Skip to main content

Pseudomonas aeruginosa in the Cystic Fibrosis Lung

  • Chapter
  • First Online:
Pseudomonas aeruginosa

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1386))

Abstract

Cystic fibrosis is a common genetically inherited, multisystem disorder caused by loss of function of the cystic fibrosis transmembrane conductance regulator (CFTR) protein, an apically situated anion channel. In the lung, lack of CFTR leads to airway surface dehydration, mucociliary clearance failure and an acidic pH in which innate defence molecules are rendered ineffective. Infection occurs early in life, with P. aeruginosa dominating by adolescence. The characteristic features of the CF airway highlighted above encourage persistence of infection, but P. aeruginosa also possess an array of mechanisms with which they attack host defences and render themselves protected from antimicrobials. Early eradication is usually successful, but this is usually transient. Chronic infection is manifest by biofilm formation which is resistant to treatment. Outcomes for people with CF have improved greatly in the last few decades, but particularly so with the recent advent of small molecule CFTR modulators. However, despite impressive efficacy on lung function and exacerbation frequency, most people with chronic infection remain with their pathogens. There is an active pipeline of new treatments including anti-biofilm and anti-quorum sensing molecules and non-drug approaches such as bacteriophage. Studies are reviewed and challenges for future drug development considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmed B, Bush A, Davies JC (2014) How to use: bacterial cultures in diagnosing lower respiratory tract infections in cystic fibrosis. Arch Dis Child Educ Pract Ed 99:181–187

    Article  PubMed  Google Scholar 

  • Alexis NE, Muhlebach MS, Peden DB, Noah TL (2006) Attenuation of host defense function of lung phagocytes in young cystic fibrosis patients. J Cyst Fibros 5:17–25

    Article  CAS  PubMed  Google Scholar 

  • Armstrong DS, Grimwood K, Carlin JB, Carzino R, Olinsky A, Phelan PD (1996) Bronchoalveolar lavage or oropharyngeal cultures to identify lower respiratory pathogens in infants with cystic fibrosis. Pediatr Pulmonol 21:267–275

    Article  CAS  PubMed  Google Scholar 

  • Barraud N, Hassett DJ, Hwang SH, Rice SA, Kjelleberg S, Webb JS (2006) Involvement of nitric oxide in biofilm dispersal of Pseudomonas aeruginosa. J Bacteriol 188:7344–7353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Behrends V, Ryall B, Wang X, Bundy JG, Williams HD (2010) Metabolic profiling of Pseudomonas aeruginosa demonstrates that the anti-sigma factor MucA modulates osmotic stress tolerance. Mol BioSyst 6:562–569

    Article  CAS  PubMed  Google Scholar 

  • Bernarde C, Keravec M, Mounier J, Gouriou S, Rault G, Ferec C, Barbier G, Hery-Arnaud G (2015) Impact of the CFTR-potentiator ivacaftor on airway microbiota in cystic fibrosis patients carrying a G551D mutation. PLoS One 10:e0124124

    Article  PubMed  PubMed Central  Google Scholar 

  • Bjarnsholt T, Jensen PO, Rasmussen TB, Christophersen L, Calum H, Hentzer M, Hougen HP, Rygaard J, Moser C, Eberl L, Hoiby N, Givskov M (2005) Garlic blocks quorum sensing and promotes rapid clearing of pulmonary Pseudomonas aeruginosa infections. Microbiology (Reading) 151:3873–3880

    Article  CAS  Google Scholar 

  • Boucher RC (2007) Evidence for airway surface dehydration as the initiating event in CF airway disease. J Intern Med 261:5–16

    Article  CAS  PubMed  Google Scholar 

  • Boyle MP, de Boeck K (2013) A new era in the treatment of cystic fibrosis: correction of the underlying CFTR defect. Lancet Respir Med 1:158–163

    Article  PubMed  Google Scholar 

  • Briard B, Rasoldier V, Bomme P, Elaouad N, Guerreiro C, Chassagne P, Muszkieta L, Latge JP, Mulard L, Beauvais A (2017) Dirhamnolipids secreted from Pseudomonas aeruginosa modify anjpegungal susceptibility of aspergillus fumigatus by inhibiting beta1,3 glucan synthase activity. ISME J 11:1578–1591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Briard B, Mislin GLA, Latge JP, Beauvais A (2019) Interactions between aspergillus fumigatus and pulmonary bacteria: current state of the field, new data, and future perspective. J Fungi (Basel) 5(2):48

    Article  CAS  Google Scholar 

  • Briottet M, Shum M, Urbach V (2020) The role of specialized pro-resolving mediators in cystic fibrosis airways Disease. Front Pharmacol 11:1290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brugha R, Edmondson C, Davies JC (2018) Outdoor air pollution and cystic fibrosis. Paediatr Respir Rev 28:80–86

    PubMed  Google Scholar 

  • Brussow H (2012) What is needed for phage therapy to become a reality in Western medicine? Virology 434:138–142

    Article  CAS  PubMed  Google Scholar 

  • Button B, Cai LH, Ehre C, Kesimer M, Hill DB, Sheehan JK, Boucher RC, Rubinstein M (2012) A periciliary brush promotes the lung health by separating the mucus layer from airway epithelia. Science 337:937–941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Camus L, Vandenesch F, Moreau K (2021) From genotype to phenotype: adaptations of Pseudomonas aeruginosa to the cystic fibrosis environment. Microb Genom 7(3):mgen000513

    PubMed Central  Google Scholar 

  • Caskey S, Stirling J, Moore JE, Rendall JC (2018) Occurrence of Pseudomonas aeruginosa in waters: implications for patients with cystic fibrosis (CF). Lett Appl Microbiol 66:537–541

    Article  CAS  PubMed  Google Scholar 

  • Chalmers JD, Fleming GB, Hill AT, Kilpatrick DC (2011) Impact of mannose-binding lectin insufficiency on the course of cystic fibrosis: a review and meta-analysis. Glycobiology 21:271–282

    Article  CAS  PubMed  Google Scholar 

  • Chan BK, Stanley G, Modak M, Koff JL, Turner PE (2021) Bacteriophage therapy for infections in CF. Pediatr Pulmonol 56(Suppl 1):S4–S9

    PubMed  Google Scholar 

  • Chattoraj SS, Ganesan S, Faris A, Comstock A, Lee WM, Sajjan US (2011) Pseudomonas aeruginosa suppresses interferon response to rhinovirus infection in cystic fibrosis but not in normal bronchial epithelial cells. Infect Immun 79:4131–4145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christiansen SH, Murphy RA, Juul-Madsen K, Fredborg M, Hvam ML, Axelgaard E, Skovdal SM, Meyer RL, Sorensen UBS, Moller A, Nyengaard JR, Norskov-Lauritsen N, Wang M, Gadjeva M, Howard KA, Davies JC, Petersen E, Vorup-Jensen T (2017) The immunomodulatory drug Glatiramer acetate is also an effective antimicrobial agent that kills gram-negative bacteria. Sci Rep 7:15653

    Article  PubMed  PubMed Central  Google Scholar 

  • Chung JC, Becq J, Fraser L, Schulz-Trieglaff O, Bond NJ, Foweraker J, Bruce KD, Smith GP, Welch M (2012) Genomic variation among contemporary Pseudomonas aeruginosa isolates from chronically infected cystic fibrosis patients. J Bacteriol 194:4857–4866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Courtney JM, Bradley J, Mccaughan J, O’Connor TM, Shortt C, Bredin CP, Bradbury I, Elborn JS (2007) Predictors of mortality in adults with cystic fibrosis. Pediatr Pulmonol 42:525–532

    Article  CAS  PubMed  Google Scholar 

  • Davies J (2020) The coronavirus pandemic has forced rapid changes in care protocols for cystic fibrosis. Nature 583:S15

    Article  CAS  PubMed  Google Scholar 

  • Martin I, Kenna DTD, Morales S, Alton EWFW, Davies JC (2021) Variability in bacteriophage and antibiotic sensitivity in serial Pseudomonas aeruginosa isolates from cystic fibrosis airway cultures over 12 months. Microorganisms 9(3):660. https://doi.org/10.3390/microorganisms9030660. PMID: 33810202; PMCID: PMC8004851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davies J, Dewar A, Bush A, Pitt T, Gruenert D, Geddes DM, Alton EW (1999) Reduction in the adherence of Pseudomonas aeruginosa to native cystic fibrosis epithelium with anti-asialoGM1 antibody and neuraminidase inhibition. Eur Respir J 13:565–570

    Article  CAS  PubMed  Google Scholar 

  • Davies JC, Alton E, Simbo A, Murphy R, Seth I, Williams K, Somerville M, Jolly L, Morant S, Guest C (2019) Training dogs to differentiate Pseudomonas aeruginosa from other cystic fibrosis bacterial pathogens: not to be sniffed at? Eur Respir J 54(5):1900970

    Article  PubMed  Google Scholar 

  • Davis TJ, Karanjia AV, Bhebhe CN, West SB, Richardson M, Bean HD (2020) Pseudomonas aeruginosa volatilome characteristics and adaptations in chronic cystic fibrosis lung infections. mSphere 5(5):e00843-20

    Article  PubMed  PubMed Central  Google Scholar 

  • de Boeck K, Lee T, Amaral M, Drevinek P, Elborn JS, Fajac I, Kerem E, Davies JC (2020) Cystic fibrosis drug trial design in the era of CFTR modulators associated with substantial clinical benefit: stakeholders’ consensus view. J Cyst Fibros 19:688–695

    Article  PubMed  Google Scholar 

  • de Koff EM, Groot KM, Bogaert D (2016) Development of the respiratory tract microbiota in cystic fibrosis. Curr Opin Pulm Med 22:623–628

    Article  PubMed  Google Scholar 

  • de Vrankrijker AM, Wolfs TF, Ciofu O, Hoiby N, van der Ent CK, Poulsen SS, Johansen HK (2009) Respiratory syncytial virus infection facilitates acute colonization of Pseudomonas aeruginosa in mice. J Med Virol 81:2096–2103

    Article  PubMed  Google Scholar 

  • Deretic V, Dikshit R, Konyecsni WM, Chakrabarty AM, Misra TK (1989) The algR gene, which regulates mucoidy in Pseudomonas aeruginosa, belongs to a class of environmentally responsive genes. J Bacteriol 171:1278–1283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deschaght P, Schelstraete P, van Simaey L, Vanderkercken M, Raman A, Mahieu L, van Daele S, de Baets F, Vaneechoutte M (2013) Is the improvement of CF patients, hospitalized for pulmonary exacerbation, correlated to a decrease in bacterial load? PLoS One 8:e79010

    Article  PubMed  PubMed Central  Google Scholar 

  • Devereux G, Wrolstad D, Bourke SJ, Daines CL, Doe S, Dougherty R, Franco R, Innes A, Kopp BT, Lascano J, Layish D, Macgregor G, Murray L, Peckham D, Lucidi V, Lovie E, Robertson J, Fraser-Pitt DJ, O’Neil DA (2020) Oral cysteamine as an adjunct treatment in cystic fibrosis pulmonary exacerbations: an exploratory randomized clinical trial. PLoS One 15:e0242945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dickerhof N, Isles V, Pattemore P, Hampton MB, Kettle AJ (2019) Exposure of Pseudomonas aeruginosa to bactericidal hypochlorous acid during neutrophil phagocytosis is compromised in cystic fibrosis. J Biol Chem 294:13502–13514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding F, Oinuma KI, Smalley NE, Schaefer AL, Hamwy O, Greenberg EP, Dandekar AA (2018) The Pseudomonas aeruginosa orphan quorum sensing signal receptor QscR regulates global quorum sensing gene expression by activating a single linked operon. mBio 9(4):e01274-18

    Article  PubMed  PubMed Central  Google Scholar 

  • Dingemans J, Monsieurs P, Yu SH, Crabbe A, Forstner KU, Malfroot A, Cornelis P, van Houdt R (2016) Effect of shear stress on Pseudomonas aeruginosa isolated from the cystic fibrosis Lung. mBio 7(4):e00813-16

    Article  PubMed  PubMed Central  Google Scholar 

  • Dixon E, Dick K, Ollosson S, Jones D, Mattock H, Bentley S, Saunders C, Matthews J, Dobra B, King J, Edmondson C, Davies JC (2021) Telemedicine and cystic fibrosis: do we still need face-to-face clinics? Paediatr Respir Rev. https://doi.org/10.1016/j.prrv.2021.05.002

  • Dorfman R, Taylor C, Lin F, Sun L, Sandford A, Pare P, Berthiaume Y, Corey M, Durie P, Zielenski J, Members of Canadian Consortium for CF Genetic Studies (2011) Modulatory effect of the SLC9A3 gene on susceptibility to infections and pulmonary function in children with cystic fibrosis. Pediatr Pulmonol 46:385–392

    Article  PubMed  Google Scholar 

  • Douglas TA, Brennan S, Berry L, Winfield K, Wainwright CE, Grimwood K, Stick SM, Sly PD, Members of AREST CF and ACFBAL Trial (2010) Value of serology in predicting Pseudomonas aeruginosa infection in young children with cystic fibrosis. Thorax 65:985–990

    Article  PubMed  Google Scholar 

  • Duesberg U, Wosniok J, Naehrlich L, Eschenhagen P, Schwarz C (2020) Risk factors for respiratory aspergillus fumigatus in German cystic fibrosis patients and impact on lung function. Sci Rep 10:18999

    Article  PubMed  PubMed Central  Google Scholar 

  • Emerson J, Rosenfeld M, Mcnamara S, Ramsey B, Gibson RL (2002) Pseudomonas aeruginosa and other predictors of mortality and morbidity in young children with cystic fibrosis. Pediatr Pulmonol 34:91–100

    Article  PubMed  Google Scholar 

  • Emond MJ, Louie T, Emerson J, Zhao W, Mathias RA, Knowles MR, Wright FA, Rieder MJ, Tabor HK, Nickerson DA, Barnes KC, National Heart L, Blood Institute (NHLBI) GO Exome Sequencing Project, Lung GO, Gibson RL, Bamshad MJ (2012) Exome sequencing of extreme phenotypes identifies DCTN4 as a modifier of chronic Pseudomonas aeruginosa infection in cystic fibrosis. Nat Genet 44:886–889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emond MJ, Louie T, Emerson J, Chong JX, Mathias RA, Knowles MR, Rieder MJ, Tabor HK, Nickerson DA, Barnes KC, NHLBI GO Exome Sequencing Project, Go L, Gibson RL, Bamshad MJ (2015) Exome sequencing of phenotypic extremes identifies CAV2 and TMC6 as interacting modifiers of chronic Pseudomonas aeruginosa infection in cystic fibrosis. PLoS Genet 11:e1005273

    Article  PubMed  PubMed Central  Google Scholar 

  • Epps QJ, Epps KL, Young DC, Zobell JT (2021) State of the art in cystic fibrosis pharmacology optimization of antimicrobials in the treatment of cystic fibrosis pulmonary exacerbations: III. Executive summary. Pediatr Pulmonol 56:1825–1837

    Article  PubMed  Google Scholar 

  • Equi AC, Pike SE, Davies J, Bush A (2001) Use of cough swabs in a cystic fibrosis clinic. Arch Dis Child 85:438–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feldman M, Bryan R, Rajan S, Scheffler L, Brunnert S, Tang H, Prince A (1998) Role of flagella in pathogenesis of Pseudomonas aeruginosa pulmonary infection. Infect Immun 66:43–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrari E, Monzani R, Villella VR, Esposito S, Saluzzo F, Rossin F, D’Eletto M, Tosco A, de Gregorio F, Izzo V, Maiuri MC, Kroemer G, Raia V, Maiuri L (2017) Cysteamine re-establishes the clearance of Pseudomonas aeruginosa by macrophages bearing the cystic fibrosis-relevant F508del-CFTR mutation. Cell Death Dis 8:e2544

    Article  PubMed  PubMed Central  Google Scholar 

  • Foundation CF (n.d.) Cystic fibrosis foundation: drug development pipeline [Online]. Available: https://apps.cff.org/trials/pipeline/ [Accessed]

  • Foweraker JE, Govan JR (2013) Antibiotic susceptibility testing in early and chronic respiratory infections with Pseudomonas aeruginosa. J Cyst Fibros 12:302

    Article  CAS  PubMed  Google Scholar 

  • Fraser-Pitt DJ, Dolan SK, Toledo-Aparicio D, Hunt JG, Smith DW, Lacy-Roberts N, Nupe Hewage PS, Stoyanova TN, Manson E, Mcclean K, Inglis NF, Mercer DK, O’Neil DA (2021) Cysteamine inhibits glycine utilisation and disrupts virulence in Pseudomonas aeruginosa. Front Cell Infect Microbiol 11:718213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frayman KB, Armstrong DS, Grimwood K, Ranganathan SC (2017) The airway microbiota in early cystic fibrosis lung disease. Pediatr Pulmonol 52:1384–1404

    Article  PubMed  Google Scholar 

  • Garratt LW, Sutanto EN, Ling KM, Looi K, Iosifidis T, Martinovich KM, Shaw NC, Kicic-Starcevich E, Knight DA, Ranganathan S, Stick SM, Kicic A, Australian Respiratory Early Surveillance Team for Cystic Fibrosis (AREST CF) (2015) Matrix metalloproteinase activation by free neutrophil elastase contributes to bronchiectasis progression in early cystic fibrosis. Eur Respir J 46:384–394

    Article  PubMed  Google Scholar 

  • Goeminne PC, Nawrot TS, de Boeck K, Nemery B, Dupont LJ (2015) Proximity to blue spaces and risk of infection with Pseudomonas aeruginosa in cystic fibrosis: a case-control analysis. J Cyst Fibros 14:741–747

    Article  PubMed  Google Scholar 

  • Goss CH, Kaneko Y, Khuu L, Anderson GD, Ravishankar S, Aitken ML, Lechtzin N, Zhou G, Czyz DM, Mclean K, Olakanmi O, Shuman HA, Teresi M, Wilhelm E, Caldwell E, Salipante SJ, Hornick DB, Siehnel RJ, Becker L, Britigan BE, Singh PK (2018) Gallium disrupts bacterial iron metabolism and has therapeutic effects in mice and humans with lung infections. Sci Transl Med 10:eaat7520

    Article  PubMed  PubMed Central  Google Scholar 

  • Goss CH, Heltshe SL, West NE, Skalland M, Sanders DB, Jain R, Barto TL, Fogarty B, Marshall BC, Vandevanter DR, Flume PA, Investigators S (2021) A randomized clinical trial of antimicrobial duration for cystic fibrosis pulmonary exacerbation treatment. Am J Respir Crit Care Med 204:1295–1305

    Article  CAS  PubMed  Google Scholar 

  • Grasemann H, Storm van’s Gravesande K, Buscher R, Knauer N, Silverman ES, Palmer LJ, Drazen JM, Ratjen F (2003) Endothelial nitric oxide synthase variants in cystic fibrosis lung disease. Am J Respir Crit Care Med 167:390–394

    Article  PubMed  Google Scholar 

  • Green DM, Mcdougal KE, Blackman SM, Sosnay PR, Henderson LB, Naughton KM, Collaco JM, Cutting GR (2010) Mutations that permit residual CFTR function delay acquisition of multiple respiratory pathogens in CF patients. Respir Res 11:140

    Article  PubMed  PubMed Central  Google Scholar 

  • Green DM, Collaco JM, Mcdougal KE, Naughton KM, Blackman SM, Cutting GR (2012) Heritability of respiratory infection with Pseudomonas aeruginosa in cystic fibrosis. J Pediatr 161(290–5):e1

    Google Scholar 

  • Guimbellot JS, Baines A, Paynter A, Heltshe SL, Vandalfsen J, Jain M, Rowe SM, Sagel SD, Investigators GO-E (2021) Long term clinical effectiveness of ivacaftor in people with the G551D CFTR mutation. J Cyst Fibros 20:213–219

    Article  CAS  PubMed  Google Scholar 

  • Harrington NE, Littler JL, Harrison F (2022) Transcriptome analysis of Pseudomonas aeruginosa biofilm infection in an ex vivo pig model of the cystic fibrosis Lung. Appl Environ Microbiol 88:e0178921

    Article  PubMed  Google Scholar 

  • Hassett DJ, Kovall RA, Schurr MJ, Kotagiri N, Kumari H, Satish L (2021) The bactericidal tandem drug, AB569: how to eradicate antibiotic-resistant biofilm Pseudomonas aeruginosa in multiple Disease settings including cystic fibrosis, Burns/wounds and urinary tract infections. Front Microbiol 12:639362

    Article  PubMed  PubMed Central  Google Scholar 

  • Hauser AR (2009) The type III secretion system of Pseudomonas aeruginosa: infection by injection. Nat Rev Microbiol 7:654–665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayes DJR, Farrell PM, Li Z, West SE (2010) Pseudomonas aeruginosa serological analysis in young children with cystic fibrosis diagnosed through newborn screening. Pediatr Pulmonol 45:55–61

    Article  PubMed  PubMed Central  Google Scholar 

  • Hayes E, Murphy MP, Pohl K, Browne N, Mcquillan K, Saw LE, Foley C, Gargoum F, Mcelvaney OJ, Hawkins P, Gunaratnam C, Mcelvaney NG, Reeves EP (2020) Altered degranulation and pH of neutrophil phagosomes impacts antimicrobial efficiency in cystic fibrosis. Front Immunol 11:600033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heijerman HGM, Mckone EF, Downey DG, van Braeckel E, Rowe SM, Tullis E, Mall MA, Welter JJ, Ramsey BW, Mckee CM, Marigowda G, Moskowitz SM, Waltz D, Sosnay PR, Simard C, Ahluwalia N, Xuan F, Zhang Y, Taylor-Cousar JL, Mccoy KS, VX17-445-103 Trial Group (2019) Efficacy and safety of the elexacaftor plus tezacaftor plus ivacaftor combination regimen in people with cystic fibrosis homozygous for the F508del mutation: a double-blind, randomised, phase 3 trial. Lancet 394:1940–1948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hendricks MR, Lashua LP, Fischer DK, Flitter BA, Eichinger KM, Durbin JE, Sarkar SN, Coyne CB, Empey KM, Bomberger JM (2016) Respiratory syncytial virus infection enhances Pseudomonas aeruginosa biofilm growth through dysregulation of nutritional immunity. Proc Natl Acad Sci U S A 113:1642–1647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hewer SCL, Smyth AR, Brown M, Jones AP, Hickey H, Kenna D, Ashby D, Thompson A, Williamson PR, TORPEDO-CF Study Group (2020) Intravenous versus oral antibiotics for eradication of Pseudomonas aeruginosa in cystic fibrosis (TORPEDO-CF): a randomised controlled trial. Lancet Respir Med 8:975–986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hey J, Paulsen M, Toth R, Weichenhan D, Butz S, Schatterny J, Liebers R, Lutsik P, Plass C, Mall MA (2021) Epigenetic reprogramming of airway macrophages promotes polarization and inflammation in muco-obstructive lung disease. Nat Commun 12:6520

    Article  PubMed  PubMed Central  Google Scholar 

  • Hill D, Rose B, Pajkos A, Robinson M, Bye P, Bell S, Elkins M, Thompson B, Macleod C, Aaron SD, Harbour C (2005) Antibiotic susceptabilities of Pseudomonas aeruginosa isolates derived from patients with cystic fibrosis under aerobic, anaerobic, and biofilm conditions. J Clin Microbiol 43:5085–5090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hill DB, Button B, Rubinstein M, Boucher RC (2022) Physiology and pathophysiology of human airway mucus. Physiol Rev. https://doi.org/10.1152/physrev.00004.2021

  • Hisert KB, Heltshe SL, Pope C, Jorth P, Wu X, Edwards RM, Radey M, Accurso FJ, Wolter DJ, Cooke G, Adam RJ, Carter S, Grogan B, Launspach JL, Donnelly SC, Gallagher CG, Bruce JE, Stoltz DA, Welsh MJ, Hoffman LR, Mckone EF, Singh PK (2017) Restoring cystic fibrosis transmembrane conductance regulator function reduces airway bacteria and inflammation in people with cystic fibrosis and chronic Lung infections. Am J Respir Crit Care Med 195:1617–1628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hogardt M, Heesemann J (2010) Adaptation of Pseudomonas aeruginosa during persistence in the cystic fibrosis lung. Int J Med Microbiol 300:557–562

    Article  CAS  PubMed  Google Scholar 

  • Hogardt M, Hoboth C, Schmoldt S, Henke C, Bader L, Heesemann J (2007) Stage-specific adaptation of hypermutable Pseudomonas aeruginosa isolates during chronic pulmonary infection in patients with cystic fibrosis. J Infect Dis 195:70–80

    Article  CAS  PubMed  Google Scholar 

  • Høiby N, Ciofu O, Bjarnsholt T (2010) Pseudomonas aeruginosa biofilms in cystic fibrosis. Future Microbiol 5:1663–1674

    Article  PubMed  Google Scholar 

  • Howlin RP, Cathie K, Hall-Stoodley L, Cornelius V, Duignan C, Allan RN, Fernandez BO, Barraud N, Bruce KD, Jefferies J, Kelso M, Kjelleberg S, Rice SA, Rogers GB, Pink S, Smith C, Sukhtankar PS, Salib R, Legg J, Carroll M, Daniels T, Feelisch M, Stoodley P, Clarke SC, Connett G, Faust SN, Webb JS (2017) Low-dose nitric oxide as targeted anti-biofilm adjunctive therapy to treat chronic Pseudomonas aeruginosa infection in cystic fibrosis. Mol Ther 25:2104–2116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hughes, D. A., Archangelidi, O., Coates, M., Armstrong-James, D., Elborn, S. J., Carr, S. B. & Davies, J. C. 2021a. Clinical characteristics of pseudomonas and aspergillus co-infected cystic fibrosis patients: a UK registry study. J Cyst Fibros, (In press)

    Google Scholar 

  • Hughes DA, Price H, Rosenthal M, Davies JC (2021b) Pseudomonas aeruginosa in the cystic fibrosis airway: does it deserve its reputation as a predatory “bully”? Am J Respir Crit Care Med 203:1027–1030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hughes DA, Cuthbertson L, Price H, Felton I, Coates M, Simmonds NJ, Loebinger MR, Armstrong-James D, Elborn JS, Cookson WO, Moffatt MF, Davies JC (2021c) P130 Pseudomonas aeruginosa impairs growth of aspergillus from CF airway samples British Thoracic Society winter meeting. Thorax, London

    Google Scholar 

  • Johansen HK, Hoiby N (1992) Seasonal onset of initial colonisation and chronic infection with Pseudomonas aeruginosa in patients with cystic fibrosis in Denmark. Thorax 47:109–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaneko Y, Thoendel M, Olakanmi O, Britigan BE, Singh PK (2007) The transition metal gallium disrupts Pseudomonas aeruginosa iron metabolism and has antimicrobial and antibiofilm activity. J Clin Invest 117:877–888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan S, Tondervik A, Sletta H, Klinkenberg G, Emanuel C, Onsoyen E, Myrvold R, Howe RA, Walsh TR, Hill KE, Thomas DW (2012) Overcoming drug resistance with alginate oligosaccharides able to potentiate the action of selected antibiotics. Antimicrob Agents Chemother 56:5134–5141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiedrowski MR, Bomberger JM (2018) Viral-bacterial co-infections in the cystic fibrosis respiratory tract. Front Immunol 9:3067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kopp BT, Ortega-Garcia JA, Sadreameli SC, Wellmerling J, Cormet-Boyaka E, Thompson R, Mcgrath-Morrow S, Groner JA (2016) The impact of secondhand smoke exposure on children with cystic fibrosis: a review. Int J Environ Res Public Health 13(10):1003

    Article  PubMed Central  Google Scholar 

  • Kos R, Brinkman P, Neerincx AH, Paff T, Gerritsen MG, Lammers A, Kraneveld AD, Heijerman HGM, Janssens HM, Davies JC, Majoor CJ, Weersink EJ, Sterk PJ, Haarman EG, Bos LD, Maitland-van der Zee AH, Amsterdam Mucociliary Clearance Disease (AMCD) Research Group and the Amsterdam UMC Breath Research Group (2021) Targeted exhaled breath analysis for detection of Pseudomonas aeruginosa in cystic fibrosis patients. J Cyst Fibros 21(1):e28–e34

    Article  PubMed  Google Scholar 

  • Kosorok MR, Zeng L, West SE, Rock MJ, Splaingard ML, Laxova A, Green CG, Collins J, Farrell PM (2001) Acceleration of lung disease in children with cystic fibrosis after Pseudomonas aeruginosa acquisition. Pediatr Pulmonol 32:277–287

    Article  CAS  PubMed  Google Scholar 

  • Kutty SK, Barraud N, Ho KK, Iskander GM, Griffith R, Rice SA, Bhadbhade M, Willcox MD, Black DS, Kumar N (2015) Hybrids of acylated homoserine lactone and nitric oxide donors as inhibitors of quorum sensing and virulence factors in Pseudomonas aeruginosa. Org Biomol Chem 13:9850–9861

    Article  CAS  PubMed  Google Scholar 

  • Kyle H, Ward JP, Widdicombe JG (1990) Control of pH of airway surface liquid of the ferret trachea in vitro. J Appl Physiol 1985(68):135–140

    Article  Google Scholar 

  • Lam JC, Somayaji R, Surette MG, Rabin HR, Parkins MD (2015) Reduction in Pseudomonas aeruginosa sputum density during a cystic fibrosis pulmonary exacerbation does not predict clinical response. BMC Infect Dis 15:145

    Article  PubMed  PubMed Central  Google Scholar 

  • Langton Hewer SC, Smyth AR (2017) Antibiotic strategies for eradicating Pseudomonas aeruginosa in people with cystic fibrosis. Cochrane Database Syst Rev 4:CD004197

    PubMed  Google Scholar 

  • Larsen GY, Stull TL, Burns JL (1993) Marked phenotypic variability in pseudomonas cepacia isolated from a patient with cystic fibrosis. J Clin Microbiol 31:788–792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Law N, Logan C, Yung G, Furr CL, Lehman SM, Morales S, Rosas F, Gaidamaka A, Bilinsky I, Grint P, Schooley RT, Aslam S (2019) Successful adjunctive use of bacteriophage therapy for treatment of multidrug-resistant Pseudomonas aeruginosa infection in a cystic fibrosis patient. Infection 47:665–668

    Article  PubMed  Google Scholar 

  • Lee AJ, Einarsson GG, Gilpin DF, Tunney MM (2020) Multi-omics approaches: the key to improving respiratory health in people with cystic fibrosis? Front Pharmacol 11:569821

    Article  PubMed  PubMed Central  Google Scholar 

  • Ling KM, Garratt LW, Gill EE, Lee AHY, Agudelo-Romero P, Sutanto EN, Iosifidis T, Rosenow T, Turvey SE, Lassmann T, Hancock REW, Kicic A, Stick SM (2020) Rhinovirus infection drives complex host airway molecular responses in children with cystic fibrosis. Front Immunol 11:1327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magalhaes AP, Lopes SP, Pereira MO (2016) Insights into cystic fibrosis Polymicrobial consortia: the role of species interactions in biofilm development, phenotype, and response to in-use antibiotics. Front Microbiol 7:2146

    PubMed  Google Scholar 

  • Mahenthiralingam E, Campbell ME, Speert DP (1994) Nonmotility and phagocytic resistance of Pseudomonas aeruginosa isolates from chronically colonized patients with cystic fibrosis. Infect Immun 62:596–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manfredi P, Jenal U (2015) Bacteria in the CF Lung: isolation drives diversity. Cell Host Microbe 18:268–269

    Article  CAS  PubMed  Google Scholar 

  • Manwar AV, Khandelwal SR, Chaudhari BL, Meyer JM, Chincholkar SB (2004) Siderophore production by a marine Pseudomonas aeruginosa and its antagonistic action against phytopathogenic fungi. Appl Biochem Biotechnol 118:243–251

    Article  CAS  PubMed  Google Scholar 

  • Martin AC, Laing IA, Zhang G, Brennan S, Winfield K, Sly PD, Stick SM, Goldblatt J, Lesouef PN (2005) CD14 C-159T and early infection with Pseudomonas aeruginosa in children with cystic fibrosis. Respir Res 6:63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin I, Davies JC, Morales S et al (2017) WS07.4 combined killing effects of lytic bacteriophages and antibiotics in biofilm-grown Pseudomonas aeruginosa from CF airway cultures. J Cystic Fibrosis 16(1):S12–S13

    Article  Google Scholar 

  • Mcelvaney OJ, Wade P, Murphy M, Reeves EP, Mcelvaney NG (2019) Targeting airway inflammation in cystic fibrosis. Expert Rev Respir Med 13:1041–1055

    Article  CAS  PubMed  Google Scholar 

  • Middleton PG, Mall MA, Drevinek P, Lands LC, Mckone EF, Polineni D, Ramsey BW, Taylor-Cousar JL, Tullis E, Vermeulen F, Marigowda G, Mckee CM, Moskowitz SM, Nair N, Savage J, Simard C, Tian S, Waltz D, Xuan F, Rowe SM, Jain R, VX17-445-102 Study Group (2019) Elexacaftor-Tezacaftor-Ivacaftor for cystic fibrosis with a single Phe508del allele. N Engl J Med 381:1809–1819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore MP, Lamont IL, Williams D, Paterson S, Kukavica-Ibrulj I, Tucker NP, Kenna DTD, Turton JF, Jeukens J, Freschi L, Wee BA, Loman NJ, Holden S, Manzoor S, Hawkey P, Southern KW, Walshaw MJ, Levesque RC, Fothergill JL, Winstanley C (2021) Transmission, adaptation and geographical spread of the Pseudomonas aeruginosa Liverpool epidemic strain. Microb Genom 7(3):000511. https://doi.org/10.1099/mgen.0.000511

    Article  CAS  Google Scholar 

  • Moradali MF, Ghods S, Rehm BH (2017) Pseudomonas aeruginosa lifestyle: a paradigm for adaptation, survival, and persistence. Front Cell Infect Microbiol 7:39

    Article  PubMed  PubMed Central  Google Scholar 

  • Moreau-Marquis S, Coutermarsh B, Stanton BA (2015) Combination of hypothiocyanite and lactoferrin (ALX-109) enhances the ability of tobramycin and aztreonam to eliminate Pseudomonas aeruginosa biofilms growing on cystic fibrosis airway epithelial cells. J Antimicrob Chemother 70:160–166

    Article  CAS  PubMed  Google Scholar 

  • Moskowitz SM, Foster JM, Emerson JC, Gibson RL, Burns JL (2005) Use of pseudomonas biofilm susceptibilities to assign simulated antibiotic regimens for cystic fibrosis airway infection. J Antimicrob Chemother 56:879–886

    Article  CAS  PubMed  Google Scholar 

  • Mowat E, Rajendran R, Williams C, Mcculloch E, Jones B, Lang S, Ramage G (2010) Pseudomonas aeruginosa and their small diffusible extracellular molecules inhibit aspergillus fumigatus biofilm formation. FEMS Microbiol Lett 313:96–102

    Article  CAS  PubMed  Google Scholar 

  • Muhlebach MS, Stewart PW, Leigh MW, Noah TL (1999) Quantitation of inflammatory responses to bacteria in young cystic fibrosis and control patients. Am J Respir Crit Care Med 160:186–191

    Article  CAS  PubMed  Google Scholar 

  • Muirhead CA, Lanocha N, Markwardt S, Macdonald KD (2021) Evaluation of rescue oral glucocorticoid therapy during inpatient cystic fibrosis exacerbations. Pediatr Pulmonol 56:891–900

    Article  PubMed  Google Scholar 

  • Murphy RA, Thrane S, Harrison J, Schelenz S, Vorup-Jensen T, Davies JC (2020) Synergy with Glatirmaer acetate reduces Tobramycin minimum inhibitory concentrations against Pseudomonas aeruginosa from cystic fibrosis airways. The 34th North American Cystic Fibrosis Conference. Pediatric Pulmonology

    Google Scholar 

  • Nardoni S, Mancianti F, Sgorbini M, Taccini F, Corazza M (2005) Identification and seasonal distribution of airborne fungi in three horse stables in Italy. Mycopathologia 160:29–34

    Article  PubMed  Google Scholar 

  • Neerincx AH, Whiteson K, Phan JL, Brinkman P, Abdel-Aziz MI, Weersink EJM, Altenburg J, Majoor CJ, Maitland-van der Zee AH, Bos LDJ (2021) Lumacaftor/ivacaftor changes the lung microbiome and metabolome in cystic fibrosis patients. ERJ Open Res 7(2):00731–02020

    Article  PubMed  PubMed Central  Google Scholar 

  • Nixon GM, Armstrong DS, Carzino R, Carlin JB, Olinsky A, Robertson CF, Grimwood K (2001) Clinical outcome after early Pseudomonas aeruginosa infection in cystic fibrosis. J Pediatr 138:699–704

    Article  CAS  PubMed  Google Scholar 

  • O’Toole GA, Crabbe A, Kummerli R, Lipuma JJ, Bomberger JM, Davies JC, Limoli D, Phelan VV, Bliska JB, Depas WH, Dietrich LE, Hampton TH, Hunter R, Khursigara CM, Price-Whelan A, Ashare A, Cramer RA, Goldberg JB, Harrison F, Hogan DA, Henson MA, Madden DR, Mayers JR, Nadell C, Newman D, Prince A, Rivett DW, Schwartzman JD, Schultz D, Sheppard DC, Smyth AR, Spero MA, Stanton BA, Turner PE, van der Gast C, Whelan FJ, Whitaker R, Whiteson K (2021) Model systems to study the chronic, Polymicrobial infections in cystic fibrosis: current approaches and exploring future directions. mBio 12:e0176321

    Article  PubMed  Google Scholar 

  • Pabary R, Singh C, Morales S, Bush A, Alshafi K, Bilton D, Alton EW, Smithyman A, Davies JC (2016) Antipseudomonal bacteriophage reduces infective burden and inflammatory response in murine Lung. Antimicrob Agents Chemother 60:744–751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Penner JC, Ferreira JAG, Secor PR, Sweere JM, Birukova MK, Joubert LM, Haagensen JAJ, Garcia O, Malkovskiy AV, Kaber G, Nazik H, Manasherob R, Spormann AM, Clemons KV, Stevens DA, Bollyky PL (2016) Pf4 bacteriophage produced by Pseudomonas aeruginosa inhibits aspergillus fumigatus metabolism via iron sequestration. Microbiology (Reading) 162:1583–1594

    Article  CAS  Google Scholar 

  • Pernet E, Guillemot L, Burgel PR, Martin C, Lambeau G, Sermet-Gaudelus I, Sands D, Leduc D, Morand PC, Jeammet L, Chignard M, wu, Y. & Touqui, L. (2014) Pseudomonas aeruginosa eradicates Staphylococcus aureus by manipulating the host immunity. Nat Commun 5:5105

    Article  CAS  PubMed  Google Scholar 

  • Persson T, Hansen TH, Rasmussen TB, Skinderso ME, Givskov M, Nielsen J (2005) Rational design and synthesis of new quorum-sensing inhibitors derived from acylated homoserine lactones and natural products from garlic. Org Biomol Chem 3:253–262

    Article  CAS  PubMed  Google Scholar 

  • Pezzulo AA, Tang XX, Hoegger MJ, Abou Alaiwa MH, Ramachandran S, Moninger TO, Karp PH, Wohlford-Lenane CL, Haagsman HP, van Eijk M, Banfi B, Horswill AR, Stoltz DA, Mccray PBJR, Welsh MJ, Zabner J (2012) Reduced airway surface pH impairs bacterial killing in the porcine cystic fibrosis lung. Nature 487:109–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Principi N, Blasi F, Esposito S (2015) Azithromycin use in patients with cystic fibrosis. Eur J Clin Microbiol Infect Dis 34:1071–1079

    Article  CAS  PubMed  Google Scholar 

  • Pritchard MF, Powell LC, Menzies GE, Lewis PD, Hawkins K, Wright C, Doull I, Walsh TR, Onsoyen E, Dessen A, Myrvold R, Rye PD, Myrset AH, Stevens HN, Hodges LA, Macgregor G, Neilly JB, Hill KE, Thomas DW (2016) A new class of safe oligosaccharide polymer therapy to modify the mucus barrier of chronic respiratory Disease. Mol Pharm 13:863–872

    Article  CAS  PubMed  Google Scholar 

  • Pritt B, O’Brien L, Winn W (2007) Mucoid pseudomonas in cystic fibrosis. Am J Clin Pathol 128:32–34

    Article  PubMed  Google Scholar 

  • Psoter KJ, de Roos AJ, Mayer JD, Kaufman JD, Wakefield J, Rosenfeld M (2015) Fine particulate matter exposure and initial Pseudomonas aeruginosa acquisition in cystic fibrosis. Ann Am Thorac Soc 12:385–391

    Article  PubMed  Google Scholar 

  • Psoter KJ, de Roos AJ, Wakefield J, Mayer JD, Bryan M, Rosenfeld M (2016) Association of meteorological and geographical factors and risk of initial Pseudomonas aeruginosa acquisition in young children with cystic fibrosis. Epidemiol Infect 144:1075–1083

    Article  CAS  PubMed  Google Scholar 

  • Quinton PM (2008) Cystic fibrosis: impaired bicarbonate secretion and mucoviscidosis. Lancet 372:415–417

    Article  CAS  PubMed  Google Scholar 

  • Quinton PM (2010) Role of epithelial HCO3(−) transport in mucin secretion: lessons from cystic fibrosis. Am J Physiol Cell Physiol 299:C1222–C1233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ralhan A, Laval J, Lelis F, Ballbach M, Grund C, Hector A, Hartl D (2016) Current concepts and controversies in innate immunity of cystic fibrosis Lung Disease. J Innate Immun 8:531–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramsey BW, Wentz KR, Smith AL, Richardson M, Williams-Warren J, Hedges DL, Gibson R, Redding GJ, Lent K, Harris K (1991) Predictive value of oropharyngeal cultures for identifying lower airway bacteria in cystic fibrosis patients. Am Rev Respir Dis 144:331–337

    Article  CAS  PubMed  Google Scholar 

  • Ramsey BW, Davies J, Mcelvaney NG, Tullis E, Bell SC, Drevinek P, Griese M, Mckone EF, Wainwright CE, Konstan MW, Moss R, Ratjen F, Sermet-Gaudelus I, Rowe SM, Dong Q, Rodriguez S, Yen K, Ordonez C, Elborn JS, VX08-770-102 Study Group (2011) A CFTR potentiator in patients with cystic fibrosis and the G551D mutation. N Engl J Med 365:1663–1672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ratjen F, Walter H, Haug M, Meisner C, Grasemann H, Doring G (2007) Diagnostic value of serum antibodies in early Pseudomonas aeruginosa infection in cystic fibrosis patients. Pediatr Pulmonol 42:249–255

    Article  PubMed  Google Scholar 

  • Reece E, Segurado R, Jackson A, Mcclean S, Renwick J, Greally P (2017) Co-colonisation with aspergillus fumigatus and Pseudomonas aeruginosa is associated with poorer health in cystic fibrosis patients: an Irish registry analysis. BMC Pulm Med 17:70

    Article  PubMed  PubMed Central  Google Scholar 

  • Reece E, Bettio PHA, Renwick J (2021) Polymicrobial interactions in the cystic fibrosis airway microbiome impact the antimicrobial susceptibility of Pseudomonas aeruginosa. Antibiotics (Basel) 10(7):827

    Article  CAS  Google Scholar 

  • Registry CFT (2020) CF Trust Registry Annual Report Data 2020

    Google Scholar 

  • Reid DW, Latham R, Lamont IL, Camara M, Roddam LF (2013) Molecular analysis of changes in Pseudomonas aeruginosa load during treatment of a pulmonary exacerbation in cystic fibrosis. J Cyst Fibros 12:688–699

    Article  CAS  PubMed  Google Scholar 

  • Riquelme SA, Prince A (2021) Pseudomonas aeruginosa consumption of airway metabolites promotes Lung infection. Pathogens 10(8):957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riquelme SA, Lozano C, Moustafa AM, Liimatta K, Tomlinson KL, Britto C, Khanal S, Gill SK, Narechania A, Azcona-Gutierrez JM, Dimango E, Saenz Y, Planet P, Prince A (2019) CFTR-PTEN-dependent mitochondrial metabolic dysfunction promotes Pseudomonas aeruginosa airway infection. Sci Transl Med 11(499):eaav4634

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosenfeld M, Emerson J, Accurso F, Armstrong D, Castile R, Grimwood K, Hiatt P, Mccoy K, Mcnamara S, Ramsey B, Wagener J (1999) Diagnostic accuracy of oropharyngeal cultures in infants and young children with cystic fibrosis. Pediatr Pulmonol 28:321–328

    Article  CAS  PubMed  Google Scholar 

  • Rosenfeld M, Emerson J, Mcnamara S, Thompson V, Ramsey BW, Morgan W, Gibson RL, EPIC Study Group (2012) Risk factors for age at initial pseudomonas acquisition in the cystic fibrosis epic observational cohort. J Cyst Fibros 11:446–453

    Article  PubMed  PubMed Central  Google Scholar 

  • Ross-Gillespie A, Weigert M, Brown SP, Kummerli R (2014) Gallium-mediated siderophore quenching as an evolutionarily robust antibacterial treatment. Evol Med Public Health 2014:18–29

    Article  PubMed  PubMed Central  Google Scholar 

  • Rossi E, la Rosa R, Bartell JA, Marvig RL, Haagensen JAJ, Sommer LM, Molin S, Johansen HK (2021) Pseudomonas aeruginosa adaptation and evolution in patients with cystic fibrosis. Nat Rev Microbiol 19:331–342

    Article  CAS  PubMed  Google Scholar 

  • Rowe SM, Heltshe SL, Gonska T, Donaldson SH, Borowitz D, Gelfond D, Sagel SD, Khan U, Mayer-Hamblett N, van Dalfsen JM, Joseloff E, Ramsey BW, GOAL Investigators of the Cystic Fibrosis Foundation Therapeutics Development Network (2014) Clinical mechanism of the cystic fibrosis transmembrane conductance regulator potentiator ivacaftor in G551D-mediated cystic fibrosis. Am J Respir Crit Care Med 190:175–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sabnis A, Hagart KL, Klockner A, Becce M, Evans LE, Furniss RCD, Mavridou DA, Murphy R, Stevens MM, Davies JC, Larrouy-Maumus GJ, Clarke TB, Edwards AM (2021) Colistin kills bacteria by targeting lipopolysaccharide in the cytoplasmic membrane. elife 10:e65836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saiman L, Prince A (1993) Pseudomonas aeruginosa pili bind to asialoGM1 which is increased on the surface of cystic fibrosis epithelial cells. J Clin Invest 92:1875–1880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarkar S (2020) Release mechanisms and molecular interactions of Pseudomonas aeruginosa extracellular DNA. Appl Microbiol Biotechnol 104:6549–6564

    Article  PubMed  Google Scholar 

  • Schroeder TH, Lee MM, Yacono PW, Cannon CL, Gerceker AA, Golan DE, Pier GB (2002) CFTR is a pattern recognition molecule that extracts Pseudomonas aeruginosa LPS from the outer membrane into epithelial cells and activates NF-kappa B translocation. Proc Natl Acad Sci U S A 99:6907–6912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scott JE, O’Toole GA (2019) The yin and Yang of streptococcus Lung infections in cystic fibrosis: a model for studying Polymicrobial interactions. J Bacteriol 201(11):e00115-19

    Article  PubMed  PubMed Central  Google Scholar 

  • Sepahzad A, Morris-Rosendahl DJ, Davies JC (2021) Cystic fibrosis Lung Disease modifiers and their relevance in the new era of precision medicine. Genes (Basel) 12(4):562

    Article  CAS  Google Scholar 

  • Smith S, Waters V, Jahnke N, Ratjen F (2020) Standard versus biofilm antimicrobial susceptibility testing to guide antibiotic therapy in cystic fibrosis. Cochrane Database Syst Rev 6:CD009528

    PubMed  Google Scholar 

  • Soren O, Rineh A, Silva DG, Cai Y, Howlin RP, Allan RN, Feelisch M, Davies JC, Connett GJ, Faust SN, Kelso MJ, Webb JS (2020) Cephalosporin nitric oxide-donor prodrug DEA-C3D disperses biofilms formed by clinical cystic fibrosis isolates of Pseudomonas aeruginosa. J Antimicrob Chemother 75:117–125

    Article  CAS  PubMed  Google Scholar 

  • Southern KW, Clancy JP, Ranganathan S (2019) Aerosolized agents for airway clearance in cystic fibrosis. Pediatr Pulmonol 54:858–864

    Article  PubMed  Google Scholar 

  • Stoltz DA, Meyerholz DK, Welsh MJ (2015) Origins of cystic fibrosis lung disease. N Engl J Med 372:351–362

    Article  PubMed  PubMed Central  Google Scholar 

  • Taccetti G, Francalanci M, Pizzamiglio G, Messore B, Carnovale V, Cimino G, Cipolli M (2021) Cystic fibrosis: recent insights into inhaled antibiotic treatment and future perspectives, Antibiotics (Basel), p 10

    Google Scholar 

  • Tarran R, Button B, Picher M, Paradiso AM, Ribeiro CM, Lazarowski ER, Zhang L, Collins PL, Pickles RJ, Fredberg JJ, Boucher RC (2005) Normal and cystic fibrosis airway surface liquid homeostasis. The effects of phasic shear stress and viral infections. J Biol Chem 280:35751–35759

    Article  CAS  PubMed  Google Scholar 

  • Tognon M, Kohler T, Gdaniec BG, Hao Y, Lam JS, Beaume M, Luscher A, Buckling A, van Delden C (2017) Co-evolution with Staphylococcus aureus leads to lipopolysaccharide alterations in Pseudomonas aeruginosa. ISME J 11:2233–2243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valentini M, Filloux A (2016) Biofilms and cyclic di-GMP (c-di-GMP) signaling: lessons from Pseudomonas aeruginosa and other bacteria. J Biol Chem 291:12547–12555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van den Bossche S, de Broe E, Coenye T, van Braeckel E, Crabbe A (2021) The cystic fibrosis lung microenvironment alters antibiotic activity: causes and effects. Eur Respir Rev 30(161):210055

    Article  PubMed  Google Scholar 

  • van der Kooi AJ, de Visser M, van Meegen M, Ginjaar HB, van Essen AJ, Jennekens FG, Jongen PJ, Leschot NJ, Bolhuis PA (1998) A novel gamma-sarcoglycan mutation causing childhood onset, slowly progressive limb girdle muscular dystrophy. Neuromuscul Disord 8:305–308

    Article  PubMed  Google Scholar 

  • van Ewijk BE, Wolfs TF, Aerts PC, van Kessel KP, Fleer A, Kimpen JL, van der Ent CK (2007) RSV mediates Pseudomonas aeruginosa binding to cystic fibrosis and normal epithelial cells. Pediatr Res 61:398–403

    Article  PubMed  Google Scholar 

  • van Koningsbruggen-Rietschel S, Davies JC, Pressler T, Fischer R, Macgregor G, Donaldson SH, Smerud K, Meland N, Mortensen J, Fosbol MO, Downey DG, Myrset AH, Flaten H, Rye PD (2020) Inhaled dry powder alginate oligosaccharide in cystic fibrosis: a randomised, double-blind, placebo-controlled, crossover phase 2b study. ERJ Open Res 6(4):00132-2020

    Article  PubMed  PubMed Central  Google Scholar 

  • Vandevanter DR, van Dalfsen JM (2005) How much do pseudomonas biofilms contribute to symptoms of pulmonary exacerbation in cystic fibrosis? Pediatr Pulmonol 39:504–506

    Article  PubMed  Google Scholar 

  • Veit G, Avramescu RG, Chiang AN, Houck SA, Cai Z, Peters KW, Hong JS, Pollard HB, Guggino WB, Balch WE, Skach WR, Cutting GR, Frizzell RA, Sheppard DN, Cyr DM, Sorscher EJ, Brodsky JL, Lukacs GL (2016) From CFTR biology toward combinatorial pharmacotherapy: expanded classification of cystic fibrosis mutations. Mol Biol Cell 27:424–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Viel M, Hubert D, Burgel PR, Genin E, Honore I, Martinez B, Gaitch N, Chapron J, Kanaan R, Dusser D, Girodon E, Bienvenu T (2016) DCTN4 as a modifier of chronic Pseudomonas aeruginosa infection in cystic fibrosis. Clin Respir J 10:777–783

    Article  CAS  PubMed  Google Scholar 

  • Wainwright CE, Vidmar S, Armstrong DS, Byrnes CA, Carlin JB, Cheney J, Cooper PJ, Grimwood K, Moodie M, Robertson CF, Tiddens HA, Investigators AS (2011) Effect of bronchoalveolar lavage-directed therapy on Pseudomonas aeruginosa infection and structural lung injury in children with cystic fibrosis: a randomized trial. JAMA 306:163–171

    CAS  PubMed  Google Scholar 

  • Wilton M, Charron-Mazenod L, Moore R, Lewenza S (2016) Extracellular DNA acidifies biofilms and induces aminoglycoside resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 60:544–553

    Article  CAS  PubMed  Google Scholar 

  • Winstanley C, O’Brien S, Brockhurst MA (2016) Pseudomonas aeruginosa evolutionary adaptation and diversification in cystic fibrosis chronic Lung infections. Trends Microbiol 24:327–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Worlitzsch D, Tarran R, Ulrich M, Schwab U, Cekici A, Meyer KC, Birrer P, Bellon G, Berger J, Weiss T, Botzenhart K, Yankaskas JR, Randell S, Boucher RC, Doring G (2002) Effects of reduced mucus oxygen concentration in airway pseudomonas infections of cystic fibrosis patients. J Clin Invest 109:317–325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yau YC, Ratjen F, Tullis E, Wilcox P, Freitag A, Chilvers M, Grasemann H, Zlosnik J, Speert D, Corey M, Stanojevic S, Matukas L, Leahy TR, Shih S, Waters V (2015) Randomized controlled trial of biofilm antimicrobial susceptibility testing in cystic fibrosis patients. J Cyst Fibros 14:262–266

    Article  CAS  PubMed  Google Scholar 

  • Yepuri NR, Barraud N, Mohammadi NS, Kardak BG, Kjelleberg S, Rice SA, Kelso MJ (2013) Synthesis of cephalosporin-3′-diazeniumdiolates: biofilm dispersing NO-donor prodrugs activated by beta-lactamase. Chem Commun (Camb) 49:4791–4793

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jane C. Davies .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

King, J., Murphy, R., Davies, J.C. (2022). Pseudomonas aeruginosa in the Cystic Fibrosis Lung. In: Filloux, A., Ramos, JL. (eds) Pseudomonas aeruginosa. Advances in Experimental Medicine and Biology, vol 1386. Springer, Cham. https://doi.org/10.1007/978-3-031-08491-1_13

Download citation

Publish with us

Policies and ethics