Skip to main content

AI for Drug Repurposing in the Pandemic Response

  • Chapter
  • First Online:
Artificial Intelligence in Covid-19
  • 372 Accesses

Abstract

Given the time criticality of finding treatments for the novel COVID-19 pandemic disease, drug repurposing has proved to be a vital strategy as the first response while de novo drug and vaccine developments are underway. Furthermore, Artificial Intelligence (AI) has also accelerated drug development in general. Key desirable features of AI that support a rapid and sustained response along the pandemic timeline include technical flexibility and efficiency (i.e. speed, resource-efficiency, algorithm adaptability), and clinical applicability and acceptability (i.e. scientific rigor, physiological applicability and practical implementation of proposed drugs). This chapter reviews a selection of AI-based applications used in drug development targeting COVID-19, including IDentif.AI—a small data platform for a rapid identification of optimal drug combinations, to illustrate the potential of AI in drug repurposing. The benefits and limitations of using Real-World Data are also discussed. The response to the COVID-19 pandemic has offered multiple learnings which highlight the need to strengthen both short- and long-term strategies in developing AI technologies, scientific and regulatory frameworks as well as worldwide collaborations to enable effective preparedness for future epidemic and pandemic risks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Beck BR, Shin B, Choi Y, et al. Predicting commercially available antiviral drugs that may act on the novel coronavirus (SARS-CoV-2) through a drug–target interaction deep learning model. Comput Struct Biotechnol J. 2020;18:784–90. https://doi.org/10.1016/j.csbj.2020.03.025.

    Article  CAS  Google Scholar 

  2. Kadioglu O, Saeed M, Greten HJ, et al. Identification of novel compounds against three targets of SARS CoV-2 coronavirus by combined virtual screening and supervised machine learning. Comput Biol Med. 2021;133:104359. https://doi.org/10.1016/j.compbiomed.2021.104359.

    Article  CAS  Google Scholar 

  3. Richardson P, Griffin I, Tucker C, et al. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. Lancet (London, England). 2020;395(10223):e30. https://doi.org/10.1016/S0140-6736(20)30304-4.

    Article  CAS  Google Scholar 

  4. Abdulla A, Wang B, Qian F, et al. Project IDentif. AI: harnessing artificial intelligence to rapidly optimize combination therapy development for infectious disease intervention. Adv Ther. 2020;3(7):2000034. https://doi.org/10.1002/adtp.202000034.

    Article  CAS  Google Scholar 

  5. Blasiak A, Lim JJ, Seah SGK, et al. IDentif. AI: Rapidly optimizing combination therapy design against severe Acute Respiratory Syndrome Coronavirus 2 (SARS-Cov-2) with digital drug development. Bioeng Transl Med. 2021a;6(1):e10196. https://doi.org/10.1002/btm2.10196.

    Article  CAS  Google Scholar 

  6. Blasiak A, Truong AT, Remus A, et al. The IDentif. AI 2.0 pandemic readiness platform: rapid prioritization of optimized COVID-19 combination therapy regimens. medRxiv. 2021b;2021:9321. https://doi.org/10.1038/s41746-022-00627-4.

    Article  CAS  Google Scholar 

  7. Belyaeva A, Cammarata L, Radhakrishnan A, et al. Causal network models of SARS-CoV-2 expression and aging to identify candidates for drug repurposing. Nat Commun. 2021;12:1024. https://doi.org/10.1101/2021.06.23.21259321.

    Article  CAS  Google Scholar 

  8. Gysi DM, Do Valle Í, Zitnik M, et al. Network medicine framework for identifying drug-repurposing opportunities for COVID-19. Proc Natl Acad Sci. 2021;118(19):e2025581118. https://doi.org/10.1073/pnas.2025581118.

    Article  CAS  Google Scholar 

  9. Zhou Y, Hou Y, Shen J, et al. Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2. Cell Discov. 2020a;6:14. https://doi.org/10.1038/s41421-020-0153-3.

    Article  CAS  Google Scholar 

  10. Zhou Y, Wang F, Tang J, et al. Artificial intelligence in COVID-19 drug repurposing. Lancet Digit Health. 2020c;2(12):e667–76. https://doi.org/10.1016/S2589-7500(20)30192-8.

    Article  Google Scholar 

  11. Segler MH, Preuss M, Waller MP. Planning chemical syntheses with deep neural networks and symbolic AI. Nature. 2018;555(7698):604–10. https://doi.org/10.1038/nature25978.

    Article  CAS  Google Scholar 

  12. Stebbing J, Phelan A, Griffin I, et al. COVID-19: combining antiviral and anti-inflammatory treatments. Lancet Infect Dis. 2020b;20(4):400–2. https://doi.org/10.1016/S1473-3099(20)30132-8.

    Article  CAS  Google Scholar 

  13. Zeng X, Song X, Ma T, et al. Repurpose open data to discover therapeutics for COVID-19 using deep learning. J Proteome Res. 2020;19(11):4624–36. https://doi.org/10.1021/acs.jproteome.0c00316.

    Article  CAS  Google Scholar 

  14. Galindez G, Matschinske J, Rose TD, et al. Lessons from the COVID-19 pandemic for advancing computational drug repurposing strategies. Nat Comput Sci. 2021;1:33–41. https://doi.org/10.1038/s43588-020-00007-6.

    Article  Google Scholar 

  15. Ge Y, Tian T, Huang S, et al. An integrative drug repositioning framework discovered a potential therapeutic agent targeting COVID-19. Signal Transduct Target Ther. 2021;6(1):165. https://doi.org/10.1038/s41392-021-00568-6.

    Article  CAS  Google Scholar 

  16. Stebbing J, Krishnan V, de Bono S, et al. Mechanism of baricitinib supports artificial intelligence-predicted testing in COVID-19 patients. EMBO Mol Med. 2020a;12(8):e12697. https://doi.org/10.15252/emmm.202012697.

    Article  CAS  Google Scholar 

  17. Kalil AC, Patterson TF, Mehta AK, et al. Baricitinib plus remdesivir for hospitalized adults with Covid-19. N Engl J Med. 2021;384(9):795–807. https://doi.org/10.1056/NEJMoa2031994.

    Article  CAS  Google Scholar 

  18. Marconi VC, Ramanan AV, de Bono S, et al. Efficacy and safety of baricitinib for the treatment of hospitalised adults with COVID-19 (COV-BARRIER): a randomised, double-blind, parallel-group, placebo-controlled phase 3 trial. Lancet Respir Med. 2021;9(12):1407–18. https://doi.org/10.1016/S2213-2600(21)00331-3.

    Article  CAS  Google Scholar 

  19. Khan M, Mehran MT, Haq ZU, et al. Applications of artificial intelligence in COVID-19 pandemic: a comprehensive review. Expert Syst Appl. 2021;185:115695. https://doi.org/10.1016/j.eswa.2021.115695.

    Article  Google Scholar 

  20. Lv H, Shi L, Berkenpas JW, et al. Application of artificial intelligence and machine learning for COVID-19 drug discovery and vaccine design. Brief Bioinform. 2021;22(6):bbab320. https://doi.org/10.1093/bib/bbab320.

    Article  CAS  Google Scholar 

  21. Cheng F, Desai RJ, Handy DE, et al. Network-based approach to prediction and population-based validation of in silico drug repurposing. Nat Commun. 2018;9(1):1–12. https://doi.org/10.1038/s41467-018-05116-5.

    Article  CAS  Google Scholar 

  22. Guney E, Menche J, Vidal M, et al. Network-based in silico drug efficacy screening. Nat Commun. 2016;7:10331. https://doi.org/10.1038/ncomms10331.

    Article  CAS  Google Scholar 

  23. Zhou Y, Hou Y, Shen J, et al. A network medicine approach to investigation and population-based validation of disease manifestations and drug repurposing for COVID-19. PLoS Biol. 2020b;18(11):e3000970. https://doi.org/10.1371/journal.pbio.3000970.

    Article  CAS  Google Scholar 

  24. Sun W, Sanderson PE, Zheng W. Drug combination therapy increases successful drug repositioning. Drug Discov Today. 2016;21(7):1189–95. https://doi.org/10.1016/j.drudis.2016.05.015.

    Article  CAS  Google Scholar 

  25. Ellinger B, Bojkova D, Zaliani A, et al. A SARS-CoV-2 cytopathicity dataset generated by high-content screening of a large drug repurposing collection. Sci Data. 2021;8(1):1–10. https://doi.org/10.1038/s41597-021-00848-4.

    Article  CAS  Google Scholar 

  26. RECOVERY Collaborative Group. Dexamethasone in hospitalized patients with Covid-19. N Engl J Med. 2021;384(8):693–704. https://doi.org/10.1056/NEJMoa2021436.

    Article  Google Scholar 

  27. Peele KA, Durthi CP, Srihansa T, et al. Molecular docking and dynamic simulations for antiviral compounds against SARS-CoV-2: a computational study. Inform Med Unlocked. 2020;19:100345. https://doi.org/10.1016/j.imu.2020.100345.

    Article  Google Scholar 

  28. Muralidharan N, Sakthivel R, Velmurugan D, et al. Computational studies of drug repurposing and synergism of lopinavir, oseltamivir and ritonavir binding with SARS-CoV-2 protease against COVID-19. J Biomol Struct Dyn. 2021;39(7):2673–8. https://doi.org/10.1080/07391102.2020.1752802.

    Article  CAS  Google Scholar 

  29. Batra R, Chan H, Kamath G, et al. Screening of therapeutic agents for COVID-19 using machine learning and ensemble docking studies. J Phys Chem Lett. 2020;11(17):7058–65. https://doi.org/10.1021/acs.jpclett.0c02278.

    Article  CAS  Google Scholar 

  30. Mohapatra S, Nath P, Chatterjee M, et al. Repurposing therapeutics for COVID-19: rapid prediction of commercially available drugs through machine learning and docking. PLoS One. 2020;15(11):e0241543. https://doi.org/10.1371/journal.pone.0241543.

    Article  CAS  Google Scholar 

  31. Anwaar MU, Adnan F, Abro A, et al. Combined deep learning and molecular docking simulations approach identifies potentially effective FDA approved drugs for repurposing against SARS-CoV-2. Comput Biol Med. 2022;141:105049. https://doi.org/10.1016/j.compbiomed.2021.105049.

    Article  CAS  Google Scholar 

  32. Gimeno A, Ojeda-Montes MJ, Tomás-Hernández S, et al. The light and dark sides of virtual screening: what is there to know? Int J Mol Sci. 2019;20(6):1375. https://doi.org/10.3390/ijms20061375.

    Article  CAS  Google Scholar 

  33. Marklund EG, Benesch JL. Weighing-up protein dynamics: the combination of native mass spectrometry and molecular dynamics simulations. Curr Opin Struct Biol. 2019;54:50–8. https://doi.org/10.1016/j.sbi.2018.12.011.

    Article  CAS  Google Scholar 

  34. Al-Shyoukh I, Yu F, Feng J, et al. Systematic quantitative characterization of cellular responses induced by multiple signals. BMC Syst Biol. 2011;5(88):1–17. https://doi.org/10.1186/1752-0509-5-88.

    Article  Google Scholar 

  35. Ding X, Sanchez DJ, Shahangian A, et al. Cascade search for HSV-1 combinatorial drugs with high antiviral efficacy and low toxicity. Int J Nanomedicine. 2012;7:2281. https://doi.org/10.2147/IJN.S27540.

    Article  CAS  Google Scholar 

  36. Honda Y, Ding X, Mussano F, et al. Guiding the osteogenic fate of mouse and human mesenchymal stem cells through feedback system control. Sci Rep. 2013;3:3420. https://doi.org/10.1038/srep03420.

    Article  Google Scholar 

  37. Liu Q, Zhang C, Ding X, et al. Preclinical optimization of a broad-spectrum anti-bladder cancer tri-drug regimen via the Feedback System Control (FSC) platform. Sci Rep. 2015;5:11464. https://doi.org/10.1038/srep11464.

    Article  Google Scholar 

  38. Tekin E, White C, Kang TM, et al. Prevalence and patterns of higher-order drug interactions in Escherichia coli. NPJ Syst Biol Appl. 2018;4(1):1–10. https://doi.org/10.1038/s41540-018-0069-9.

    Article  Google Scholar 

  39. Tsutsui H, Valamehr B, Hindoyan A, et al. An optimized small molecule inhibitor cocktail supports long-term maintenance of human embryonic stem cells. Nat Commun. 2011;2:167. https://doi.org/10.1038/ncomms1165.

    Article  CAS  Google Scholar 

  40. Valamehr B, Tsutsui H, Ho C-M, et al. Developing defined culture systems for human pluripotent stem cells. Regen Med. 2011;6(5):623–34. https://doi.org/10.2217/rme.11.54.

    Article  Google Scholar 

  41. Wang H, Silva A, Ho C-M. When medicine meets engineering—paradigm shifts in diagnostics and therapeutics. Diagnostics. 2013;3(1):126–54. https://doi.org/10.3390/diagnostics3010126.

    Article  Google Scholar 

  42. Wei F, Bai B, Ho C-M. Rapidly optimizing an aptamer based BoNT sensor by feedback system control (FSC) scheme. Biosens Bioelectron. 2011;30(1):174–9. https://doi.org/10.1016/j.bios.2011.09.014.

    Article  CAS  Google Scholar 

  43. Weiss A, Berndsen RH, Ding X, et al. A streamlined search technology for identification of synergistic drug combinations. Sci Rep. 2015;5:14508. https://doi.org/10.1038/srep14508.

    Article  CAS  Google Scholar 

  44. Wong PK, Yu F, Shahangian A, et al. Closed-loop control of cellular functions using combinatory drugs guided by a stochastic search algorithm. Proc Natl Acad Sci. 2008;105(13):5105–10. https://doi.org/10.1073/pnas.0800823105.

    Article  Google Scholar 

  45. Yu F, Al-Shyoukh I, Feng J, et al. Control of Kaposi’s sarcoma-associated herpesvirus reactivation induced by multiple signals. PLoS One. 2011;6(6):e20998. https://doi.org/10.1371/journal.pone.0020998.

    Article  CAS  Google Scholar 

  46. Yu H, Zhang WL, Ding X, et al. Optimizing combinations of flavonoids deriving from astragali radix in activating the regulatory element of erythropoietin by a feedback system control scheme. Evid Based Complement Alternat Med. 2013;2013:1436. https://doi.org/10.1155/2013/541436.

    Article  Google Scholar 

  47. Xu H, Jaynes J, Ding X. Combining two-level and three-level orthogonal arrays for factor screening and response surface exploration. Stat Sin. 2014;24(1):269–89. https://www.jstor.org/stable/26432543

    Google Scholar 

  48. de Mel S, Rashid MB, Zhang XY, et al. Application of an ex-vivo drug sensitivity platform towards achieving complete remission in a refractory T-cell lymphoma. Blood Cancer J. 2020;10(9):1–5. https://doi.org/10.1038/s41408-020-0276-7.

    Article  Google Scholar 

  49. Rashid MBMA, Toh TB, Hooi L, et al. Optimizing drug combinations against multiple myeloma using a quadratic phenotypic optimization platform (QPOP). Sci Transl Med. 2018;10(453):eaan0941. https://doi.org/10.1126/scitranslmed.aan0941.

    Article  CAS  Google Scholar 

  50. Clemens DL, Lee B-Y, Silva A, et al. Artificial intelligence enabled parabolic response surface platform identifies ultra-rapid near-universal TB drug treatment regimens comprising approved drugs. PLoS One. 2019;14(5):e0215607. https://doi.org/10.1371/journal.pone.0215607.

    Article  Google Scholar 

  51. Lee B-Y, Clemens DL, Silva A, et al. Drug regimens identified and optimized by output-driven platform markedly reduce tuberculosis treatment time. Nat Commun. 2017;8:14183. https://doi.org/10.1038/ncomms14183.

    Article  CAS  Google Scholar 

  52. Lee B-Y, Clemens DL, Silva A, et al. Ultra-rapid near universal TB drug regimen identified via parabolic response surface platform cures mice of both conventional and high susceptibility. PLoS One. 2018;13(11):e0207469. https://doi.org/10.1371/journal.pone.0207469.

    Article  CAS  Google Scholar 

  53. Shen Y, Liu T, Chen J, et al. Harnessing artificial intelligence to optimize long-term maintenance dosing for antiretroviral-naive adults with HIV-1 infection. Adv Ther. 2020;3(4):1900114. https://doi.org/10.1002/adtp.201900114.

    Article  Google Scholar 

  54. Sun J, Wang B, Warden AR, et al. Overcoming multidrug-resistance in bacteria with a two-step process to repurpose and recombine established drugs. Anal Chem. 2019;91(21):13562–9. https://doi.org/10.1021/acs.analchem.9b02690.

    Article  CAS  Google Scholar 

  55. Jarow JP, LaVange L, Woodcock J. Multidimensional evidence generation and FDA regulatory decision making: defining and using “real-world” data. JAMA. 2017;318(8):703–4. https://doi.org/10.1001/jama.2017.9991.

    Article  Google Scholar 

  56. Makady A, de Boer A, Hillege H, et al. What is real-world data? A review of definitions based on literature and stakeholder interviews. Value Health. 2017;20(7):858–65. https://doi.org/10.1016/j.jval.2017.03.008.

    Article  Google Scholar 

  57. Chen Z, Liu X, Hogan W, et al. Applications of artificial intelligence in drug development using real-world data. Drug Discov Today. 2021;26(5):1256–64. https://doi.org/10.1016/j.drudis.2020.12.013.

    Article  CAS  Google Scholar 

  58. Wichniak A, Kania A, Siemiński M, et al. Melatonin as a potential adjuvant treatment for COVID-19 beyond sleep disorders. Int J Mol Sci. 2021;22(16):8623. https://doi.org/10.3390/ijms22168623.

    Article  CAS  Google Scholar 

  59. Cave A, Kurz X, Arlett P. Real-world data for regulatory decision making: challenges and possible solutions for Europe. Clin Pharmacol Ther. 2019;106(1):36–9. https://doi.org/10.1002/cpt.1426.

    Article  Google Scholar 

  60. Li Q, Lin J, Chi A, et al. Practical considerations of utilizing propensity score methods in clinical development using real-world and historical data. Contemp Clin Trials. 2020;97:106123. https://doi.org/10.1038/srep11464.

    Article  Google Scholar 

  61. Prats-Uribe A, Sena AG, Lai LYH, et al. Use of repurposed and adjuvant drugs in hospital patients with Covid-19: multinational network cohort study. BMJ. 2021;373:n1038. https://doi.org/10.1136/bmj.n1038.

    Article  Google Scholar 

  62. World Health Organization. WHO, Germany open hub for pandemic and epidemic intelligence in Berlin. 2021. https://www.who.int/news/item/01-09-2021-who-germany-open-hub-for-pandemic-and-epidemic-intelligence-in-berlin. Accessed 12 Jan 2022.

  63. Blasiak A, Kee TW, Rashid MBM, et al. CURATE.AI-optimized modulation for multiple myeloma: an N-of-1 randomized trial [abstract]. AACR. Cancer Res. 2020a;80:CT268. https://doi.org/10.1158/1538-7445.am2020-ct268.

    Article  Google Scholar 

  64. Blasiak A, Khong J, Kee T. CURATE.AI: optimizing personalized medicine with artificial intelligence. SLAS Technol. 2020b;25(2):95–105. https://doi.org/10.1177/2472630319890316.

    Article  CAS  Google Scholar 

  65. Ho D. Artificial intelligence in cancer therapy. Science. 2020a;367(6481):982–3. https://doi.org/10.1126/science.aaz3023.

    Article  CAS  Google Scholar 

  66. Ho D. Addressing COVID-19 drug development with artificial intelligence. Adv Intell Syst. 2020b;2(5):2000070. https://doi.org/10.1002/aisy.202000070.

    Article  Google Scholar 

  67. Pantuck AJ, Lee D-K, Kee T, et al. Modulating BET bromodomain inhibitor ZEN-3694 and enzalutamide combination dosing in a metastatic prostate cancer patient using CURATE.AI, an artificial intelligence platform. Adv Ther. 2018;1(6):1800104. https://doi.org/10.1002/adtp.201800104.

    Article  CAS  Google Scholar 

  68. Tan BKJ, Teo CB, Tadeo X, et al. Personalised, rational, efficacy-driven cancer drug dosing via an artificial Intelligence SystEm (PRECISE): a protocol for the PRECISE CURATE. AI pilot clinical trial. Front Digit Health. 2021;3(16):5524. https://doi.org/10.3389/fdgth.2021.635524.

    Article  Google Scholar 

  69. Truong AT, Tan LW, Chew KA, et al. Harnessing CURATE. AI for N-of-1 optimization analysis of combination therapy in hypertension patients: a retrospective case series. Adv Ther. 2021;4(10):2100091. https://doi.org/10.1002/adtp.202100091.

    Article  Google Scholar 

  70. Zarrinpar A, Lee D-K, Silva A, et al. Individualizing liver transplant immunosuppression using a phenotypic personalized medicine platform. Sci Transl Med. 2016;8(333):333ra49. https://doi.org/10.1126/scitranslmed.aac5954.

    Article  CAS  Google Scholar 

  71. Gentile F, Agrawal V, Hsing M, et al. Deep docking: a deep learning platform for augmentation of structure based drug discovery. ACS Cent Sci. 2020;6(6):939–49. https://doi.org/10.1021/acscentsci.0c00229.

    Article  CAS  Google Scholar 

  72. WHO Rapid Evidence Appraisal for COVID-19 Therapies (REACT) Working Group, Sterne JA, Murthy S, et al. Association between administration of systemic corticosteroids and mortality among critically ill patients with COVID-19: a meta-analysis. JAMA. 2020;324(13):1330–41. https://doi.org/10.1001/jama.2020.17023.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathias Egermark .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Truong, A.T.L., Blasiak, A., Egermark, M., Ho, D. (2022). AI for Drug Repurposing in the Pandemic Response. In: Lidströmer, N., Eldar, Y.C. (eds) Artificial Intelligence in Covid-19. Springer, Cham. https://doi.org/10.1007/978-3-031-08506-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08506-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08505-5

  • Online ISBN: 978-3-031-08506-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics