
Investigating the Current State
of Security in Large-Scale Agile

Development

Sascha Nägele(B), Jan-Philipp Watzelt, and Florian Matthes

Technical University of Munich, Munich, Germany
{sascha.naegele,jan-philipp.watzelt,matthes}@tum.de

Abstract. Agile methods have become the established way to success-
fully handle changing requirements and time-to-market pressure, even
in large-scale environments. Simultaneously, security has become an
increasingly important concern due to more frequent and impactful inci-
dents, stricter regulations with growing fines, and reputational damages.
Despite its importance, research on how to address security in large-scale
agile development is scarce. Therefore, this paper provides an empirical
investigation on tackling software product security in large-scale agile
environments. Based on a literature review and preliminary interviews,
we identified four essential categories that impact how to handle security:
(i) the structure of the agile program, (ii) security governance, (iii) adap-
tions of security activities to agile processes, and (iv) tool-support and
automation. We conducted semi-structured interviews with nine experts
from nine companies in five industries based on these categories. We
performed a content-structuring qualitative analysis to reveal recurring
patterns of best practices and challenges in those categories and identify
differences between organizations. Among the key findings is that the
analyzed organizations introduce cross-team security-focused roles col-
laborating with agile teams and use automation where possible. More-
over, security governance is still driven top-down, which conflicts with
team autonomy in agile settings.

Keywords: Large-scale agile · Security · Software development

1 Introduction

The use of agile methods is omnipresent. According to the most recent “State
of Agile Report”, agile adoption within software development teams has surged
from 37% in 2020 to 86% in 2021 [11]. Agile development methods are also
increasingly applied to large projects and companies with numerous software
development teams working together [12]. Companies thereby aim to benefit
from the advantages of these methods, such as enhanced adaptability to fast-
evolving environments and accelerated time-to-market [37].

c© The Author(s) 2022
V. Stray et al. (Eds.): XP 2022, LNBIP 445, pp. 203–219, 2022.
https://doi.org/10.1007/978-3-031-08169-9_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-08169-9_13&domain=pdf
https://doi.org/10.1007/978-3-031-08169-9_13

204 S. Nägele et al.

At the same time, software security is becoming an increasingly important
concern due to stricter legislation and growing fines [9]. In addition, there is
a growing intrinsic motivation for companies to pay more attention to secu-
rity. As a global risk management survey with thousands of participating com-
panies shows, cyberattacks, data breaches, and reputational damage are the
most significant perceived risks to business success [4]. The global Covid-19 pan-
demic further exacerbates the complexity and growing number of cyberattacks
as changing work conditions and consumer behavior further increase the depen-
dence on Information Technology (IT) [14]. Despite the importance of software
security in scaled agile environments, there are only few empirical studies, and
more empirical research is needed [1,31,48].

This study contributes to the empirical evidence on how organizations tackle
software security in large-scale agile development (LSAD). The primary research
question we strive to answer is: How is security approached in LSAD, and
what are recurring best practices and challenges? We provide a cross-
industry overview based on literature and interviews with nine experts from
nine companies in five industries. The remainder of this paper is organized as
follows: Section 2 presents the theoretical background and related work. Section
3 explains the research methodology. Section 4 summarizes the results, which
are discussed in Sect. 5. Section 6 presents the conclusion and outlook.

2 Background and Related Work

We follow Dikert et al. in defining LSAD, who speak of a minimum of 50 people
or at least six teams [12].

One of the earlier related works is by Bartsch [45], who studied security
in agile development by interviewing ten practitioners but does not explicitly
address LSAD contexts yet. Relevant for our work is the more recent study by
Amber et al. who identified three unique security challenges in LSAD: “(i) align-
ment of security objectives in a distributed setting; (ii) developing a common
understanding of roles and responsibilities in security activities; and (iii) inte-
gration of low-overhead security testing tools” [48]. Our key findings discuss how
our results relate to these challenges.

In addition, valuable related work includes widespread software security
maturity frameworks, e.g., the Building Security in Maturity Model (BSIMM)
[28] and the OWASP Software Assurance Maturity Model (SAMM) [35]. These
are mainly driven by practical experience from the industry and provide a highly
comprehensive insight into secure software development initiatives. Even if they
do not explicitly address LSAD and describe themselves as agnostic of the devel-
opment approach, many of the listed organizations working with these models
fulfill the definition of LSAD. However, we base our study on a literature review
to achieve unbiased research independent of these models.

In the following subsections, we present the theoretical background and
related work using four categories that emerged from our literature review and
can be mapped to Amber et al.’s [48] challenges. We also use these categories to
structure our interviews and results.

Current State of Security in Large-Scale Agile Development 205

Structure of the Agile Program. Poller et al. [38] emphasize that considering
organizational structures, e.g., roles and their interaction, is vital for promot-
ing security approaches and governing agile teams in LSAD. Alsaqaf et al. [1]
found in a systematic literature review that additional roles are introduced in
LSAD to address quality requirements, e.g., a security architect. The authors
emphasize that further empirical research on such roles is needed. Newton
et al. [33] discovered security-related communities of practices, while Rindell
et al. [39] observed an internal software security group that, e.g., carries out
security reviews. Steghöfer et al. and Dännart et al. note that LSAD frame-
works do not provide security compliance out-of-the-box [10,46]. Moyon et al.
[30] recommend further adaptions, e.g., by introducing security roles. Oyetoyan
et al. [36] describe a group of security experts supporting with, e.g., adherence
to security standards and organizing security audits. The proposal of Boström
et al. [8] includes a team of security engineers, e.g., to support the definition of
security stories and risk assessments together with product teams.

Also, publications from software companies such as SAP [42], Microsoft [27]
and Google [15] show that dedicated security roles are being used in practice,
although the exact range of tasks is not always explained in detail. We thereby
derive that the structure of the agile program is vital for addressing security in
LSAD.

Security Governance. Security governance can be seen as a subset of IT gov-
ernance, often characterized by top-down control [17]. Despite limited empirical
studies on IT governance in agile and lean environments, its importance has
been recognized [47]. The literature recommends moving to agile and lean gov-
ernance approaches to better align governance and agility. The term lean gov-
ernance is more frequently used in industry publications such as white papers
and large-scale agile frameworks [3,43]. Horlach et al. [16] found that tradi-
tional governance structures hinder autonomous agile teams in LSAD. Ambler
[2] stated early on that a lean form of IT governance is required to achieve agility
in software development at scale. Vejseli et al. [49] found that agile IT gover-
nance positively affects business-IT alignment and, thus, enterprise performance,
similar to traditional governance. By fostering the necessary engagement of all
parts of the business, agile governance helps increase business agility [23]. Agile
governance focuses on enabling and motivating development teams through col-
laborative and supportive practices [2]. Instead of top-down control, it promotes
bottom-up engagement, autonomy, and self-organization [3,24]. Because of this
tension, we derive security governance as an essential category.

Security Activities. We understand security activities as a set of practices
that directly or indirectly enhance software security. A typical example is threat
modeling. It is a component of security risk analysis [25] and supports the identi-
fication of security risks and appropriate measures [44]. Other common examples
are penetration testing [5] and code reviews [41]. Multiple researchers agree that
incorporating security activities in agile development is feasible and necessary
[31,33]. Beznosov and Kruchten [7] propose integration strategies depending on
the match between security practices and agile principles. As stated by Keramati

206 S. Nägele et al.

and Mirian-Hosseinabadi, security activities are integrated with agile software
development based on balancing “the costs of decreased level of agility [...] and
benefits from developing more secure systems” [19]. Hence, we derive the cate-
gory of security activities for our interviews.

Tool-Support and Automation. In their case study, Barbosa and Sampaio
note that the “demand to build software quickly and cost-effectively” impedes
the integration of agile security approaches due to the associated cost and time
effort [6]. Therefore, automating manual, work-intensive tasks is crucial to reduce
the friction between security and iterative deployment practices. In recent years,
the term DevSecOps matured from a buzzword to a well-established movement
[32]. One of the primary goals is integrating security activities and practices into
development pipelines facilitated by security automation tools [29]. Researchers
emphasize automating repetitive manual tasks, like security code reviews, to
ensure security while sustaining a high velocity in agile software development
[18,34]. Examples of security automation include static and dynamic application
security testing. Since reducing manual effort and a more frictionless integration
of security activities is critical in scaled environments, we derive tool-support and
automation as the fourth category for our interviews.

3 Research Methodology

We present the three stages of our methodological process below: study design,
data collection, and analysis.

Study Design. To gain cross-case insights into our research question, we
deemed an interview study the most suitable primary research method. We
excluded a multiple case study because not enough cases provided multiple
sources for data collection due to the topic’s sensitive nature. To allow for a bet-
ter aggregation and comparability of results, we roughly structured the interview
with the categorization described in the background and related work. Before
conducting the actual interview study, we performed four preliminary expert
interviews in two organizations to discuss and evaluate the categorization. In
each category, we used semi-structured questions, which allow for enough free-
dom in the answers and the possibility for individual adjustments during the
interview [13].

In contrast to expert-focused surveys, we also considered the experts’ cur-
rent organizations, i.e., we did not select the experts solely based on their role,
competency, and experience, but an important factor was the organization they
currently work for. The organizations must fulfill the previously described defi-
nition of LSAD.

Data Collection. For the interview study data collection, experts from nine
companies participated in our study.

We collected data across five industries to ensure better generalizability of
results. The following sectors are represented based on the main product focus

Current State of Security in Large-Scale Agile Development 207

of the case company: IT and software development, software development con-
sulting, media, insurance, and automotive. Two researchers interviewed six of
the nine interviewees. Three were interviewed by one researcher. After obtain-
ing explicit consent to record the interviews for transcription purposes, we used
online video conferencing tools and recorded all interviews. On average, the
respondents had about six years of experience with LSAD, with a minimum of
three years and a maximum of fifteen years. The experts’ roles included secu-
rity leads of agile programs, security engineers and security champions, an IT
(security) consultant, an IT (security) architect, and a product owner (PO).
To protect the anonymity of our interviewees, we intentionally do not provide
further details.

Data Analysis. There are several standardized methods for the analysis of
qualitative material. We used the Kuckartz [20] model to analyze our interview
study data because it offers a deductive-inductive possibility for coding clas-
sification formation. We conducted the content-structuring qualitative content
analysis using the qualitative data analysis software MAXQDA [26]. The two
researchers who performed the interviews also conducted the analysis.

4 Interview Results

In this section, we present the main findings from the data analysis of the expert
interviews. We first overview our results, then summarize framework usage and
challenges, followed by the findings in the four categories of our interviews.
To ensure the anonymity of the participating organizations, we intentionally
describe the results only in an aggregated format and not specific for each case,
except for Table 1.

4.1 Overview

Table 1 contains a summary of the results. We identified and selected recurring
best practices that emerged from the interview analysis. We classify and visualize
them according to their usage in each organization through harvey balls. The
table does not represent a complete summary, but we filtered our results for
two main cases. First, the concepts with the highest recurrence, and second,
concepts with the highest ratio of conflicting viewpoints among the experts.
We thus prioritize displaying the most important findings based on these two
criteria.

4.2 Frameworks and Challenges

Scaled Agile Framework Usage. In the beginning, we asked about the scaled
agile frameworks used in the organizations. Two experts stated that their orga-
nizations adhere to the guidelines of a specific framework, in one case LeSS [22],
in the other case SAFe [43]. A third and fourth expert described a more hetero-
geneous agile landscape where teams choose frameworks individually depending

208 S. Nägele et al.

Table 1. Overview of recurring best practices

01 02 03 04 05 06 07 08 09

Integration of security activities

Security self-assesment

Bug bounty

Threat modeling

Penetration testing

Security audits

Security code review

Tool-support and automation

DevSecOps pipeline

Static code analysis

Vulnerability scanning

Dependency checks

Security governance

Bottom-up

Top-down

Reusable components

Organizational structure

Security champion

Security engineers or architects

Central security teams

Communities of practice

none: | rare or planned: | partial: | frequent: | complete:
no classification possible: empty.

on the requirements. Two experts stated that no “textbook framework” is being
used for scaled agility. The remaining three experts indicated that their organi-
zations built their own frameworks, including parts of established frameworks.

Security Challenges in LSAD. Initially, we also asked the participants about
the main challenges related to security in their LSAD environment. However, we
will only present challenges mentioned by at least three independent experts.
The first challenge is the lack of personnel with sufficient experience in both
security (governance) and agile software development. The scaled agile environ-
ment amplifies the problem because centralized security teams have frequent
contact with agile teams due to short development cycles. Also, the expected
response times of security experts to inquiries of agile teams are lower, resulting

Current State of Security in Large-Scale Agile Development 209

in a higher pressure on central security experts and possible frictions and delays
in the development process.

The second challenge is the conflict between security governance and team
autonomy when coordinating many teams. Teams should work as autonomously
as possible, yet security policies and standards must be defined and managed.
Scaling makes it challenging to monitor and control, as it is no longer possible
to “look over the shoulders of the developers”, as one expert stated.

4.3 Organizational Structure

All interviewed experts report that their organization is performing some sort
of structural adaptations of their agile programs due to a higher relevance of
security. Figure 1 shows a generalized summary of the results.

Fig. 1. Overview of organizational structure of agile programs

Centralized Security Teams. A common theme between the experts, with one
exception, is that their organizations leverage existing central security teams to
work with agile programs. These teams include individuals dedicated to secu-
rity, e.g., penetration testers, security analysts, or information security officers.
Centralized teams set overarching security quality criteria for deployments of
software product increments and perform security verification. They also iden-
tify and handle compliance issues, perform risk analyses and security reviews
(e.g., code review or penetration tests). Some activities such as threat model-
ing are performed collaboratively with individual development teams. This col-
laboration is beneficial for training purposes. The achieved knowledge transfer
might enable agile teams to perform these activities by themselves in the future,
reducing the workload of central teams. Depending on the criticality and secu-
rity requirements of the software artifact, some of the analyzed organizations use
central security teams for auditing and approving release-ready changes before
deployments to production environments. Both threat modeling and reviews are
discussed in more detail in Sect. 4.6. Members of central teams are often focused

210 S. Nägele et al.

on a product area or specialized in a specific security topic or technology. As
mentioned in the challenges in Sect. 4.2, central teams face scaling issues and
become a bottleneck when collaborating with agile development teams.

This bottleneck motivates the introduction of new roles within the agile pro-
grams. The goal is to reduce the workload on central teams and, more impor-
tantly, increase the security capabilities and thereby the autonomy of agile teams.
Based on the collected data, we distinguish between two types of security-focused
roles, team-internal and team-external.

Team-Internal Roles. These agile team members continue to be developers
but receive additional security training. The analyzed cases use designations such
as security champion, security specialist or secure software engineer, hereafter
referred to only as security champion (SC). They provide the benefit of increasing
security awareness. As developers, they know their products and are also familiar
with security standards and best practices. One interviewee stressed that it is
essential to clarify that the whole team is still responsible for the security of
their application. The SC takes the lead on security activities, serves as a fixed
contact person to communicate with team-external parties, and advises other
team members and the PO. Three cases do not use an SC and rely more on
other measures such as automated security testing.

Team-External Roles. They are referred to as security engineers, security
consultants or security advisors, hereafter referred to only as security engineer
(SE). They support two to twenty teams with security expertise and are often
placed between the development teams and a central security department, acting
as facilitators. In some organizations, SEs conduct threat modeling workshops
with development teams. In other cases, this is the responsibility of the SC,
to prevent bottlenecks. SEs may also analyze laws, policies, and security best
practices and ensure knowledge transfer to development teams. They specialize
in a software stack or are assigned to specific development teams. Two of the
analyzed cases currently have no plans to introduce a specialized security role.
A solution architect is responsible instead.

Cross-Team Collaboration. Security knowledge sharing takes place through
regular meetings and training. Some organizations use the concept of communi-
ties of practices. Others unite the previously described roles in so-called guilds or
chapters. A difference is in the scope, frequency, and target audience for which
these exchanges occur. Moreover, organizations use corporate social networks
and wikis to share and document security knowledge and search for experts.
However, knowledge sharing remains a challenge. Existing documentation is not
always helpful due to its complexity or lack of specific details for certain com-
binations of platforms and software. According to one expert, providing code
examples for security topics is most helpful for developers.

4.4 Security Governance

All analyzed companies mainly rely on a top-down governance approach. In
most cases, centralized security governance teams create company-wide stan-

Current State of Security in Large-Scale Agile Development 211

dards from applicable regulations, international standards, and best practices.
The companies differ in how development teams can participate in shaping secu-
rity governance. One interviewee explicitly stresses that individual teams should
not influence security governance because they should prioritize the develop-
ment of their product. Others grant development teams a limited say in the
governing standards, allowing a partly bottom-up approach. In those cases, agile
teams support shaping internal standards adjustments with sufficient justifica-
tion. A promising approach for effective security governance in LSAD is provid-
ing standardized, security-focused components that teams can reuse. Intervie-
wees mentioned that these components also simplify application security verifica-
tion. Stated examples are identity and access management, validation of inputs,
encryption of data, or secure communication. Challenges include outdated doc-
umentation, uncertainties about correct usage, and lack of awareness.

4.5 Tool Support and Automation

All interviewees stated that their companies use DevSecOps pipelines for their
applications’ build and deployment phases.

Static Application Security Testing. A common denominator is the use
of static code analysis tools, which are mandatory to varying degrees. In some
companies, the usage depends on project requirements and the development
team’s decisions. In others, it is compulsory for all applications. Depending on
the criticality of the findings, teams have to meet different thresholds to deploy
changes to production. False positives are a commonly reported challenge of
static security testing. They are especially problematic because they may lead
to developers ignoring analysis results. A particular form of static analysis is
using automated dependency checks, e.g., to look for the usage of outdated
open-source libraries that could introduce new vulnerabilities into the product.

Dynamic Application Security Testing. The use of dynamic application
security testing is not yet as mature as static code analysis. The experts stated
that there are initiatives to evaluate and establish dynamic application security
testing tools. They aim to automate parts of manual penetration tests. Fur-
thermore, the experts mentioned the use of regular vulnerability scans, e.g., to
check the infrastructure of the development teams for unnecessary open ports,
insecure TLS versions or cipher suites, insecure HTTP header, or other security
misconfigurations. Usually, central teams provide these scanning tools. Reports
are immediately made available to development teams or at regular intervals,
depending on the criticality.

Metrics and Quality Gates. Automation tools that are part of a DevSecOps
pipeline provide metrics, e.g., for automated deployment decisions. Those metrics
might include the number of open findings, the average criticality, or a total score.
For these metrics, the experts stress the importance of agreeing on thresholds
for quality gates. These thresholds set the boundary of whether an application is
likely to be secure enough to release to production. Due to the limited capabilities

212 S. Nägele et al.

of automated tools, experts stressed not to rely exclusively on automation. As an
outlook, one interviewee noted that the increasing use of machine learning might
soon blur the line between the areas of security testing that can be automated
and those that cannot.

4.6 Integration of Security Activities

Performing concrete activities to directly or indirectly increase the degree of secu-
rity of a software product is crucial. The focus of the interviews was especially on
which activities are most suitable in LSAD environments, and discussing their
benefits and drawbacks. The following activities were the most discussed ones
by our interviewed experts.

Code Reviews and Pair Programming. Most companies use code reviews
as a form of manual intervention in developing secure applications. In two cases,
pair programming is used instead as the primary quality assurance activity.
A reported challenge in multiple analyzed cases is that code reviews usually
deal with code quality in general (except for dedicated security code reviews),
and security aspects may frequently fall short. One expert explained that they
focus on automated static code analysis due to the high time consumption of
code reviews. Also, other experts mentioned that code reviews are a trade-off
between cost and the prospect of higher code quality. Nevertheless, one expert
calls code reviews “the most pragmatic approach to developing secure software”.
The extent and frequency of code reviews vary. Some companies decide based
on the criticality and required level of protection of the software product, while
others leave it to the development teams. Especially when deploying critical code
to production, organizations tend to mandate code reviews. Experts mentioned
that it would be helpful to conduct security code reviews only if there was a
security-relevant change. However, the crux lies in identifying those relevant
changes, but automation may help in the future.

Penetration Tests and Bug Bounty Programs. All case companies regu-
larly perform penetration tests. Both internal teams, as well as contractors, are
used for this purpose. The frequency and scope vary depending on the product’s
criticality and size. The primary reported challenge of penetration testing is the
lack of continuity because of the necessary preparation and follow-up work. Short
penetration tests that only assess the changes of a smaller product increment
are usually not seen as economically viable. Bug bounty programs are a valuable
alternative to detect vulnerabilities continuously and provide the advantage of
scaling through crowd-sourced security testers.

Security Reviews and Audits. Companies use security reviews to assess com-
pliance with internal and external regulations. Depending on the criticality of the
application, the audit frequency varies from quarterly to yearly. Reviews might
include assessing system architecture or security documentation, code reviews,
or penetration tests. A distinction can be made between pre-deployment and
post-deployment audits. A hybrid approach is also possible, e.g., regularly using

Current State of Security in Large-Scale Agile Development 213

post-deployment audits and applying pre-deployment controls every few sprints,
or only if a product recently failed security audits. For low-risk applications,
code can be deployed before all checks have been performed. When assessing the
compliance of an application with given standards, respondents pointed to the
commitment to guidelines. Some are merely recommendations, while others are
considered indispensable.

Threat Modeling. Because of its good fit for iterative software development,
threat modeling has a high priority for the interviewees. It can be performed
during the initial design phase. For continuous integration into short sprints,
delta threat modeling is performed. Delta threat modeling focuses on changes of
the increment. The results of threat modeling can be used to prioritize specific
components for code reviews or penetration testing.

Security Self-assessments. There are two main usages for security self-
assessments. First, to determine whether the product in development is com-
pliant with policies and guidelines. Second, to determine the security relevance
and criticality. Self-assessments can be an efficient tool at scale because they
delegate responsibility to the teams. One interviewee stressed that the goal is to
keep the number of validations by team-external stakeholders as low as possible.
A benefit of self-assessments is the creation of security awareness. The concept
of “comply or explain” was also mentioned. Developers may explain where they
have made a conscious decision not to meet a requirement. Depending on the
criticality, this might be considered during risk management. One organization
deliberately avoids self-assessments because they are too time-consuming.

Security Risk Management. A recurring aspect in the interviews is the possi-
bility to release or keep operating software with certain security risks or compli-
ance issues, often referred to as “risk acceptances”. A PO has to take responsi-
bility for the risk and systematically document it. A SC or SE usually supports
the PO to identify and report risks proactively. Furthermore, risks can also
result from other activities, e.g., threat modeling, penetration testing, or secu-
rity reviews. Some teams perform and document risk assessments themselves,
e.g., as attributes or flags of their feature tickets or user stories.

Security Documentation. On the on hand, experts stated that extensive secu-
rity documentation is often not feasible for frequent product iterations. There-
fore, companies evaluate tools to automatically create documentation, e.g., risk
reports generated from threat models. On the other hand, experts explained that
incrementally adapting and extending existing documentation with every sprint
is feasible. They suggested using existing tools to include security requirements,
e.g., issue tracking software.

5 Discussion

We answer our research question by discussing the key findings and then critically
describe the limitations.

214 S. Nägele et al.

5.1 Key Findings

We identified two current challenges specific to security in LSAD that at least
three experts mentioned. The first challenge is the lack of qualified personnel with
sufficient experience in both security (governance) and agile software develop-
ment. This challenge amplifies in LSAD due to the larger number of teams. The
second challenge is the conflict between security governance and team autonomy
when coordinating many teams.

An essential aspect addressing the first identified challenge is the structure of
the agile program. Our findings show that all analyzed cases introduce additional
security roles, as recommended in the literature. We were able to identify the use
of central security teams, roles within the development team, and roles outside
of a team. Furthermore, we show that some organizations are not leveraging
team-internal security roles, such as a SC. Nevertheless, these roles might be
most effective long-term because they enable teams to perform more security
activities independently, resulting in more autonomy. To support agile teams, a
solid DevSecOps pipeline with static and dynamic application security testing
tools is indispensable.

The second challenge fits well with our findings in the security governance
category. In all of the analyzed cases, security governance is mainly driven top-
down, in contrast to the recommendations from the literature. However, bottom-
up approaches are beginning to establish, e.g., development team members gath-
ering in dedicated security communities. In our opinion, leaving the definition
of security standards up to individual teams results in substantial, economically
unjustifiable efforts and might result in conflicts of interest. A certain level of top-
down control is still necessary, e.g., to prepare for external audits. Nevertheless,
agile teams should be able to influence the security governance decision-making,
and top-down governance should partly shift to self-governance. The described
security roles provide a good starting point for building the necessary compe-
tency in and around agile teams. This shift could be a way to find the right
balance between autonomy and control, consequently bringing closer security
governance and LSAD.

Finally, we would like to place our results in the context of the security
challenges described by Amber et al. [48], and existing software security matu-
rity models. Our findings regarding the structure of the agile program, security
governance, and security activities provide more clarity on how to address the
challenge of aligning security objectives in a distributed setting, and contribute
to solving the challenge of a common understanding of roles and responsibili-
ties. Our results in the tool-support and automation category relate to the third
challenge described by Amber et al., which is “the integration of low-overhead
security testing tools” [48].

We identified common patterns between our results and established software
security maturity models. For example, the BSIMM [28] identifies so-called soft-
ware security groups in the studied organizations, which are described very simi-
larly to the observed centralized security teams in our study. Another example is
the satellite role, whose description is largely consistent with the team-internal

Current State of Security in Large-Scale Agile Development 215

roles reported in our study. In this particular aspect, our study provides even
more granularity by identifying and describing the team-external roles, which
are even more widespread than the team-internal roles in the LSAD environ-
ments analyzed in this study. Further research on the similarities and differences
between our results and software security maturity frameworks could lead to
additional interesting findings.

5.2 Limitations

Even though we conducted an interview study, some of the common limitations
of case studies described by Runeson and Höst [40] are also relevant for our
study and help to structure our limitations. We addressed the threat of con-
struct validity by clarifying any ambiguity directly during the conversation with
the interviewees. To overcome the threat of external validity, which refers to a
limited generalizability of results, we based our interviews on scientific literature
and conducted the interviews in nine organizations from five industries. How-
ever, since we interviewed one expert at each company, we have only a limited
picture of each organization. Companies are rarely homogeneous enough for one
expert to grasp the entire situation. We countered this by designing our ques-
tions to identify overarching patterns within an organization. Additionally, we
encouraged our interviewees to keep generalizability in mind. Moreover, the total
number of interviewees might be considered relatively small. However, we had
already reached a certain level of saturation in the sense that the data collected
in the last few interviews became increasingly redundant compared to the data
previously collected. To ensure reliability, we recorded, transcribed and coded the
interviews. This analysis was documented, validated and discussed by the two
researchers. Finally, typical problems arise when conducting interviews. That is
why we followed the guidelines for good interviews by Kvale [21].

6 Conclusion and Future Work

Addressing security in LSAD is a significant challenge. Despite the importance,
there is a paucity of research. Therefore, this paper provides insights into the
research question of how security is addressed in LSAD by presenting the results
of an interview study. We conducted a literature review to categorize the research
topic and interview guide, resulting in four categories: agile program structure,
security governance, security activities, and tool support and automation. Our
interviews were conducted with nine experts from nine organizations in five
industries. One of the key findings is that organizations use centralized security
teams, team-internal and team-external security roles. In addition, organizations
are using automation for security testing and integrating security activities such
as threat modeling or code reviews. Security governance is mainly top-down,
while our recommendation is to shift attention to bottom-up approaches. Our
findings contribute to raising awareness of the areas to focus on when developing
secure software at scale. Practitioners could leverage our results by discussing
and applying the identified best practices in their organizations.

216 S. Nägele et al.

Our research could serve as the basis for further scientific investigation. The
recurring best practices could be analyzed for their relative impact and effec-
tiveness. Due to the complexity of the research topic, further research could
also identify and explore other important aspects regarding security in LSAD,
in addition to the four categories identified in our work. Moreover, as we sug-
gest a shift toward more bottom-up security governance, a more in-depth study
or evaluation of existing approaches could be conducted. For example, further
research could focus on the impact of relevant secure software development matu-
rity models to adapt security governance and compliance processes to agile at
scale. More mature development teams may be more capable to self-govern their
security posture, and their organizations may be able to afford less top-down
control.

Funding. This work has been supported by the German Federal Ministry of Education

and Research (BMBF) Software Campus grant 01IS17049.

References

1. Alsaqaf, W., Daneva, M., Wieringa, R.: Quality requirements in large-scale dis-
tributed agile projects – a systematic literature review. In: Grünbacher, P., Perini,
A. (eds.) REFSQ 2017. LNCS, vol. 10153, pp. 219–234. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-54045-0 17

2. Ambler, S.W.: Agile software development at scale. In: Meyer, B., Nawrocki, J.R.,
Walter, B. (eds.) CEE-SET 2007. LNCS, vol. 5082, pp. 1–12. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-85279-7 1

3. Ambler, S.W., Lines, M.: Choose Your WoW. Boston (2020)
4. Aon PLC: 2019 global risk mangement survey - report — Aon (2019). https://

www.aon.com/getmedia/8d5ad510-1ae5-4d2b-a3d0-e241181da882/2019-Aon-
Global-Risk-Management-Survey-Report.aspx. Accessed 21 Feb 2021

5. Arkin, B., Stender, S., McGraw, G.: Software penetration testing. IEEE Secur.
Priv. 3, 84–87 (2005)

6. Barbosa, D.A., Sampaio, S.: Guide to the support for the enhancement of security
measures in agile projects. In: 2015 6th Brazilian Workshop on Agile Methods
(WBMA), pp. 25–31 (2015)

7. Beznosov, K., Kruchten, P.: Towards agile security assurance. In: Raskin, V. (ed.)
Proceedings of the 2004 Workshop on New Security Paradigms, ACM Conferences,
p. 47. ACM, New York (2004)

8. Boström, G., Wäyrynen, J., Bodén, M., Beznosov, K., Kruchten, P.: Extending
XP practices to support security requirements engineering. In: Bruschi, D. (ed.)
Proceedings of the 2006 International Workshop on Software Engineering for Secure
Systems, ACM Conferences, p. 11. ACM, New York (2006)

9. Breaux, T.D., Anton, A.I.: Analyzing regulatory rules for privacy and security
requirements. IEEE Trans. Software Eng. 34, 5–20 (2008)

10. Dännart, S., Moyón, F., Beckers, K.: An assessment model for continuous secu-
rity compliance in large scale agile environments: exploratory paper. In: Advanced
Information Systems Engineering, pp. 529–544 (2019)

11. Digital.ai: 15th annual state of agile report (2021). https://digital.ai/resource-
center/analyst-reports/state-of-agile-report. Accessed 21 Feb 2021

https://doi.org/10.1007/978-3-319-54045-0_17
https://doi.org/10.1007/978-3-540-85279-7_1
https://www.aon.com/getmedia/8d5ad510-1ae5-4d2b-a3d0-e241181da882/2019-Aon-Global-Risk-Management-Survey-Report.aspx
https://www.aon.com/getmedia/8d5ad510-1ae5-4d2b-a3d0-e241181da882/2019-Aon-Global-Risk-Management-Survey-Report.aspx
https://www.aon.com/getmedia/8d5ad510-1ae5-4d2b-a3d0-e241181da882/2019-Aon-Global-Risk-Management-Survey-Report.aspx
https://digital.ai/resource-center/analyst-reports/state-of-agile-report
https://digital.ai/resource-center/analyst-reports/state-of-agile-report

Current State of Security in Large-Scale Agile Development 217

12. Dikert, K., Paasivaara, M., Lassenius, C.: Challenges and success factors for large-
scale agile transformations: a systematic literature review. J. Syst. Softw. 119,
87–108 (2016)

13. Döring, N., Bortz, J.: Forschungsmethoden und Evaluation in den Sozial- und
Humanwissenschaften. S, Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-642-41089-5

14. E. U. A. for Cyber Security.: Enisa threat landscape 2020 (2020). https://www.
enisa.europa.eu/topics/threat-risk-management/threats-and-trends. Accessed 21
Feb 2021

15. Google: Google security whitepaper - google cloud (2019). https://cloud.google.
com/docs/security/overview/whitepaper. Accessed 21 Feb 2021

16. Horlach, B., Böhmann, T., Schirmer, I., Drews, P.: It governance in scaling agile
frameworks. In: Tagungsband Multikonferenz Wirtschaftsinformatik 2018 (2018)

17. IT Governance Institute: Information Security Governance: Guidance for Boards
of Directors and Executive Management. IT Pro, IT Governance Institute (2006)

18. Johnson, B., Song, Y., Murphy-Hill, E., Bowdidge, R.: Why don’t software develop-
ers use static analysis tools to find bugs? In: Proceedings of the 2013 International
Conference on Software Engineering, ICSE 2013, pp. 672–681. IEEE Press (2013)

19. Keramati, H., Mirian-Hosseinabadi, S.: Integrating software development security
activities with agile methodologies. In: 2008 IEEE/ACS International Conference
on Computer Systems and Applications, pp. 749–754 (2008)

20. Kuckartz, U.: Qualitative Inhaltsanalyse: Methoden, Praxis, Computerun-
terstützung. Grundlagentexte Methoden, Beltz Juventa, Weinheim and Basel, 4.
auflage edn. (2018)

21. Kvale, S.: Doing Interviews, The Sage Qualitative Research Kit. Flick, U. (ed.),
vol. Pt. 2. SAGE, Los Angeles (2007)

22. LeSS: Overview - large scale scrum (less) (2022). https://less.works/. Accessed 21
Feb 2021

23. Luna, A., Kruchten, P., E. Pedrosa, M.L.D., Almeida Neto, H.R., Moura, H.P.M.:
State of the art of agile governance: a systematic review. Int. J. Comput. Sci. Inf.
Technol. 6, 121–141 (2014)

24. Luna, A., Kruchten, P., Riccio, E., Moura, H.: Foundations for an agile gover-
nance manifesto: a bridge for business agility. In: 13th International Conference on
Management of Technology and Information Systems, São Paulo, SP, Brazil (2016)

25. Ma, Z., Schmittner, C.: Threat modeling for automotive security analysis. Security
Technology 2016, pp. 333–339 (2016)

26. MAXQDA: Maxqda — all-in-one qualitative & mixed methods data analysis tool
(2022). https://www.maxqda.com/. Accessed 21 Feb 2021

27. Microsoft IT: Security for modern engineering: information security & risk manage-
ment (2016). https://www.microsoft.com/en-us/download/details.aspx?id=54092.
Accessed 21 Feb 2021

28. Migues, S., Erlikhman, E., Ewers, J., Nassery, K.: Building Security in Maturity
Model (BSIMM) Report - Version 12 (2021). https://www.bsimm.com/

29. Mohan, V., Othmane, L.B.: SecDevOps: is it a marketing buzzword? - Mapping
research on security in DevOps. In: 2016 11th International Conference on Avail-
ability, Reliability and Security (ARES), pp. 542–547. IEEE (2016)

30. Moyón, F., Méndez Fernández, D., Beckers, K., Klepper, S.: How to integrate secu-
rity compliance requirements with agile software engineering at scale? In: Product-
Focused Software Process Improvement, pp. 69–87 (2020)

https://doi.org/10.1007/978-3-642-41089-5
https://doi.org/10.1007/978-3-642-41089-5
https://www.enisa.europa.eu/topics/threat-risk-management/threats-and-trends
https://www.enisa.europa.eu/topics/threat-risk-management/threats-and-trends
https://cloud.google.com/docs/security/overview/whitepaper
https://cloud.google.com/docs/security/overview/whitepaper
https://less.works/
https://www.maxqda.com/
https://www.microsoft.com/en-us/download/details.aspx?id=54092
https://www.bsimm.com/

218 S. Nägele et al.

31. Moyón, F., Almeida, P., Riofŕıo, D., Méndez Fernández, D., Kalinowski, M.: Secu-
rity compliance in agile software development: a systematic mapping study. In:
2020 46th Euromicro Conference on Software Engineering and Advanced Applica-
tions (SEAA), pp. 413–420 (2020)

32. Myrbakken, H., Colomo-Palacios, R.: DevSecOps: a multivocal literature review.
In: Mas, A., Mesquida, A., O’Connor, R.V., Rout, T., Dorling, A. (eds.) SPICE
2017. CCIS, vol. 770, pp. 17–29. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-67383-7 2

33. Newton, N., Anslow, C., Drechsler, A.: Information security in agile software devel-
opment projects: a critical success factor perspective. In: Proceedings of the 27th
European Conference on Information Systems (ECIS) (2019)

34. Nguyen Quang Do, L., Wright, J., Karim, A.: Why do software developers use
static analysis tools? A user-centered study of developer needs and motivations.
IEEE Trans. Softw. Eng. 48, 835–847 (2020)

35. OWASP Foundation: OWASP Software Assurance Maturity Model - Version 2.0
(2020). https://owaspsamm.org/model/

36. Oyetoyan, T.D., Cruzes, D.S., Jaatun, M.G.: An empirical study on the relationship
between software security skills, usage and training needs in agile settings. In: 2016
11th International Conference on Availability, Reliability and Security (ARES), pp.
548–555 (2016)

37. Petersen, K., Wohlin, C.: The effect of moving from a plan-driven to an incremental
software development approach with agile practices. Empir. Softw. Eng. 15, 654–
693 (2010)

38. Poller, A., Kocksch, L., Türpe, S., Epp, F.A., Kinder-Kurlanda, K.: Can security
become a routine? In: Lee, C.P. (ed.) Proceedings of the 2017 ACM Conference
on Computer Supported Cooperative Work and Social Computing, pp. 2489–2503,
ACM Digital Library. ACM, New York (2017)

39. Rindell, K., Ruohonen, J., Hyrynsalmi, S.: Surveying secure software development
practices in Finland. In: Proceedings of the 13th International Conference on Avail-
ability, Reliability and Security, ACM Other Conferences, pp. 1–7. ACM, New York
(2018)

40. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research
in software engineering. Empir. Softw. Eng. 14, 131–164 (2009)

41. Sadowski, C., Söderberg, E., Church, L., Sipko, M., Bacchelli, A.: Modern code
review. In: Paulisch, F., Bosch, J. (eds.) Proceedings of the 40th International
Conference on Software Engineering: Software Engineering in Practice, pp. 181–
190. ACM, New York (2018)

42. SAP: The secure software development lifecycle at sap (2020). https://www.sap.
com/documents/2016/03/a248a699-627c-0010-82c7-eda71af511fa.html. Accessed
21 Feb 2021

43. Scaled Agile Framework: Safe 5.0 framework (2022). https://www.
scaledagileframework.com/. Accessed 21 Feb 2021

44. Shostack, A.: Threat Modeling: Designing for Security. Wiley, Indianapolis (2014)
45. Bartsch, S.: Practitioners’ perspectives on security in agile development. In: 2011

Sixth International Conference on Availability, Reliability and Security (ARES),
pp. 479–484 (2011)

46. Steghöfer, J.-P., Knauss, E., Horkoff, J., Wohlrab, R.: Challenges of scaled agile for
safety-critical systems. In: Franch, X., Männistö, T., Mart́ınez-Fernández, S. (eds.)
PROFES 2019. LNCS, vol. 11915, pp. 350–366. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-35333-9 26

https://doi.org/10.1007/978-3-319-67383-7_2
https://doi.org/10.1007/978-3-319-67383-7_2
https://owaspsamm.org/model/
https://www.sap.com/documents/2016/03/a248a699-627c-0010-82c7-eda71af511fa.html
https://www.sap.com/documents/2016/03/a248a699-627c-0010-82c7-eda71af511fa.html
https://www.scaledagileframework.com/
https://www.scaledagileframework.com/
https://doi.org/10.1007/978-3-030-35333-9_26
https://doi.org/10.1007/978-3-030-35333-9_26

Current State of Security in Large-Scale Agile Development 219

47. Sulejman, V.: It governance and its agile dimensions: exploratory research in the
banking sector. In: Proceedings of the 52nd Hawaii International Conference on
System Sciences 2019 (2018)

48. van der Heijden, A., Broasca, C., Serebrenik, A.: An empirical perspective on secu-
rity challenges in large-scale agile software development. In: Oivo, M. (ed.) Pro-
ceedings of the 12th ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement, pp. 1–4. ACM, New York (2018)

49. Vejseli, S., Rossmann, A., Connolly, T.: Agility matters! Agile mechanisms in it
governance and their impact on firm performance. In: Bui, T. (ed.) Proceedings of
the 53rd Hawaii International Conference on System Sciences. Hawaii International
Conference on System Sciences (2020)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Investigating the Current State of Security in Large-Scale Agile Development
	1 Introduction
	2 Background and Related Work
	3 Research Methodology
	4 Interview Results
	4.1 Overview
	4.2 Frameworks and Challenges
	4.3 Organizational Structure
	4.4 Security Governance
	4.5 Tool Support and Automation
	4.6 Integration of Security Activities

	5 Discussion
	5.1 Key Findings
	5.2 Limitations

	6 Conclusion and Future Work
	References

