous event (δi), the second one reports the time since midnight
(hi), thus allowing for distinguishing between working and night time, and the
last one refers to the time since the beginning of the week (wi), thus allowing
for distinguishing between business and non-working days. Also in this case,
in the training phase, the label, i.e., the event class of the next event em+1 is
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also encoded with the one-hot encoding. The one-hot encoding with temporal
features related to the example in Fig. 12 is reported in Table 3b.

Embedding-Based Encoding. The embedding-based encoding is typically used
when the number of the possible values of one or more categorical variables
is high and the one-hot encoding may cause an exponential growth of the fea-
ture vector dimensionality. In the embedding-based encoding, categorical data
with an alphabet of possible values of size m is mapped into a n-dimensional
embedding space (where n is the chosen dimensionality of the embedded space)
that encodes the values of the categorical attribute so that values that are closer
in the vector space are expected to be similar.

6.2 Mostly Used Approaches: LSTM-Based Approaches

Most of the approaches for next event predictions rely on Recurrent Neural
Networks and, more specifically, on LSTM (Long-Short Term Memory) archi-
tectures [6,26,45].8 This type of deep learning approaches, by using recurrent
connections in a single block (LSTM cell), is indeed particularly suitable to deal
with sequence problems. Different types of LSTM architectures have been pro-
posed in the literature for predicting the label associated to the next event and
its data attributes.

For instance in [45] three types of architectures have been proposed in order
to predict both next activity and the timestamp of the next event and then,
iteratively, suffix prediction and remaining cycle time: a first type with separate
layers for activity and timestamp prediction, a second type with shared LSTM
layers for both activity and timestamp prediction and finally a third one with
some shared and some separate layers. The architecture proposed in [6] for pre-
dicting the next activity and its timestamp and the remaining cycle time and
suffix for a running case is a composition of LSTMs and feedforward layers.
In [26] an encoder-decoder framework based on LSTMs is proposed to predict
the next activity and the suffix of an ongoing case. The encoder maps an input
sequence into a set of high dimensional vectors and the decoder returns it back
into new sequence that can be used for prediction tasks.

7 New Trends in ML-Driven Operational Support

Besides the mainstream works in the field of Predictive Process Monitoring, new
research trends and directions focusing on ML-driven operational support have
recently started being investigated and developed. Some of these new trends are
summarised in the following subsections.

8 Note that the usage of LSTM architectures is not limited to next event predictions
- they are indeed used also for outcome and numerical predictions - nevertheless it
has been widely used in the literature for this type of predictions.
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Table 4. Simple-index encoding enriched with some inter-case features for the example
in Fig. 9.

event 1 event m simult. trace # avg. duration label

σ1 Visit patient Perform ultrasound 10 6 False

σk Compute rate Get Payment 18 8 True

7.1 Intercase Predictions

In classical works, Predictive Process Monitoring methods assume that the pre-
dicted value of interest of an ongoing case only depends on intra-case information,
as for instance on the execution history of that specific case. This assumption
results in encodings that include past events, inter-event durations, and other
case-related attributes. However, the only intra-case assumption does not hold
in many real-life scenarios. For example, in situations where cases share limited
resources, the completion time of a case heavily depends on other cases that are
running at the same time [42,43].

Inter-case information can be encoded in different ways, as for instance by
aggregating data related to traces running simultaneously. Examples of aggre-
gated inter-case information that can be encoded together with the intra-case
features are the number of traces and the average duration of traces being exe-
cuted in the same time window in which the considered trace (prefix) is being
executed, e.g., the number of traces and the average duration of traces executed
in the same day of the current prefix trace. Table 4 shows an example of a simple-
index encoding enriched with these two simple inter-case features related to the
example reported in Fig. 9, where we assume that 10 other traces are running
the same day in which σm

1 is being executed and that their average duration
is 6 hours, while 18 traces are running simultaneously to σm

k with an average
duration of 8 hours.

Taking into account the inter-case dimension is a challenging problem, since,
on the one hand, we would like to take into account as much inter-case infor-
mation as possible as the levels of dependencies among cases can greatly vary in
different scenarios and, on the other hand, encoding several features for a large
number of simultaneously running cases may lead to a feature space explosion.

7.2 Explainable Predictions

In many applications of Predictive Process Monitoring techniques, users are
asked to trust a model helping them making decisions. However, users would need
a certain level of trust towards the predictive model: a doctor will not operate
on a patient simply because the operation has been predicted or recommended
by the model. Understanding the rationale behind predictions would certainly
help users decide when to trust or not to trust them.

Explainability techniques are a way to implement responsible process decision
making (see [30]) and can help us to this aim. Different explainability techniques
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Fig. 13. Example of an explanation plot related to the prediction for σj .

have been proposed in the XAI (Explainable Artificial Intelligence) literature.
Some of these techniques have already been experimented in the field of Pre-
dictive Process Monitoring in order to support users in understanding the over-
all predictive model [33] or the specific predictions it provides [18,44,51]; with
model-agnostic techniques, i.e., techniques that can be applied to any predic-
tive model, as in the case of [18] or with techniques specific to the predictive
model used, as in the case of XNAP [51] and the attention layer [44] for neural
networks.

As an example of prediction explanation related to a trace instance,9 let us
assume that we have trained our predictive model by encoding the training set
of the example reported in Fig. 9 with the complex-index encoding (see Table 1f)
and that, for our current ongoing trace σj (Visit patient {20, clinic}, Perform
X-Ray {20, radiology}, Perform ultrasound {20, radiology}), which we have
observed up to the event 3, the prediction of our predictive model is that the
patient will recover soon. In order to understand whether we can trust or not the
prediction, we would need to understand why our predictive model has returned
such a prediction. Figure 13 shows an example of a possible explanation returned
by a prediction explainer as LIME[37] or SHAP[27] applied to our specific Pre-
dictive Process Monitoring problem. The plot shows the impact of each feature
(and related value) towards (in case of positive values) or against (in case of
negative values) the fast recovery of the patient.10 In the example, the feature

9 Note that we provide here the idea of prediction explanations focusing on those
related to a trace instance. However, aggregated trace prediction explanations (event
log explanations) [18], as well as prediction model explanations [44] have also been
investigated in the literature.

10 Note that the semantics of the values on the x axis changes according to the expla-
nation technique used for the plot. For instance, in the case of SHAP, the values on
the x axis represent the SHAP values of the feature (and the related value) for the
specific instance, that is the contribution of the feature towards the prediction with
respect to the average value.
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that has impacted most on the prediction of the fast recovery of the patient is
her young age.11

Furthermore, the explanations used for making predictions more trustable
to the users can be eventually used also for understanding the reasons why a
predictive process model is wrong and hence use them to improve the model
accuracy [38].

7.3 Predictions with A-Priori Knowledge

Past event logs, or more in general knowledge about the past, is not the only
important source of knowledge that can be leveraged to make predictions. In
many real life situations, cases exist in which, together with past execution data,
some case-specific additional knowledge (a-priori knowledge) about the future is
available and can be leveraged for improving the predictive power of a Predictive
Process Monitoring technique. Indeed, this additional a-priori knowledge is what
characterizes the future context of the process executions that will affect the
development of the currently running cases.

We can think for instance to the occurrence of a strike, which may cause the
delay or the cancellation of a flight in the travel process of a passenger, or to the
temporary unavailability of a surgery room, which may delay or even rule out the
possibility of executing certain activities in a patient treatment process. In this
kind of scenarios, the information about the strike or about the unavailability of
the surgery room is often available in advance. However, traditional Predictive
Process Monitoring approaches, which only learn from the most frequent observed
behaviours, are not able to take into account this knowledge. They will predict
that the next activities of the passenger will be the usual ones, as if there is no
strike, e.g., having the security check, moving to the boarding gate 3, boarding, ...
. While it is impractical to retrain the predictive algorithms to take into consider-
ation this additional knowledge every time it becomes available, it is also reason-
able to assume that considering it in some way would allow the Predictive Process
Monitoring algorithm to predict for instance that the passenger will be moved to
gate 2 and that there will be no boarding, and hence to improve the accuracy of
the predictions on an ongoing case.

A possibility to deal with a-priori knowledge is to take into account this
knowledge K at prediction time by guiding the Predictive Process Monitoring
algorithm towards a solution that is compliant to the a-priori knowledge [14].
In [14] for instance, an approach using LSTM for predicting the next activi-
ties has been enriched with a mechanism able to take into account background
knowledge K expressed in terms of LTL formulae in order to guide the LSTM
algorithm to make predictions compliant with the a-priori knowledge. The LSTM
approach keeps returning likely predictions on the suffix of the current ongoing
trace (up to the last event ω) until it does not find a suffix that is compliant
with K. More in detail, the LSTM network uses a beam search algorithm for

11 Note that different types of explanations can be returned depending on the type of
encoding that has been used.
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Fig. 14. Beam search in the a-priori approach.

considering at each time step the top beam-width bw most likely next events.
Figure 14 shows the idea of the beam-search approach with bw = 2. σm =<Take
shuttle, Enter via door 3, Check in> is the current ongoing trace at time
step m. At time step m + 1, among the three possible next events we take the
bw most likely next events (the green nodes in Fig. 14) and keep exploring those
future paths. At time step m+2, we again select the 2 most likely next events and
keep exploring the next events of these sequences. Whenever we find a sequence
that is not compliant with K, as at time step m + 3, we discard that path and
we keep on exploring bw compliant paths. We stop whenever we predict the last
event ω (see the circle with the thicker border) and the considered trace is still
compliant with K.

7.4 Prescriptive Process Monitoring

Predictive Process Monitoring techniques are able to predict the likelihood of
a positive outcome, the time required for completing an execution or the next
activities that will be executed. However, all these techniques, are limited to
the prediction. They do not support further stakeholders in making decisions on
whether it is worth to intervene to avoid undesired outcomes and what to do next
to optimize a given Key Process Performance Indicator (KPI) [24,32,47,50].

Prescriptive Process Monitoring aims to overcome this limit of Predictive
Process Monitoring by supporting or prescribing stakeholders with decisions on
whether to take actions in order to prevent or mitigate the occurrence of an
undesired outcome [32,47] or on the activities to take for optimizing a certain
measure of interests [24,50].

In the first scenario [32,47], predictions are used in order to evaluate through
a cost model the tradeoffs between the cost of intervention to mitigate undesired
outcomes and the cost of compensating unnecessary interventions. For instance,
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in the example related to the patient recovery described in Sect. 4, if the pre-
diction related to an ongoing trace is that the patient will not recover soon, a
surgery may increase the likelihood that the patient will recover soon and hence
reduce anyway the cost for the hospital. However, the surgery has a cost, so that
if the surgery has been planned because of a wrong prediction, then the cost of
the surgery is unnecessary and hence should be avoided.

In the second scenario [24,50], predictions are used to uncover the future of
different continuations of the current trace, so as to identify and hence recom-
mend the one(s) leading to the best value for the KPI of interest. For instance,
we can consider the example of the patient recovery described in Sect. 5. If the
aim is recommending next activities to minimize the remaining cycle time until
the completion of the execution of an ongoing trace σm of length m, possible
next activities at step m+1 can be considered. For each possible continuation of
σm, σm+1, the remaining time until the end of the execution can be predicted
and the next activity corresponding to the minimum cycle time recommended.

8 Tool Support

The research related to Predictive Process Monitoring has been paired with the
development of non-commercial plugins and tools with the purpose to be used and
improved by the research community. We briefly illustrate in the following three
among the main open-source tools supporting Predictive Process Monitoring.

8.1 Predictive Process Monitoring in ProM

ProM [15] is one of the most used and known tool in Process Mining. It is
a framework collecting a number of plugins, working independently one from
the other, and each focused on implementing a specific task. Among its variety
of plugins, ProM also collects several plugins implementing techniques for the
prediction of outcomes (e.g., [8,29]), for the prediction of numerical values (e.g.,
[1,10,16,23]), as well as for the prediction of next activity sequences (e.g., [35]).
Some of them leverage model-based approaches (e.g. [1]), while others rely on
machine-learning solutions (e.g., [10]).

8.2 Predictive Process Monitoring in Apromore

Apromore [22] is a well known and established tool. It is an advanced process
model repository that allows to hold, analyse, and re-use large sets of process
models. The tool is web-based and therefore it allows the easy integration of new
plug-ins in a service oriented manner. This tool aims both at allowing practition-
ers to deal with the challenges of stakeholders of processes, and researchers to
develop and benchmark their own techniques with a strong emphasis on the sep-
aration of concerns. The only plug-in performing Predictive Process Monitoring
related challenges in Apromore is the one described in [49]. This plug-in performs
outcome-based, numeric-based prediction, as well as next event predictions.
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8.3 Predictive Process Monitoring in Nirdizati

Nirdizati [21,39] is a web-based application for supporting users in building,
comparing, and analyzing predictive models that can then be used to perform
predictions on the future development of an ongoing case. Differently from the
other tools, Nirdizati specifically addresses Predictive Process Monitoring prob-
lems. Nirdizati, which collects a rich set of different state-of-the-art approaches
based on machine learning algorithms, supports users to deal with different pre-
dictive monitoring tasks: outcome-based, numeric and next activities predictions.
Moreover, it provides services for supporting the users in tuning the hyperpa-
rameters of the specific technique, the possibility of adding some simple intercase
features in the encodings, as well as some incremental algorithms, so as to be able
to incrementally update the predictive model as soon as new execution traces
are available. Finally, it also offers several plots for the results visualisation, thus
supporting the users in the predictive model comparison tasks.
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