Skip to main content

Diet, Lifestyle, and AGA/FPHL

  • Chapter
  • First Online:
Androgenetic Alopecia From A to Z

Abstract

Genetic factors, androgens, and follicular micro-inflammation play key roles in causing “androgenic” hair loss (see Chaps. 11 and 14, Vol. 1) In order to affect the course and progression of AGA through diet or lifestyle, the only parameter in AGA that could be “manipulated” is the hormonal one, which includes several sub-components:Only the production and transfer steps could be modified through dietary and lifestyle changes, either towards a favorable decrease or an—unwanted—increase in overall androgen availability. The consumption of androgen-containing foods could exacerbate FPHL in some women, but it is unlikely that men would experience any detrimental effects because of high endogenous androgen levels. In the following sections, those lifestyle factors that could impact the course of AGA/FPHL, either by affecting androgen metabolism or by directly influencing the hair follicle physiology, will be examined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vierhapper H, Nowotny P, Maier H, Waldhausl W. Production rates of dihydrotestosterone in healthy men and women and in men with male pattern baldness: determination by stable isotope/dilution and mass spectrometry. J Clin Endocrinol Metab. 2001;86(12):5762–4.

    CAS  Google Scholar 

  2. Bang HJ, Yang YJ, Lho DS, Lee WY, Sim WY, Chung BC. Comparative studies on level of androgens in hair and plasma with premature male-pattern baldness. J Dermatol Sci. 2004;34(1):11–6.

    CAS  Google Scholar 

  3. Choi MH, Yoo YS, Chung BC. Biochemical roles of testosterone and epitestosterone to 5 alpha-reductase as indicators of male pattern baldness. J Invest Dermatol. 2001;116(1):57–61.

    CAS  Google Scholar 

  4. Poór V, Juricskay S, Telegdy E. Urinary steroids in men with male-pattern alopecia. J Biochem Biophys Methods. 2002;53(1–3):123–30.

    Google Scholar 

  5. Vierhapper H, Maier H, Nowotny P, Waldhäusl W. Production rates of testosterone and of dihydrotestosterone in female pattern hair loss. Metabolism. 2003;52(7):927–9.

    CAS  Google Scholar 

  6. Schmidt JB, Lindmaier A, Spona J. Hormonal parameters in androgenetic hair loss in the male. Dermatologica. 1991;182(4):214–7.

    CAS  Google Scholar 

  7. Demark-Wahnefried W, Lesko SM, Conaway MR, Robertson CN, Clark RV, Lobaugh B, Mathias BJ, Strigo TS, Paulson DF. Serum androgens: associations with prostate cancer risk and hair patterning. J Androl. 1997;18(5):495–500.

    CAS  Google Scholar 

  8. Pitts RL. Serum elevation of dehydroepiandrosterone sulfate associated with male pattern baldness in young men. J Am Acad Dermatol. 1987;16(3 Pt 1):571–3.

    CAS  Google Scholar 

  9. Georgala G, Papasotiriou V, Stavropoulos P. Serum testosterone and sex hormone binding globulin levels in women with androgenetic alopecia. Acta Derm Venereol. 1986;66(6):532–4.

    CAS  Google Scholar 

  10. Miller JA, Darley CR, Karkavitsas K, Kirby JD, Munro DD. Low sex-hormone binding globulin levels in young women with diffuse hair loss. Br J Dermatol. 1982;106(3):331–6.

    CAS  Google Scholar 

  11. Cipriani R, Ruzza G, Foresta C, Veller Fornasa C, Peserico A. Sex hormone-binding globulin and saliva testosterone levels in men with androgenetic alopecia. Br J Dermatol. 1983;109(3):249–52.

    CAS  Google Scholar 

  12. Arias-Santiago S, Gutiérrez-Salmerón MT, Castellote-Caballero L, et al. Androgenetic alopecia and cardiovascular risk factors in men and women: a comparative study. J Am Acad Dermatol. 2010;63(3):420–9.

    Google Scholar 

  13. Narad S, Pande S, Gupta M, Chari S. Hormonal profile in Indian men with premature androgenetic alopecia. Int J Trichology. 2013;5(2):69–72.

    PubMed Central  Google Scholar 

  14. Sanke S, Chander R, Jain A, Garg T, Yadav P. A comparison of the hormonal profile of early androgenetic alopecia in men with the phenotypic equivalent of polycystic ovarian syndrome in women. JAMA Dermatol. 2016;152(9):986–91.

    Google Scholar 

  15. Yeap BB, Alfonso H, Chubb SA, Handelsman DJ, Hankey GJ, Norman PE, Flicker L. Reference ranges and determinants of testosterone, dihydrotestosterone, and estradiol levels measured using liquid chromatography-tandem mass spectrometry in a population-based cohort of older men. J Clin Endocrinol Metab. 2012;97(11):4030–9.

    CAS  Google Scholar 

  16. Lazarou S, Reyes-Vallejo L, Morgentaler A. Wide variability in laboratory reference values for serum testosterone. J Sex Med. 2006;3(6):1085–9.

    CAS  Google Scholar 

  17. Le M, Flores D, May D, Gourley E, Nangia AK. Current practices of measuring and reference range reporting of free and Total testosterone in the United States. J Urol. 2016;195(5):1556–61.

    CAS  Google Scholar 

  18. Riad M, Mogos M, Thangathurai D, Lumb PD. Steroids. Curr Opin Crit Care. 2002;8(4):281–4.

    Google Scholar 

  19. Mostaghel EA. Beyond T and DHT - novel steroid derivatives capable of wild type androgen receptor activation. Int J Biol Sci. 2014;10(6):602–13.

    CAS  PubMed Central  Google Scholar 

  20. Matteri RL, Carroll JA, Dyer CJ. Neuroendocrine responses to stress. In: Moberg GP, Mench JA, editors. The biology of animal stress. CABI Publishing; 2000. p. 43–76.

    Google Scholar 

  21. Miller DB, O’Callaghan JP. Neuroendocrine aspects of the response to stress. Metabolism. 2002;51(6 Suppl 1):5–10.

    CAS  Google Scholar 

  22. Rosmond R, Bjorntorp P. Low cortisol production in chronic stress. The connection stress-somatic disease is a challenge for future research. Lakartidningen. 2000;97(38):4120–4.

    CAS  Google Scholar 

  23. Drapeau V, Therrien F, Richard D, Tremblay A. Is visceral obesity a physiological adaptation to stress? Panminerva Med. 2003;45(3):189–95.

    CAS  Google Scholar 

  24. Oberbeck R, Benschop RJ, Jacobs R, Hosch W, Jetschmann JU, Schurmeyer TH, Schmidt RE, Schedlowski M. Endocrine mechanisms of stress-induced DHEA-secretion. J Endocrinol Invest. 1998;21(3):148–53.

    CAS  Google Scholar 

  25. Müssig K, Remer T, Maser-Gluth C. Brief review: glucocorticoid excretion in obesity. J Steroid Biochem Mol Biol. 2010;121(35):589–93.

    Google Scholar 

  26. Andrew R, Phillips DI, Walker BR. Obesity and gender influence cortisol secretion and metabolism in man. J Clin Endocrinol Metab. 1998;83(5):1806–9.

    CAS  Google Scholar 

  27. Rask E, Walker BR, Söderberg S, Livingstone DE, Eliasson M, Johnson O, Andrew R, Olsson T. Tissue-specific changes in peripheral cortisol metabolism in obese women: increased adipose 11beta-hydroxysteroid dehydrogenase type 1 activity. J Clin Endocrinol Metab. 2002;87(7):3330–6.

    CAS  Google Scholar 

  28. Therrien F, Drapeau V, Lalonde J, Lupien SJ, Beaulieu S, Doré J, Tremblay A, Richard D. Cortisol response to the Trier social stress test in obese and reduced obese individuals. Biol Psychol. 2010;84(2):325–9.

    Google Scholar 

  29. Himmelstein MS, Incollingo Belsky AC, Tomiyama AJ. The weight of stigma: cortisol reactivity to manipulated weight stigma. Obesity (Silver Spring). 2015;23(2):368–74.

    Google Scholar 

  30. Tajar A, Forti G, et al. EMAS Group. Characteristics of secondary, primary, and compensated hypogonadism in aging men: evidence from the European male ageing study. J Clin Endocrinol Metab. 2010;95(4):1810–8.

    CAS  Google Scholar 

  31. Dhindsa S, Miller MG, McWhirter CL, Mager DE, Ghanim H, Chaudhuri A, Dandona P. Testosterone concentrations in diabetic and nondiabetic obese men. Diabetes Care. 2010;33(6):1186–92.

    CAS  PubMed Central  Google Scholar 

  32. Osuna JA, Gómez-Pérez R, Arata-Bellabarba G, Villaroel V. Relationship between BMI, total testosterone, sex hormone-bindingglobulin, leptin, insulin and insulin resistance in obese men. Arch Androl. 2006;52(5):355–61.

    CAS  Google Scholar 

  33. Mogri M, Dhindsa S, Quattrin T, Ghanim H, Dandona P. Testosterone concentrations in young pubertal and post-pubertal obese males. Clin Endocrinol (Oxf). 2012;78(4):593–9.

    Article  CAS  Google Scholar 

  34. Cao J, Chen TM, Hao WJ, Li J, Liu L, Zhu BP, Li XY. Correlation between sex hormone levels and obesity in the elderly male. Aging Male. 2012;15(2):85–9.

    CAS  Google Scholar 

  35. Singer F, Zumoff B. Subnormal serum testosterone levels in male internal medicine residents. Steroids. 1992;57(2):86–9.

    CAS  Google Scholar 

  36. Tegelman R, Carlström K, Pousette A. Hormone levels in male ice hockey players during a 26-hour cup tournament. Int J Androl. 1988;11(5):361–8.

    CAS  Google Scholar 

  37. Schulz P, Walker JP, Peyrin L, Soulier V, Curtin F, Steimer T. Lower sex hormones in men during anticipatory stress. Neuroreport. 1996;7(18):3101–4.

    CAS  Google Scholar 

  38. Nilsson PM, Møller L, Solstad K. Adverse effects of psychosocial stress on gonadal function and insulin levels in middle-aged males. J Intern Med. 1995;237(5):479–86.

    CAS  Google Scholar 

  39. Folsom AR, Jacobs DR, et al. Increase in fasting insulin and glucose over seven years with increasing weight and inactivity of young adults. The CARDIA study. Coronary artery risk development in young adults. Am J Epidemiol. 1996;144(3):235–46.

    CAS  Google Scholar 

  40. Plymate SR, Hoop RC, Jones RE, Matej LA. Regulation of sex hormone-binding globulin production by growth factors. Metabolism. 1990;39(9):967–70.

    CAS  Google Scholar 

  41. Poretsky L, Kalin MF. The gonadotropic function of insulin. Endocr Rev. 1987;8(2):132–41.

    CAS  Google Scholar 

  42. Vandewalle S, Taes Y, Fiers T, Van Helvoirt M, Debode P, Herregods N, Ernst C, Van Caenegem E, Roggen I, Verhelle F, De Schepper J, Kaufman JM. Sex steroids in relation to sexual and skeletal maturation in obese male adolescents. J Clin Endocrinol Metab. 2014;99(8):2977–85.

    CAS  Google Scholar 

  43. Pasquali R, Casimirri F, et al. Insulin regulates testosterone and sex hormone-binding globulin concentrations in adult normal weight and obese men. J Clin Endocrinol Metab. 1995;80(2):654–8.

    CAS  Google Scholar 

  44. Jenkins DJ, Wolever TM, et al. Low-glycemic index starchy foods in the diabetic diet. Am J Clin Nutr. 1988;48(2):248–54.

    CAS  Google Scholar 

  45. Field AE, Colditz GA, Willett WC, Longcope C, McKinlay JB. The relation of smoking, age, relative weight, and dietary intake to serum adrenal steroids, sex hormones, and sex hormone-binding globulin in middle-aged men. J Clin Endocrinol Metab. 1994;79(5):1310–6.

    CAS  Google Scholar 

  46. Tsai EC, Matsumoto AM, Fujimoto WY, Boyko EJ. Association of bioavailable, free, and total testosterone with insulin resistance: influence of sex hormone-binding globulin and body fat. Diabetes Care. 2004;27(4):861–8.

    CAS  Google Scholar 

  47. Cauley JA, Gutai JP, Kuller LH, LeDonne D, Powell JG. The epidemiology of serum sex hormones in post-menopausal women. Am J Epidemiol. 1989;129(6):1120–31.

    CAS  Google Scholar 

  48. Osuna JA, Gómez-Pérez R, Arata-Bellabarba G, Villaroel V. Relationship between BMI, total testosterone, sex hormone-binding-globulin, leptin, insulin and insulin resistance in obese men. Arch Androl. 2006;52(5):355–61.

    CAS  Google Scholar 

  49. Kley HK, Edelmann P, Kruskemper HL. Relationship of plasma sex hormones to different parameters of obesity in male subjects. Metabolism. 1980;29(11):1041–5.

    CAS  Google Scholar 

  50. Dandona P, Dhindsa S. Update: hypogonadotropic hypogonadism in type 2 diabetes and obesity. J Clin Endocrinol Metab. 2011;96(9):2643–51.

    CAS  PubMed Central  Google Scholar 

  51. Newell-Fugate AE. The role of sex steroids in white adipose tissue adipocyte function. Reproduction. 2017;153(4):R133–49.

    CAS  Google Scholar 

  52. Niskanen L, Laaksonen DE, Punnonen K, Mustajoki P, Kaukua J, Rissanen A. Changes in sex hormone-binding globulin and testosterone during weight loss and weight maintenance in abdominally obese men with the metabolic syndrome. Diabetes Obes Metab. 2004;6(3):208–15.

    CAS  Google Scholar 

  53. Makrantonaki E, Vogel K, Fimmel S, Oeff M, Seltmann H, Zouboulis CC. Interplay of IGF-I and 17beta-estradiol at age-specific levels in human sebocytes and fibroblasts in vitro. Exp Gerontol. 2008;43(10):939–46.

    CAS  Google Scholar 

  54. Zouboulis CC, Xia L, Akamatsu H, Seltmann H, Fritsch M, Hornemann S, Rühl R, Chen W, Nau H, Orfanos CE. The human sebocyte culture model provides new insights into development and management of seborrhoea and acne. Dermatology. 1998;196(1):21–31.

    CAS  Google Scholar 

  55. Inaba M, Inaba Y. Relationship of diet to androgenetic alopecia. In: Androgenetic Alopecia. Tokyo: Springer; 1996. p. 197–203.

    Google Scholar 

  56. Bradfield RB. Protein deprivation: comparative response of hair roots, serum protein, and urinary nitrogen. Am J Clin Nutr. 1971;24(4):405–10.

    CAS  Google Scholar 

  57. Bradfield RB, Bailey MA, Margen S. Morphological changes in human scalp hair roots during deprivation of protein. Science. 1967;157(3787):438–9.

    CAS  Google Scholar 

  58. Crounse RG, Bollet AJ, Owens S. Quantitative tissue of human malnutrition using scalp hair roots. Nature. 1970;228(5270):465–6.

    CAS  Google Scholar 

  59. Martin ME, Vranckx R, Benassayag C, Nunez EA. Modifications of the properties of human sex steroid-binding protein by nonesterified fatty acids. J Biol Chem. 1986;261(6):2954–9.

    CAS  Google Scholar 

  60. Reed MJ, Cheng RW, Simmonds M, Richmond W, James VH. Dietary lipids: an additional regulator of plasma levels of sex hormone binding globulin. J Clin Endocrinol Metab. 1987;64(5):1083–5.

    CAS  Google Scholar 

  61. Hamalainen E, Adlercreutz H, Puska P, Pietinen P. Diet and serum sex hormones in healthy men. J Steroid Biochem. 1984;20(1):459–64.

    CAS  Google Scholar 

  62. Habito RC, Ball MJ. Postprandial changes in sex hormones after meals of different composition. Metabolism. 2001;50(5):505–11.

    CAS  Google Scholar 

  63. Bishop DT, Meikle AW, Slattery ML, Stringham JD, Ford MH, West DW. The effect of nutritional factors on sex hormone levels in male twins. Genet Epidemiol. 1988;5(1):43–59.

    CAS  Google Scholar 

  64. Bennett FC, Ingram DM. Diet and female sex hormone concentrations: an intervention study for the type of fat consumed. Am J Clin Nutr. 1990;52(5):808–12.

    CAS  Google Scholar 

  65. Goldin BR, Woods MN, et al. The effect of dietary fat and fiber on serum estrogen concentrations in premenopausal women under controlled dietary conditions. Cancer. 1994;74(3 Suppl):1125–31.

    CAS  Google Scholar 

  66. Pathomvanich D, Pongratananukul S, Thienthaworn P, Manoshai S. A random study of Asian male androgenetic alopecia in Bangkok. Thailand Dermatol Surg. 2002;28(9):804–7.

    Google Scholar 

  67. Fortes C, Mastroeni S, Mannooranparampil T, Abeni D, Panebianco A. Mediterranean diet: fresh herbs and fresh vegetables decrease the risk of androgenetic alopecia in males. Arch Dermatol Res. 2018;310(1):71–6.

    CAS  Google Scholar 

  68. Yi Y, Qiu J, Jia J, Djakaya GDN, Li X, Fu J, Chen Y, Chen Q, Miao Y, Hu Z. Severity of androgenetic alopecia associated with poor sleeping habits and carnivorous eating and junk food consumption-A web-based investigation of male pattern hair loss in China. Dermatol Ther. 2020;33(2):e13273.

    Google Scholar 

  69. Moran LJ, Hutchison SK, Norman RJ, Teede HJ. Lifestyle changes in women with polycystic ovary syndrome. Cochrane Database Syst Rev. 2011;7:CD007506.

    Google Scholar 

  70. Koffler M, Kisch ES. Starvation diet and very-low-calorie diets may induce insulin resistance and overt diabetes mellitus. J Diabetes Complications. 1996;10(2):109–12.

    CAS  Google Scholar 

  71. Ahmed W, Flynn MA, Alpert MA. Cardiovascular complications of weight reduction diets. Am J Med Sci. 2001;321(4):280–4.

    CAS  Google Scholar 

  72. Bergendahl M, Vance ML, et al. Fasting as a metabolic stress paradigm selectively amplifies cortisol secretory burst mass and delays the time of maximal nyctohemeral cortisol concentrations in healthy men. J Clin Endocrinol Metab. 1996;81(2):692–9.

    CAS  Google Scholar 

  73. Tomiyama AJ, Mann T, Vinas D, Hunger JM, Dejager J, Taylor SE. Low calorie dieting increases cortisol. Psychosom Med. 2010;72(4):357.

    CAS  PubMed Central  Google Scholar 

  74. Kaufman JP. Telogen effluvium secondary to starvation diet. Arch Dermatol. 1976;112(5):731.

    CAS  Google Scholar 

  75. Goldberg LJ, Lenzy Y. Nutrition and hair. Clin Dermatol. 2010;28(4):412–9.

    Google Scholar 

  76. Finner AM. Nutrition and hair: deficiencies and supplements. Dermatol Clin. 2013 Jan;31(1):167–72.

    CAS  Google Scholar 

  77. Guo EL, Katta R. Diet and hair loss: effects of nutrient deficiency and supplement use. Dermatol Pract Concept. 2017;7(1):1–10.

    PubMed Central  Google Scholar 

  78. Goette DK, Odom RB. Alopecia in crash dieters. JAMA. 1976;235(24):2622–3.

    CAS  Google Scholar 

  79. Harrison S, Bergfeld W. Diffuse hair loss: its triggers and management. Cleve Clin J Med. 2009;76(6):361–7.

    Google Scholar 

  80. Rushton DH. Nutritional factors and hair loss. Clin Exp Dermatol. 2002;27(5):396–404.

    CAS  Google Scholar 

  81. Glorio R, Allevato M, De Pablo A, et al. Prevalence of cutaneous manifestations in 200 patients with eating disorders. Int J Dermatol. 2000;39(5):348–53.

    CAS  Google Scholar 

  82. Svendsen PF, Jensen FK, Holst JJ, Haugaard SB, Nilas L, Madsbad S. The effect of a very low calorie diet on insulin sensitivity, beta cell function, insulin clearance, incretin hormone secretion, androgen levels and body composition in obese young women. Scand J Clin Lab Invest. 2012;72(5):410–9.

    CAS  Google Scholar 

  83. Rachdaoui N, Sarkar DK. Effects of alcohol on the endocrine system. Endocrinol Metab Clin North Am. 2013;42(3):593–615.

    PubMed Central  Google Scholar 

  84. Devaud LL, Risinger FO, Selvage D. Impact of the hormonal milieu on the neurobiology of alcohol dependence and withdrawal. J Gen Psychol. 2006;133(4):337–56.

    Google Scholar 

  85. Ellingboe J. Acute effects of ethanol on sex hormones in non-alcoholic men and women. Alcohol Alcohol Suppl. 1987;1:109–16.

    CAS  Google Scholar 

  86. Van Thiel DH, Lester R. Alcoholism: its effect on hypothalamic pituitary gonadal function. Gastroenterology. 1976;71(2):318–27.

    Google Scholar 

  87. Van Thiel DH, Gavaler JS. Endocrine consequences of alcohol abuse. Alcohol Alcohol. 1990;25(4):341–4.

    Google Scholar 

  88. Walter M, Gerhard U, Gerlach M, Weijers HG, Boening J, Wiesbeck GA. Cortisol concentrations, stress-coping styles after withdrawal and long-term abstinence in alcohol dependence. Addict Biol. 2006;11(2):157–62.

    CAS  Google Scholar 

  89. Schiavi RC, Stimmel BB, Mandeli J, White D. Chronic alcoholism and male sexual function. Am J Psychiatry. 1995;152(7):1045–51.

    CAS  Google Scholar 

  90. Uddin S, Emanuele MA, Emanuele NV, Reda D, Kelley MR. The effect of in vitro ethanol exposure on luteinizing hormone and follicle stimulating hormone mRNA levels, content, and secretion. Endocr Res. 1994;20(2):201–17.

    CAS  Google Scholar 

  91. Emanuele MA, Emanuele NV. Alcohol’s effects on male reproduction. Alcohol Health Res World. 1998;22(3):195–201.

    CAS  PubMed Central  Google Scholar 

  92. Wilsnack SC. The impact of sex roles and women’s alcohol use and abuse. In: Greenblatt M, Schuckit MA, editors. Alcoholism problems in women and children. New York: Grune & Stratton; 1976.

    Google Scholar 

  93. Bourne P, Light E. Alcohol problems in women. In: Mendelson J, Mello N, editors. The diagnosis and treatment of alcoholism. New York: MacGraw-Hill; 1979. p. 83.

    Google Scholar 

  94. Sarkola T, Fukunaga T, Makisalo H, Peter Eriksson CJ. Acute effect of alcohol on androgens in premenopausal women. Alcohol Alcohol. 2000;35(1):84–90.

    CAS  Google Scholar 

  95. Karila T, Kosunen V, Leinonen A, Tahtela R, Seppala T. High doses of alcohol increase urinary testosterone-to-epitestosterone ratio in females. J Chromatogr B Biomed Appl. 1996;687(1):109.

    CAS  Google Scholar 

  96. Rinaldi S, Peeters PH, et al. Relationship of alcohol intake and sex steroid concentrations in blood in preand post-menopausal women: the European prospective investigation into cancer and nutrition. Cancer Causes Control. 2006;17(8):1033–43.

    CAS  Google Scholar 

  97. Greenfield SF. Women and alcohol use disorders. Harv Rev Psychiatry. 2002;10(2):76–85.

    Google Scholar 

  98. Frias J, Torres JM, Miranda MT, Ruiz E, Ortega E. Effects of acute alcohol intoxication on pituitary-gonadal axis hormones, pituitary-adrenal axis hormones, beta-endorphin and prolactin in human adults of both sexes. Alcohol Alcohol. 2002;37(2):169–73.

    CAS  Google Scholar 

  99. Muthusami KR, Chinnaswamy P. Effect of chronic alcoholism on male fertility hormones and semen quality. Fertil Steril. 2005;84(4):919–24.

    CAS  Google Scholar 

  100. Purohit V. Can alcohol promote aromatization of androgens to estrogens? A review. Alcohol. 2000;22(3):123–7.

    CAS  Google Scholar 

  101. Emanuele NV, LaPagli N, Steiner J, Colantoni A, Van Thiel DH, Emanuele MA. Peripubertal paternal EtOH exposure. Endocrine. 2001;14(2):213–9.

    CAS  Google Scholar 

  102. Shiels MS, Rohrmann S, Menke A, et al. Association of cigarette smoking, alcohol consumption, and physical activity with sex steroid hormone levels in US men. Cancer Causes Control. 2009;20(6):877–86.

    PubMed Central  Google Scholar 

  103. Severi G, Sinclair R, Hopper JL, et al. Androgenetic alopecia in men aged 40-69 years: prevalence and risk factors. Br J Dermatol. 2003;149(6):1207–13.

    CAS  Google Scholar 

  104. Gatherwright J, Liu MT, Amirlak B, Gliniak C, Totonchi A, Guyuron B. The contribution of endogenous and exogenous factors to male alopecia: a study of identical twins. Plast Reconstr Surg. 2013;131(5):794e–801e.

    Google Scholar 

  105. Vermeulen A, Kaufman JM, Giagulli VA. Influence of some biological indexes on sex hormone-binding globulin and androgen levels in aging or obese males. J Clin Endocrinol Metab. 1996;81(5):1821–6.

    CAS  Google Scholar 

  106. Allen NE, Appleby PN, Davey GK, Key TJ. Lifestyle and nutritional determinants of bioavailable androgens and related hormones in British men. Cancer Causes Control. 2002;13(4):353–63.

    Google Scholar 

  107. Svartberg J, Midtby M, Bonaa KH, Sundsfjord J, Joakimsen RM, Jorde R. The associations of age, lifestyle factors and chronic disease with testosterone in men: the Tromso study. Eur J Endocrinol. 2003;149(2):145–52.

    CAS  Google Scholar 

  108. Ponholzer A, Plas E, Schatzl G, Struhal G, Brössner C, Mock K, Rauchenwald M, Madersbacher S. Relationship between testosterone serum levels and lifestyle in aging men. Aging Male. 2005;8(3–4):190–3.

    CAS  Google Scholar 

  109. Svartberg J, Jorde R. Endogenous testosterone levels and smoking in men. The fifth Troms study. Int J Androl. 2007;30(3):137–43.

    CAS  Google Scholar 

  110. Halmenschlager G, Rossetto S, Lara GM, Rhoden EL. Evaluation of the effects of cigarette smoking on testosterone levels in adult men. J Sex Med. 2009;6(6):1763–72.

    CAS  Google Scholar 

  111. Wang W, Yang X, Liang J, Liao M, Zhang H, Qin X, Mo L, Lv W, Mo Z. Cigarette smoking has a positive and independent effect on testosterone levels. Hormones (Athens). 2013;12(4):567–77.

    Google Scholar 

  112. Trüeb RM. Association between smoking and hair loss: another opportunity for health education against smoking? Dermatology. 2003;206(3):189–91.

    Google Scholar 

  113. Trüeb RM. Molecular mechanisms of androgenetic alopecia. Exp Gerontol. 2002;37(8–9):981–90.

    Google Scholar 

  114. Trüeb RM. Effect of cigarette smoking on hair growth. In: Trüeb RM, Lee W-S, editors. Male Alopecia. Cham: Springer International Publishing; 2014. p. 98–101.

    Google Scholar 

  115. Leow YH, Maibach HI. Cigarette smoking, cutaneous vasculature, and tissue oxygen. Clin Dermatol. 1998;16(5):579–84.

    CAS  Google Scholar 

  116. Arredondo J, Hall LL, Ndoye A, Nguyen VT, Chernyavsky AI, Bercovich D, Orr-Urtreger A, Beaudet AL, Grando SA. Central role of fibroblast alpha3 nicotinic acetylcholine receptor in mediating cutaneous effects of nicotine. Lab Invest. 2003;83(2):207–25.

    CAS  Google Scholar 

  117. Liu CS, Kao SH, Wei YH. Smoking-associated mitochondrial DNA mutations in human hair follicles. Environ Mol Mutagen. 1997;30(1):47.

    CAS  Google Scholar 

  118. Liu CS, Chen HW, Lii CK, Tsai CS, Kuo CL, Wei YH. Alterations of plasma antioxidants and mitochondrial DNA mutation in hair follicles of smokers. Environ Mol Mutagen. 2002;40(3):168–74.

    CAS  Google Scholar 

  119. Poderoso JJ. The formation of peroxynitrite in the applied physiology of mitochondrial nitric oxide. Arch Biochem Biophys. 2009;484(2):214–20.

    CAS  Google Scholar 

  120. Knuutinen A, Kokkonen N, Risteli J, Vahakangas K, Kallioinen M, Salo T, Sorsa T, Oikarinen A. Smoking affects collagen synthesis and extracellular matrix turnover in human skin. Br J Dermatol. 2002;146(4):588–94.

    CAS  Google Scholar 

  121. Naito A, Midorikawa T, Yoshino T, Ohdera M. Lipid peroxides induce early onset of catagen phase in murine hair cycles. Int J Mol Med. 2008;22(6):725–9.

    CAS  Google Scholar 

  122. Bahta AW, Farjo N, Farjo B, Philpott MP. Premature senescence of balding dermal papilla cells in vitro is associated with p16(INK4a) expression. J Invest Dermatol. 2008;128(5):1088–94.

    CAS  Google Scholar 

  123. Trüeb RM. The impact of oxidative stress on hair. Int J Cosmet Sci. 2015;37(Suppl 2):25–30.

    Google Scholar 

  124. Mosley JG, Gibbs AC. Premature grey hair and hair loss among smokers: a new opportunity for health education? BMJ. 1996;313(7072):1616.

    CAS  PubMed Central  Google Scholar 

  125. Matilainen V, Laakso M, Hirsso P, Koskela P, Rajala U, Keinanen-Kiukaanniemi S. Hair loss, insulin resistance, and heredity in middle-aged women: a population based study. J Cardiovasc Risk. 2003;10(3):227–31.

    Google Scholar 

  126. Su LH, Chen TH. Association of androgenetic alopecia with smoking and its prevalence among Asian men: a community-based survey. Arch Dermatol. 2007;143(11):1401–6.

    Google Scholar 

  127. Salman KE, Altunay IK, Kucukunal NA, Cerman AGA. Frequency, severity and related factors of androgenetic alopecia in dermatology outpatient clinic: hospital-based cross-sectional study in Turkey. An Bras Dermatol. 2017;92(1):35–40.

    PubMed Central  Google Scholar 

  128. Fortes C, Mastroeni S, Mannooranparampil TJ, Ribuffo M. The combination of overweight and smoking increases the severity of androgenetic alopecia. Int J Dermatol. 2017;56(8):862–7.

    Google Scholar 

  129. Danesh-Shakiba M, Poorolajal J, Alirezaei P. Androgenetic alopecia: relationship to anthropometric indices, blood pressure and lifestyle habits. Clin Cosmet Investig Dermatol. 2020;5(13):137–43.

    Google Scholar 

  130. Salem AS, Ibrahim HS, Abdelaziz HH, Elsaie ML. Implications of cigarette smoking on early-onset androgenetic alopecia: A cross-sectional Study. J Cosmet Dermatol. 2020:18.

    Google Scholar 

  131. Spencer DK. The hormonal effects of diet on hair loss. In: The bald truth, Ch. 2. New York: Simon & Schuster Inc.; 1998. p. 37–54.

    Google Scholar 

  132. Zouboulis CC. Acne as a chronic systemic disease. Clin Dermatol. 2014;32(3):389–96.

    Google Scholar 

  133. Hill PB, Wynder EL. Effect of a vegetarian diet and dexamethasone on plasma prolactin, testosterone and dehydroepiandrosterone in men and women. Cancer Lett. 1979;7(5):273–82.

    CAS  Google Scholar 

  134. Dorgan JF, Judd JT, Longcope C, et al. Effects of dietary fat and fiber on plasma and urine androgens and estrogens in men: a controlled feeding study. Am J Clin Nutr. 1996;64(6):850–5.

    CAS  Google Scholar 

  135. Kristal AR, Arnold KB, Neuhouser ML, Goodman P, Platz EA, Albanes D, Thompson IM. Diet, supplement use, and prostate cancer risk: results from the prostate cancer prevention trial. Am J Epidemiol. 2010;172(5):566–77.

    PubMed Central  Google Scholar 

  136. Ingram DM, Bennett FC, Willcox D, de Klerk N. Effect of low-fat diet on female sex hormone levels. J Natl Cancer Inst. 1987;79(6):1225–9.

    CAS  Google Scholar 

  137. Melnik B. Dietary intervention in acne: attenuation of increased mTORC1 signaling promoted by Western diet. Dermatoendocrinol. 2012;4(1):20–32.

    CAS  PubMed Central  Google Scholar 

  138. World Health Organization. Evaluation of certain food additives. World Health Organ Tech Rep Ser. 2017;1000:1–162.

    Google Scholar 

  139. Hackney AC, Szczepanowska E, Viru AM. Basal testicular testosterone production in endurance-trained men is suppressed. Eur J Appl Physiol. 2003;89(2):198–201.

    CAS  Google Scholar 

  140. Tremblay MS, Copeland JL, Van Helder W. Effect of training status and exercise mode on endogenous steroid hormones in males. J Appl Physiol. 2004;96(2):531–9.

    CAS  Google Scholar 

  141. Consitt LA, Copeland JL, Tremblay MS. Endogenous anabolic hormone responses to endurance versus resistance exercise and training in women. Sports Med. 2002;32(1):1–22.

    Google Scholar 

  142. Daly W, Seegers CA, Rubin DA, Dobridge JD, Hackney AC. Relationship between stress hormones and testosterone with prolonged endurance exercise. Eur J Appl Physiol. 2005;93(4):375–80.

    CAS  Google Scholar 

  143. Ara I, Perez-Gomez J, Vicente-Rodriguez G, Chavarren J, Dorado C, Calbet JA. Serum free testosterone, leptin and soluble leptin receptor changes in a 6-week strength-training programme. Br J Nutr. 2006;96(6):1053–9.

    CAS  Google Scholar 

  144. Choi J, Jun M, Lee S, Oh SS, Lee WS. The association between exercise and androgenetic alopecia: a survey-based study. Ann Dermatol. 2017;29(4):513–6.

    PubMed Central  Google Scholar 

  145. Morales AJ, Haubrich RH, Hwang JY, Asakura H, Yen SS. The effect of six months treatment with a 100 mg daily dose of dehydroepiandrosterone (DHEA) on circulating sex steroids, body composition and muscle strength in age-advanced men and women. Clin Endocrinol (Oxf). 1998;49(4):421–32.

    CAS  Google Scholar 

  146. Thiboutot D, Jabara S, McAllister JM, Sivarajah A, Gilliland K, Cong Z, Clawson G. Human skin is a steroidogenic tissue: steroidogenic enzymes and cofactors are expressed in epidermis, normal sebocytes, and an immortalized sebocyte cell line (SEB-1). J Invest Dermatol. 2003;120(6):905–14.

    CAS  Google Scholar 

  147. Roach VJ, Cheung TF, Chung TK, Hjelm NM, Waring MA, Loong EP, Haines CJ. Phytoestrogens: dietary intake and excretion in post-menopausal Chinese women. Climacteric. 1998;1(4):290–5.

    CAS  Google Scholar 

  148. Peeters PH, Slimani N, et al. Variations in plasma phytoestrogen concentrations in European adults. J Nutr. 2007;137(5):1294–300.

    CAS  Google Scholar 

  149. Thompson LU, Boucher BA, Liu Z, Cotterchio M, Kreiger N. Phytoestrogen content of foods consumed in Canada, including isoflavones, lignans, and coumestan. Nutr Cancer. 2006;54(2):184–201.

    CAS  Google Scholar 

  150. de Kleijn MJ, van der Schouw YT, Wilson PW, Adlercreutz H, Mazur W, Grobbee DE, Jacques PF. Intake of dietary phytoestrogens is low in post-menopausal women in the United States: the Framingham study(1-4). J Nutr. 2001;131(6):1826–32.

    Google Scholar 

  151. Yamamoto S, Sobue T, Kobayashi M, Sasaki S, Tsugane S. Soy, isoflavones, and breast cancer risk in Japan. J Natl Cancer Inst. 2003;95(12):906.

    CAS  Google Scholar 

  152. Keinan-Boker L, van Der Schouw YT, Grobbee DE, Peeters PH. Dietary phytoestrogens and breast cancer risk. Am J Clin Nutr. 2004;79(2):282–8.

    CAS  Google Scholar 

  153. Castle EP, Thrasher JB. The role of soy phytoestrogens in prostate cancer. Urol Clin North Am. 2002;29(1):71–81.

    Google Scholar 

  154. Habito RC, Montalto J, Leslie E, Ball MJ. Effects of replacing meat with soyabean in the diet on sex hormone concentrations in healthy adult males. Br J Nutr. 2000;84(4):557–63.

    CAS  Google Scholar 

  155. Lai CH, Chu NF, Chang CW, Wang SL, Yang HC, Chu CM, Chang CT, Lin MH, Chien WC, Su SL, Chou YC, Chen KH, Wang WM, Liou SH. Androgenic alopecia is associated with less dietary soy, lower [corrected] blood vanadium and rs1160312 1 polymorphism in Taiwanese communities. PLoS One. 2013;8(12):e79789.

    PubMed Central  Google Scholar 

  156. Mancini JG, Filion KB, Atallah R, Eisenberg MJ. Systematic review of the Mediterranean diet for long-term weight loss. Am J Med. 2016;129(4):407–15.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Anastassakis, K. (2022). Diet, Lifestyle, and AGA/FPHL. In: Androgenetic Alopecia From A to Z . Springer, Cham. https://doi.org/10.1007/978-3-031-08057-9_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08057-9_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08056-2

  • Online ISBN: 978-3-031-08057-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics