
Chapter 9
A Compositional Framework

A couple in love walking along the banks of the Seine are, in real
fact, a couple in love walking along the banks of the Seine, not
mere particles in motion.

Stewart A. Kauffman [168]

The system architecture presented in Chap. 8 controls (i.e., sustains and constrains)
the invocation of the inference methods introduced in Chap. 7. In this chapter, we
describe the methods of higher level inference in more detail. There is increasing
conviction that methods of category theory are well-suited for providing generic
descriptions for cognitive science, general intelligence [258], and control [42], the
latter being newly christened as ‘categorical cybernetics’. In this chapter, we describe
how to leverage the power of selected category-theoretic constructions to realize SCL
operations in a compositional manner.

9.1 Categorical Cybernetics

Category theory has served as a formidable unifying mechanism in mathematics.
It was devised in the 1940s by Eilenberg and MacLane [209] in order to provide a
higher-order vocabulary for algebraic topology and defines a principled setting for
the study of structurally-informed transformations. Amongst applied category theo-
rists there is increasing interest in machine learning applications, and it is becoming
apparent (e.g. [78, 90, 318]) that much can be done to unify and generalize exist-
ing methods. Following a brief overview of category theory, we describe how SCL
operations may be implemented in terms of specific category-theoretic construc-
tions. Below, we describe the essential concepts; more detail is available in various
excellent texts (e.g. [196, 264, 290]). Mathematical approaches to formalizing com-
positionality can be broadly divided into ‘syntactic’ and ‘semantic’. While syntactic

© The Author(s) 2022
J. Swan et al., The Road to General Intelligence,
Studies in Computational Intelligence 1049,
https://doi.org/10.1007/978-3-031-08020-3_9

73

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-08020-3_9&domain=pdf
https://doi.org/10.1007/978-3-031-08020-3_9

74 9 A Compositional Framework

approaches such as those in linguistics [361] and process algebra [224] might be
better known, the semantic approach via category theory has become increasingly
popular in diverse fields due to its flexibility and mathematical elegance [89].

A category is a two-sorted algebraic structure rather like a graph, consisting of
‘objects’ and ‘morphisms’: every morphism has a source object and a target object,
written f : X → Y . In addition to the graph-like structure is a way to compose
morphisms: given any morphisms f : X → Y and g : Y → Z with the target of one
agreeing with the source of the other, there is a composite morphism f g : X → Z
(typically written g ◦ f). This must satisfy the ‘associativity property’ familiar from
algebraic structures such as groups, i.e., given three composable morphisms f, g, h
the two different ways of composing themmust agree: (f g)h = f (gh). Every object
must also have an assigned ‘identity morphism’ 1X : X → X , and they must act as
the identity element for composition: 1X f = f = f 1Y for all f : X → Y .

There are many examples of categories, and we will name only a handful:

1. The category Set of sets, whose objects are sets and morphisms are functions.
2. The category FinVec of finite-dimensional vector spaces, whose objects are finite

dimensional vector spaces and morphisms are linear maps.
3. The category Rel of relations, whose objects are sets and morphisms are binary

relations.
4. For any graph G, there is the ‘free category on G’, whose objects are nodes of

G and morphisms are paths in G. Composition is concatenation of paths, and
identity morphisms are paths of length zero.

5. Any monoid M can be viewed as a category with a single object ∗, where every
element m ∈ M is viewed as a morphism m : ∗ → ∗.
Of particular relevance is the fact that typed programming languages (e.g. the

simply-typed lambda-calculus [47] or intuitionistic type theory [217]) give rise to
corresponding categories: it is possible1 to consider a category with types as objects
and functions as morphisms [54].

When studying compositionality, it is typical to work in the context of ‘monoidal
categories’, which have additional structure: there is a monoid-like structure on
objects, with a binary operation ⊗ and a unit I , in a way that is also compatible
with morphisms, so if f : X1 → Y1 and g : X2 → Y2 are morphisms, then so is
f ⊗ g : X1 ⊗ X2 → Y1 ⊗ Y2, satisfying various laws. A category typically has sev-
eral different monoidal structures. For example, in the category of sets we could take
⊗ to be Cartesian product of sets (whose unit is a 1-element set) or disjoint union of
sets (whose unit is the empty set). In the category of finite-dimensional vector spaces
we could take ⊗ to be the direct product (whose unit is the 0-dimensional space) or
the tensor product (whose unit is the 1-dimensional space).

Morphisms in a monoidal category are often represented using the graphical nota-
tion of string diagrams [216]. For example, if we have morphisms f : X1 → Y1,
g : X2 → Y2 and h : Y1 ⊗ Y2 → Z , then the composite morphism (f ⊗ g)h : X1 ⊗
X2 → Z is represented by the diagram:

1 Modulo certain technical considerations.

9.2 Hypothesis Generation 75

f

g

h

Y1

Y2

X1

X2

Z

The other basic concept required is a ‘functor’, which is a structure-preserving
map between categories. If C and D are categories than a functor F : C → D is an
assignment sending every object X in C to an object F(X) inD, and every morphism
f : X → Y in C to a morphism F(f) : F(X) → F(Y) inD, in a way that preserves
identities and composition. If our categories aremonoidal thenweconsider ‘monoidal
functors’, which also preserve the monoidal structure.

9.2 Hypothesis Generation

One of themost important requirements for general intelligence is that the hypotheses
which are generated are salient, i.e., pertinent to the task at hand. In the case of the
simple pendulum, the closed form expression was obtained by virtue of observation
that e.g. the color of the pendulum bobwas not relevant, but the angle of displacement
was, and so on. However, this does not imply that all features of the pendulum were
given equal attention. Humans have sufficiently strong priors about force and motion
that it is hard to imagine an experimenter ever consciously entertaining color as a
factor. It is therefore evident that scientific hypothesis generation enjoys a degree of
subtlety which is absent from traditional ML approaches.

Previous such work on non-quantitative generation of alternative hypotheses can
be found in Mitchell and Hofstadter’s ‘Copycat’ [146]. Copycat is proposed as a
cognitively-plausible generator of proportional analogies between letter-strings and
operates without requiring a ‘top-down, a priori’ objective function. In the abstract,
Copycat can be considered as an interpreter for expressions that describe (poten-
tially partially constructed) analogies, in which top-down and bottom-up perspec-
tives interact. At any point in construction, structures can be interpreted to yield
what Hofstadter describes as their ‘counterfactual halo’, i.e., to suggest alternative
expressions that tend to be more self-consistent. Copycat avoids explicit combina-
torial search via a combination of attention heuristics (which share a great deal of
commonality with the scheduling mechanism described in Sect. 8.2) and interacting
hierarchical constraints. Salient actions are indexed ‘on demand’ by local updates to
hypotheses and no form of global truth maintenance is required. These local updates
act to greatly prune the space of possible alternatives, being biased by design in the
general direction of ‘more consistent, hence more compelling’ hierarchies.

More generally, a number of previous works in cognitive architectures argue that
the frame problem is an artifact of an overly rigid perspective on hypothesis repre-

76 9 A Compositional Framework

sentation [97, 146]. Specifically, the claim is that hypotheses should be both causally
grounded (via participation in a sensor-effector mapping that receives feedback from
the environment) and ‘reified on demand’ via the data-driven context of task features.
It is claimed that the arguments of a priori representationalism that lead to the frame
problem are then no longer applicable. Such context-specific hypothesis-chaining is
an intrinsic aspect of SCL: salience is facilitated via the joint action of fine-grained
scheduling and resource bounds on both time and space [325]. In the following
section, we describe a general mechanism for interpreting the structure of hypothe-
ses, inwhich alternative hypotheses are generated via a specific form of interpretation
which yields a modified hypothesis as a result.

Compositional Interpretation

Compositional interpretationofSCL-expressions is achievedviadenotational seman-
tics: the meaning of a composite expression is interpreted as as a function of the
meaning of its component parts. In a ‘closed-world’ setting, such an interpretation
is fixed at the point of deployment. In an open world setting, it remains forever
possible that there are surprising latent interactions between components and the
interpretation process must therefore incorporate online learning.

Marcus [210, 214] has previously contrasted deep learning with human capa-
bilities (as inferred via observations from neuroscience), and notes that the former
typically lacks genericmechanisms for recursion and variable binding. He proposes a
hierarchical structured representation (‘treelets’) for addressing this, but leaves open
the question of how they should be manipulated for efficient inference. As regards
efficiency, Marcus gives desiderata which are evocative of the ‘active symbols’ of
Mitchell and Hofstadter’s ‘Fluid Analogies’ architecture [146], the direct analog of
which in SCL is provided via the matching and transformation processes described
in the beginning of this chapter.

It has previously been proposed [259] that the category theoretic mechanism of
initial F-algebras provides an appropriate and parsimonious means of modeling
these aspects of human cognition and we describe below a concrete application
that supports such recursion and variable binding. F-algebras provide a universal
mechanism for the generic interpretation of expressions. By ‘generic’, we mean that
awide class of typed expression languages can be compositionally interpreted. Aswe
describe below, ‘universal’ has a specific technical meaning in category theory, but
can for practical purposes be taken to mean that the interpreter is parameterized by
the target datatype and can approximate (e.g. via learning [333, 334]) any primitive
recursive semantic interpretation.2 Moreover, the interpreter can both accommodate
recursive expression languages and be stateful (and hence perform variable-binding,
so meeting both of Marcus’s requirements, above).

2 Strictly, the expressiveness is more general than primitive recursive in that it includes e.g. Acker-
mann’s function [154].

9.2 Hypothesis Generation 77

FA FB

A B

Fh

f g

h

Fig. 9.1 h as a homomorphism

F (μF) FA

μF A

F (Cata f)

in f

Cata f

Fig. 9.2 Cata as a unique homomorphism

Technically, the universiality property arises as follows: for categoryC and functor
F : C → C , an algebra3 consists of a pair (A, f) consisting of an object A and a
morphism f : FA → A. A homomorphism h : (A, f) → (B, g) between algebras
is a morphism h : A → B such that the square in Fig. 9.1 commutes.

In the category that has algebras as objects and homomorphisms as morphisms,
an initial algebra is an algebra that is unique (up to isomorphism) and initial, i.e.,
it can be transformed into any other algebra in the category. We write (μF, in) for
an initial algebra, and Cata f for the unique homomorphism h : (μF, in) → (A, f)
from the initial algebra to any other algebra (A, f). That is, Cata f is defined as the
unique arrow that makes the diagram of Fig. 9.2 commute.

The universal interpreter property of Cata then arises by virtue of this initiality
[154]. Cata is an abbreviation of ‘catamorphism’ (from Greek: κατα ‘downwards’
andμoρϕη ‘shape’); informally, a genericmethod of transforming some typed source
expression into a target expression (of whatever desired type). Hence, in a category
of expressions Ex in which the objects are types and the morphisms are functions,
Cata thus provides an algorithm template for the interpretation of expressions. Hence
predicates on Ex are represented as a transformation of some source expressionwhich
has target type bool and alternative hypotheses as having target type Ex.

As previously mentioned, in the wider context of general intelligence, such a
‘ClosedWorld Assumption’ is insufficient: reality may always intrude to defeat prior
assumptions.4 Such exceptions arise as a function of the difference between expected
and observed states—whether because an action fails to yield the anticipated state, or
else because some state of interest arises in an unanticipated manner. In the context
of SCL, then, the term hypothesis recovers its traditional meaning as a tentative
proposition about reality that remains forever potentially subject to revision. When

3 This definition subsumes the familiar usage of the term.
4 As discovered by Bertrand Russell’s unfortunate fictional chicken.

78 9 A Compositional Framework

the distributed transition function of the world model is determined to be in error
in this manner, a corresponding ‘repair’ must be applied to the current denotational
semantics. Those repairs can either widen the constraints or suitably constrain the
transfer function.

In SCL, constraints are expressed via the predicate of a refinement type. As types
are aggregated into composites (via sum and product), so the hierarchical structure of
predicates becomesmore complex. In the particular case of hypothesis generation, the
catamorphic traversal of expressions accumulates proposed alternatives and performs
‘conflict resolution’ on them in order to propose a hypothesis that better meets its
constraints. Any inference mechanism could conceivably be applied in the process,
depending on the intermediatemappings between types that are required. Fortunately,
the repair process is considerably facilitated by the granular nature of inference: it is
typical that repairs require only local changes to inference rules.

It is also interesting to note the overlap here with the contemporaneous work of
Goertzel [116], which proposes chronomorphisms as a potential unifyingmechanism
for the OpenCog framework. While we certainly share the belief that the zoo of
recursion schemes (including anamorphisms, futuromorphisms, etc.) have a role to
play in open-ended inference, we are not of the opinion that their role lies in solving
optimization problems, as discussed in Sect. 5.1 on a priori rewards.

9.3 Abstraction and Analogy

Consensus on the value of abstraction in AI dates back to the inception of the field
[220]. Various forms of analogical reasoning have similarly been widely argued, by
cognitive and computer scientists alike [84, 144], to play a vital role. There are awide
variety of proposed definitions for both. For example, Gentner [107] defines abstrac-
tion as ‘the process of decreasing the specificity of a concept’. Cremonini et al. [53]
define abstraction as ‘the process of mapping between problem representations, so
as to simplify reasoning while preserving the essence of the problem’. Definitions
of abstraction and analogy can overlap considerably. For example, the formal and
general abstraction framework of Giunchiglia andWalsh [111] describes abstraction
in terms of properties that are provably preserved under the source to target map-
ping. This definition could also be said to be applicable to predictive analogy [271],
which is concerned with inferring properties of a target object as a function of its
similarity to a source object, the oft-cited example of which is the similarity between
the solar system and the Rutherford model of the atom. Given the perceived richness
and complexity of abstraction and analogy, this overlap is unsurprising. Indeed, it
seems possible that the processes are recursively interleaved in a nontrivial and data-
driven manner. Hence, whilst in this Section we propose a concrete mechanism for
abstraction that can then be used as a basis for analogy, this should be considered as
a pedagogical device rather than any attempt at a definitive statement.

The interpretation of SCL expressions via catamorphisms already provides an ele-
mentary abstraction mechanism: the algorithm skeleton for the interpreter abstracts
over the generation of alternative types and values from a given expression. However,

9.3 Abstraction and Analogy 79

u′

ue1 e2

σ ′2σ
′ 1

σ′

σ1 σ2

Fig. 9.3 Anti-unification as a categorical product. The anti-unifier of expressions e1 and e2 is an
expression u, together with two substitutions σ1 and σ2. For s →σ t , we say that t is a specialization
of s, i.e. it has been obtained from s via the instantiation of one or more variables. The least
general anti-unifier (u, σ1, σ2) is the unique u such that, for any other candidate (u′, σ ′

1, σ
′
2), u is a

specialization of u′ via some substitution σ ′

since expressions in SCL are first-class objects, we may also perform abstraction via
othermeans, such asanti-unification.Anti-unificationhas a variety of uses in program
analysis, including invariant generation and clone detection [39]. The various forms
of unification [266] can be described categorically [119] via a category in which
the objects are terms (i.e. SCL expressions) and the morphisms are substitutions,
i.e., the binding of one or more variables to subexpressions. Anti-unification is the
categorical dual of unification [162], representing the factorization of substructure
common to two expressions. The discovery of such ‘abstract patterns’ is analogous
to the induction of subroutines, which can be instantiated across a range of parameter
values. More generally, abstraction is applicable across different dimensions of the
state space—see Sect. 11.2.2 for a discussion of wider prospects in this regard.

Figure 9.3 depicts anti-unification as a categorical product, a construction that
generalizes the familiar notion of Cartesian product. The diagram denotes that anti-
unifier (u, σ1, σ2) is more specialized than all other candidates (u′, σ ′

1, σ
′
2) because

the latter can be recovered from the former via σ ′.
Analogical reasoning in humans appears to afford unbounded creative potential

[95]. We share the belief that analogy is a dominant mechanism in human cognition
[148, 228] and envisage that computational models of analogy will be a key research
area for general intelligence. It should be clear that such research is completely
open-ended. The categorical approach we describe below is therefore for pedagog-
ical purposes; the further incorporation of heuristics is a more realistic prospect for
practical use.

We give a categorical construction for proportional analogies which builds upon
the method of abstraction defined above.

As previously described in Sect. 7.4, the example application domain we con-
sider here is that of letter-string analogy (LSA) problems (e.g., abc : abd :: ijk
: ???). Although the domain may appear simple, it has been remarked that it can
require considerable sophistication to obtain solutions that appear credible to humans

80 9 A Compositional Framework

abc abd

ijk ???

h

v v′

h′

Fig. 9.4 Proportional analogy as a commutative diagram: abc : abd :: ijk : ???

[95], not least because the domain is not readilymodeled as an optimization problem.
It is therefore reasonable to assume that mechanisms for solving LSA problems have
high relevance and are applicable for implementing cognitive processes at many lev-
els. Notable approaches to LSA problems include Hofstadter andMitchell’s Copycat
[146] and the ‘E-generalization’ approach of Weller and Schmid [360], although the
latter is not cognitively plausible for reasons of scale.

As can be seen in Fig. 9.4, proportional analogy problems can also be consid-
ered to form a commutative diagram. The ‘abstraction via anti-unification’ approach
described above can be used as a building block for constructing analogies, for exam-
ple as is done in ‘Heuristic Driven Theory Projection’ [308]. In particular, abstraction
can be combined with the powerful category theoretic constructions of pushouts and
pullbacks to construct, express, and understand such analogies in a computation-
ally automatable manner across a wide range of expression languages. Specifically,
we can use these constructions to determine the possible relationships between our
objects A = abc, B = abd and C = ijk such that D = ijl is uniquely deter-
mined through commutative diagrams.5

Pushouts

A pushout may be understood as an ‘abstract gluing’ of a pair of morphisms
b : A → B and c : A → C . The construction of a pushout involves the construc-
tion of some fourth object D alongside morphisms c′ : B → D and b′ : C → D
such that the resulting diagram commutes, i.e., c′(b(A)) = b′(c(A)) ∼= D, where ∼=
denotes equality up to isomorphism. Further, the resultant commuting diagram must
satisfy the ‘pushout condition’, that for all D′ with e : B → D′ and f : C → D′ and
e(b(A)) = f (c(A)) ∼= D′, there exists a unique morphism d : D → D′ such that
d(c′(B)) = d(b′(C)) = e(B) = f (C) ∼= D′.

Themeaning of these conditions will become immediately clear through an exam-
ple of a pushout in the category of sets (typically denoted Set). In Set, objects are
sets and morphisms are functions. Below we given an example of a pushout in Set,
with objects A = {a, b, c}, B = {1, 2, 3, 4} and C = {W, X,Y, Z}, and morphisms
h = {a → 1, b → 2, c → 3} and v = {a → X, b → Y, c → Z}. For each object in
B, C and D, we denote its pre-image in A in parenthesis.

5 The possibility D = ijd is not treated here; a more fully-featured approach to analogy would
include nondeterminism and preference heuristics, e.g. as in Goguen’s ‘sesqui-categories’ [117].

9.3 Abstraction and Analogy 81

A = {a, b, c} B = {1(a), 2(b), 3(c), 4}

C = {W, X(a), Y (b), Z(c)} D = {W, 1X(a), 2Y (b), 3Z(c), 4}

h

v v′

h′

The resultant object D = {W, 1X, 2Y, 3Z , 4} with morphisms v′ = {1 → 1X,

2 → 2Y, 3 → 3Z , 4 → 4} and h′ = {X → 1X,Y → 2Y, Z → 3Z ,W → W } are
the unique pushout of morphisms h and v.

The uniqueness is a result of the pushout condition; if we instead had D′ =
{1X, 2Y, 3Z , 4W } and v′(4) = 4W and h′(W) = 4W then we would have elements
in B and C , with no common pre-image in A, being mapped to the same element
in D′. As a result, there would be no morphism d : D′ → D, such that the resultant
diagram commutes as the offending element 4W would need to be mapped to two
separate elements in D, 4 andW . Thuswe can see that the pushout condition prevents
‘confusion’ such that, if an element in D has pre-images in both B and C , then those
pre-images must themselves have a common pre-image in A.

Similarly, if we have D′ = {W, 1X, 2Y, 3Z , 4, Q}, such that the element Q has no
pre-image in B or C , then it may be mapped to any element in D by some morphism
d ′ : D′ → D, such that d ′ is no longer unique. Thus we can see that the pushout
condition prevents ‘junk’ such that all elements in D must have a pre-image in at
least one of B or C . A common phrase describing this property is that v′ and h′ are
jointly surjective.

Another relevant concept related to pushouts is that of pushout complements.
A pushout complement is the completion of a pair of arrows h : A → B and
v′ : B → D to a pushout, and is given by an object C with morphisms v : A → C
and h′ : C → D such that the resulting diagram of h, h′, v and v′ is a pushout.

Pullbacks

If pushouts are ‘abstract gluings’ of morphisms, then ‘pullbacks’ may be understood
as ‘abstract intersections’ ofmorphisms.A pullback is given over a pair ofmorphisms
h : B → D and v : C → D. The construction of the pullback of h and v yields a
fourth object A with morphisms v′ : A → B and h′ : A → C such that the resulting
diagram commutes and satisfies the ‘pullback’ condition. This condition requires that
for all A′ with e : A′ → B and f : B ′ → C and e(h(A′)) = f (v(A′)) ∼= D, there
exists a unique morphism a : A′ → A such that v′(a(A′)) = B and h′(a(A′)) = C .

Analogy via Pushouts, Pullbacks, and Pushout Complements

We now demonstrate that these concepts give mechanisms for automatic derivation
of analogies according to abstractions. For a more complete description of pushouts,
pullbacks, and pushout complements in this context, see Taentzer et al. [76]. In
Fig. 9.5, we give a sketch of a pushout-based solution to classic letter-string analogy
problems. Letter-strings are represented as lists of natural numbers, with natural
numbers themselves representedviaPeano arithmetic.Weareworking in the category

82 9 A Compositional Framework

Fig. 9.5 A solution to the letter-string analogy question abc : abd ::ijk : ??? via pushouts.
Each letter string is represented by its corresponding tree in Peano arithmetic, with the letter ‘a’
corresponding to the number ‘0’. The shorthand ‘Sx ’ is used to concisely represent a sequence of x
consecutive successor nodes. Elements in red are ‘deleted’ by the transformation, whereas elements
in blue are ‘created’. Themiddle rule can be viewed as an abstract rule for transforming letter-strings,
and interpreted in language as ‘increment the final (non-a) character in the letter-string’

of labeled graphs (an ‘adhesive category’ [185]), along injective morphisms which
are both label- and structure-preserving. Note that in this scenario, relabeling may
be achieved in rewriting systems over labeled objects through the use of partially
labeled objects as intermediaries [126].

The example works as follows. We are provided with the expression trees of
the letter strings abc, abd, and ijk. We know that abc relates to abd in some
manner and wish to induce the equivalent relation for ijk and some unknown letter
string. Thus the task may be phrased “abc is to abd as ijk is to what?”. The
first step is to induce common substructures between the pairs abc and abd as
well as abc and ijk. Two particularly promising substructures are shown in the
top middle and left middle of the diagram. This first step is most critical; the two
common substructures will deterministically define the rest of the transformation.
If either common substructure is too specific, it may form too rigid a restriction for

9.4 Abduction 83

the rest of the process to be successful. Alternatively, if the common substructures
are too general, ambiguity may occur causing there to be several possible analogous
letter-strings.

Given the two common substructures, a pullbackmay be constructed, yielding the
graph in the center of the diagram. This may be understood as the common elements
of both common substructures such that the top-left square commutes. With the
central element, we may then construct the pushout complements in the middle-right
and bottom-middle spaces, and finally the pushout of those elements with the central
element to give the final analogous graph:ijl. A remarkable property of this process
is that it actually yields an abstract rule L ← K → R (the elements of the middle
row), which may then be applied to any other letter-string expression T according
to the following process:

1. Find a graph morphism f : L → T .
2. Construct the pushout complement of f and L ← K to give intermediary D with

morphisms t : D → T and g : K → D.
3. Construct the pushout of g and K → R, giving result expression S.

This process is only applicable if there exists a graph morphism f : L → T , and
this is only the case when the letter-string expression T is at least 3 letters long and its
final letter is not a. Hence the rule L ← K → R may be interpreted in language as;
‘increment the final (non-a) character in the letter-string’.When applied to the letter-
strings ddd and mmjjkk it gives the unique results dde and mmjjkl respectively.

Although LSA is given as an example domain, the treatment is a general one
for adhesive categories [185]. This means that the principles described above can
be leveraged to induce analogies over labeled graphs [76] and their derivatives (e.g.
forests and trees), hierarchical graphs [72], and port graphs [85, 267].

9.4 Abduction

There has recently been much interest in the applied category theory community in
‘lenses’, which provide a simple but powerful abstraction for hierarchical feedback.
Originally appearing in database theory and functional programming for describing
deeply nested destructive updates [91], they have later turned out to be of central
interest in categorical approaches to both game theory [108] and machine learning
[88, 90]. One perspective on lenses is that they are a general theory of ‘things that
compose by a chain rule’.

Lenses

Lenses are the morphisms of a category Lens whose objects are pairs of sets, where
we think of the first as ‘forwards’ and the second as ‘backwards’. A lens

λ : (X+, X−) → (Y+,Y−)

84 9 A Compositional Framework

is a pair consisting of a ‘forwards’ function:

λ+ : X+ → Y+

and a ‘backwards’ function:

λ− : X+ × Y− → X−

If we have another lens μ : (Y+,Y−) → (Z+, Z−) then the composite lens has
forwards function:

(λμ)+(x) = μ+(λ+(x))

while the backwards function is given by the characteristic law

(λμ)−(x, z) = λ−(x, μ−(λ+(x), z))

The category of lenses has a monoidal structure, which is given on objects by:

(X+, X−) ⊗ (Y+,Y−) = (X+ × Y+, X− × Y−)

and on morphisms by:

(λ ⊗ μ)(x1, x2) = (λ+(x1), μ
+(x2))

(λ ⊗ μ)−((x1, x2), (y1, y2)) = (λ−(x1, y1), μ
−(x2, y2))

While this definition iswritten in terms of sets and functions, it turns out that lenses
can be more generally defined over (essentially) any monoidal category, although
the correct general definition is not obvious [291].

Examples in Machine Learning

Backpropagation. An important class of lenses consist of a function paired with its
first derivative, which is usually known as reverse-mode automatic differentiation.
Specifically, let Smth be the category whose objects are Euclidean spaces and whose
morphisms are differentiable functions. There is a functor D : Smth → Lenswhich
is given on objects by D(Rn) = (Rn,Rn) where we think of the second R

n as the
cotangent space at a point in the first. On morphisms the functor is given by:

D(f) = (f, f #), where f #(x, v) = J f (x)

v

where J f is the Jacobian of f . In order for this to be a functor it must be the case
that the derivate of a composite function f g can be determined from the derivatives
of f and g using the lens composition law. This turns out to be essentially the chain
rule: Given composable smooth functions f, g, we have

9.4 Abduction 85

(D(f)D(g))−(x, v) = f #(x, g#(f (x), v)) (lens composition law)

= J f (x)

 Jg(f (x))

v

= [Jg(f (x))J f (x)]
v (law of matrix transpose)

= J f g(x)

v (multivariate chain rule)

= (f g)#(x, v)

From this it follows that D(f)D(g) = D(f g), i.e., that D is a functor. This connec-
tion between lenses and the chain rule was explicitly observed by Zucker [376] and
is also implicit in Fong et al. [90].

Variational inference. There is a category whose morphisms X → Y are probabil-
ity distributions on Y conditional on X . There are several different ways to make
this precise, for example to say that X,Y are measurable spaces and the condi-
tional distribution is modeled as a measurable function X → G(Y), where G(Y) is
the measurable space of all probability measures on Y [98, 110]. Equivalently, one
might say that objects are finite sets and morphisms are stochastic matrices. Com-
position of morphisms is by ‘integrating out’ the middle variable (sometimes called
the Chapman-Kolmogorov equation [250]), which is simply matrix multiplication
in the finite case. Call this category Stoch. There is a morphism Stoch → Lens that
pairs a conditional distribution with the function that performs Bayesian inversion
on it, namely f �→ (f, f #)where f # : G(X) × Y → G(X) returns the posterior dis-
tribution f #(π, y) given a prior π and an observation y. Bayesian inversion satisfies
a ‘chain rule’ with respect to composition, meaning that the Bayesian inverse of a
composite conditional distribution can be computed in terms of the Bayesian inverses
of the components, and this fact precisely says that Stoch → Lens is a functor [318].

Dynamic programming. Consider a Markov chain with state space S, action space
A, and (stochastic) transition function P : S × A → S. Suppose further that actions
are controlled by an agent,who obtains utilityU : S × A → R on each transition. For
each policyπ : S → Awe obtain a function f : S → S given by f (s) = P(s, π(s)),
and a function f # : S × R → R given by f #(s, c) = U (s, π(s)) + γ c, where 0 <

γ < 1 is a fixed discount factor. The second input to f # is known as the continuation
payoff. These two functions constitute a lens λπ : (S,R) → (S,R), indexed by the
policy. On the other hand, a lens V : (S,R) → (1, 1) turns out to be just a function
V : S → R, which we take to be the value function. If V is an initial value function
andπ is the appropriately optimal policy for it, the lens compositionλπV : (S,R) →
(1, 1) performs a single stage of value function iteration. Thus value function iteration
amounts to approximating the limit:

· · · −→ (S,R)
λπ2−→ (S,R)

λπ1−→ (S,R)
V0−→ (1, 1)

where each πi is the optimal policy for the current value function at each stage.6

6 This connection between dynamic programming and lenses is due to Viktor Winschel.

86 9 A Compositional Framework

Hierarchical Symbolic-Numeric Lenses

All three examples of the ‘lens pattern’we have described above formachine learning
are notably ‘low-level’ and numerical. However, now that the common pattern has
been identified, it is possible in principle to design systems which are structurally the
same but which are semantically ‘higher-level’. This allows the best of both worlds:
logical languages embodying GOFAI principles such as abduction and generaliza-
tion can be combined with the hierarchical feedback which has been enormously
successful in numerical and connectionist approaches. One option is to construct a
monoidal functor C → Lens where C is a suitable category for higher-level reason-
ing; another is to build additional structure into Lens itself using its more general
definition.

The specific approach proposed here is to construct lenses in which the forwards
map performs deductive reasoning, and the backwards map performs abductive rea-
soning. The idea is that the forwards map λ+ will, given a hypothesis x , generate a
deductive conclusion λ+(x), while the backwards map will, given an initial hypoth-
esis x and an observation y, abductively generate an updated hypothesis λ−(x, y) in
order to explain the observation in a way that is in some sense ‘as close as possible’
to the starting hypothesis.

Suppose now that from an initial hypothesis x we make a 2-step deduction
μ+(λ+(x)). If we then observe z, we can perform a 2-step abduction using the lens
composition law to determine a new hypothesis. First, using the deduced hypothesis
λ+(x) and the observation z, we use μ− to abductively determine the new ‘middle’
hypothesis μ−(λ+(x), z). We then treat this as though it is an observation, which
together with the initial hypothesis x abductively determines the final result:

λ−(x, μ−(λ+(x), z))

Another possibility is that forwards maps perform abstraction between different
levels of representation of a state, and backwards maps are control commands (or
desires). We will illustrate this with a simple worked example. Consider a factory
robot moving in the region:

R = {(x, y) ∈ R
2 | 0 ≤ x ≤ 10, 0 ≤ y ≤ 10}

Sincewewill only be describing the robot’smovementwith pseudocode it suffices
to informally describe themap. The factory floor is divided into two zones, with a path
running through both. In each zone there is a goal adjacent to the path, representing
a place where the robot can pick up or deliver objects. An abstracted description of
the robot’s position is given by elements of Zone× Chunk, where

Zone = {zone1,zone2}

is the set of zones and

9.4 Abduction 87

Chunk = {path,goal,nothing}

There is a functionλ+
pos : R → Zone× Chunk that abstracts the robot’s position.

Going the other way, a command to move to a certain state at the more abstract level
can be ‘translated down’ into a lower-level command to move in the space R. For
this we also need to know the current position in the concrete space R, making the
type of the backwards function:

λ−
pos : R × (Chunk× Zone) → R

λ−
pos need not move the robot directly to a position that satisfies the goal, that is, the

equation λ+
pos(λ

−
pos(x, g)) = g (known as the ‘put-get law’ of lenses) need not always

hold. Rather, λ−
pos can direct the robot through a series of ‘waypoints’ by treating

the position variable as a state variable. What should be guaranteed is that holding
the goal fixed and iterating λ−

pos(−, g) : R → R from any starting position will after
finitely many steps reach a position x ∈ R satisfying λ+

pos(x) = g (provided the goal
is physically reachable for the robot). For example, our λ−

pos(x, g) could be given by
the following pseudocode:

• If the current position satisfies the goal (λ+
pos(x) = g) then do nothing (λ−

pos(x, g) =
x).

• Otherwise, if the current position is within a fixed short distance of the goal, then
move onto the center of the goal.

• Otherwise, if the robot is on the path, move along the path towards the goal.
• Otherwise, move directly onto the path.

Thus if we iterate λ−
pos(−, (zone1,goal)) from a typical starting position then the

robot will first move onto the path, then move along the path towards zone 1, and
then move onto the goal. Together the functions λ+

pos and λ−
pos constitute a lens:

λpos : R → Chunk× Zone

Wewill now demonstrate how this lens can be a part of a hierarchy in which the next
level is task-centric. Suppose the robot can carry an object, from the set:

Object = {widget,gizmo,nothing}

and sense its carry weight. A widget weighs 2, a gizmo weighs 7 and no object
weighs 0, defining a function W : Object → [0,∞).

We define a lens:
λwt : [0,∞) → Object

where
λ+
wt : [0,∞) → Object

88 9 A Compositional Framework

classifies any weight less than 1 as nothing, any weight between 1 and 5 as a
widget and any weight greater than 5 as a gizmo. The backward function:

λ−
wt : [0,∞) × Object → [0,∞)

ignores the current weight, and takes the desired object to its resulting desiredweight,
namely, λ−

wt(w, o) = W (o).

We can run these two lenses in parallel, yielding:

λpos ⊗ λwt : R × [0,∞) → Chunk× Zone× Object

The parallel composition of lenses

λ1 : X1 → Y1 and λ2 : X2 → Y2

is the lens:
λ1 ⊗ λ2 : X1 × X2 → Y1 × Y2

given by:

v(x1, x2) = (v1(x1), v2(x2)) and

u((x1, x2), (y1, y2)) = (u1(x1, y1), u2(x2, y2))

Unlike the sequential composition defined previously, this is a non-interacting com-
position.

The second level of the hierarchy will be described as a lens:

λtask : Chunk× Zone× Object → Task

where
Task = {task1,task2,nothing}

The backwards function takes the current state and the desired task, and returns the
desired next state required to complete the task. Task 1 entails collecting a widget
from the goal in zone 1 and delivering it to the goal in zone 2; task 2 entails collecting a
gizmo from the goal in zone 2 and delivering it to the goal in zone 1. λ−

task(c, z, o, t),
which returns the robot’s desired next state given the current state and the task, is
given by the following pseudocode:

• If the task is 1 and the held object is a widget, then proceed to the goal of zone
2 to deliver it:

λ−
task(c, z,widget,task1) = (goal,zone2,nothing)

9.4 Abduction 89

• If the task is 1 and the held object is a gizmo, then proceed to the goal of zone 2
to return it:

λ−
task(c, z,gizmo,task1) = (goal,zone2,nothing)

• If the task is 1 and no object is held, then proceed to the goal of zone 1 to pick up
a widget:

λ−
task(c, z,nothing,task1) = (goal,zone1,widget)

• If the task is 2, then there are three cases similar to the above.
• If there is no task, then remain in the current state:

λ−
task(c, z, o,nothing) = (c, z, o)

We can now compose together the entire control system; it is the lens:

(λpos ⊗ λwt)λtask : R × [0,∞) → Task

This composite is commonly represented schematically by a ‘string diagram’ as
follows:

The update function of this composite treats the output of λ−
task, which is the next

state desired by the high-level planner, as the input to the first level, which ‘translates’
it into the lower level of coordinates.

Around this composite systemwemust place an ‘environment’. On the right-hand
side sits the human controller or other top-level planner, which decides the top-level
tasks given the top-level observations. On the left sits the ‘physical environment’,
consisting of the real world (or a simulation thereof), together with actuators that
implement the robot’s bottom-level desires and sensors that produce the bottom-level
observations. Crucially, this physical environmentwill typically have an internal state
that cannot be observed by the robot.

In our example, for simplicity we take the top-level planner to be a constant task.
The physical environment will store the robot’s position and currently held object.
The current position is continually updated with the desired position provided it is
reachable in a straight line. The desired weight is ignored since the robot has no
corresponding actuator. When the robot’s position is in one of the goal areas, the
carried object will change as an object is either picked up or delivered.

90 9 A Compositional Framework

If we iterate the composite backward function:

((λpos ⊗ λwt)λtask)
−(−,task1)

from any starting position, the robot will repeatedly navigate between the goals of
zone1 and zone2, picking up and delivering widgets. (If it is initially carrying
a gizmo it will first return the gizmo before picking up its first widget.)

This setup has the feature that time ‘naturally’ moves slower the higher one goes
up the hierarchy. Suppose the robot’s initial position is in zone2 and it is holding no
object. If the task is task1 then λ−

task will output (zone1,goal,widget). This
will be used as the desired input to λ−

pos. The robot will navigate through several
stages towards the goal of zone1, during which time the output of λ−

task will not
change. After the robot reaches the goal, the environment will update its held object
to a widget, which will cause λ+

wt to change its output to widget. This in turn
will finally cause λ−

task to change its output to (zone2,goal,nothing), signaling
a change in desire to move to the other goal to deliver the widget. This will again
stay constant while the lower level λpos navigates the robot towards the new goal.

Here we have proposed to found abductive inference on the category-theoretic
machinery of lenses. Besides abduction, we have also shown how lenses generalize
backpropagation, variational inference, and dynamic programming. We then intro-
duced novel ‘symbolic-numeric’ lenses, which allows hybrid structures, consisting
of both symbols and these pre-existing lenses, to be hierarchically composed. This is
important for implementing scalable planning: the general planning problem suffers
from both branching and time horizon, which can be ameliorated by lower dimen-
sionality aswell as longer time jumps. This can be achieved by progressively building
a hierarchy of ‘concepts’ and their affordances (cf. Sect. 11.2.2), and operationaliz-
ing planning as abductive reasoning at the highest available level, which, thanks to
the hierarchical composition, will still be firmly anchored in the sensorimotor level.
In the next chapter, we will see how control loops, which are considered from a lens
perspective by emerging research in categorical cybernetics, provide a compositional
vocabulary to identify and regulate control systems.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	9 A Compositional Framework
	9.1 Categorical Cybernetics
	9.2 Hypothesis Generation
	9.3 Abstraction and Analogy
	9.4 Abduction

