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Chapter 8
Equating Measuring Instruments
in the Social Sciences: Applying
Measurement Principles of the Natural
Sciences

David Andrich and Dragana Surla

Abstract The concept of measurement in which the magnitude of a property is
quantified in a common unit relative to a specified origin is a deep abstraction. This
chapter shows the application of measurement in a social science context where the
motivation is transparency and equity rather than the advancement of scientific laws.
However, to achieve these, the realization of measurement needs to be no less
rigorous than it is in the advancement of scientific laws. Rasch measurement theory
provides the basis for such rigor. The context in this chapter is competitive selection
into universities in Western Australia based on a summary performance on a series
of instruments which assess achievement in a range of discipline areas. Such
selection tends to determine life opportunities; therefore to ensure consistency and
fairness, performances on different instruments need to be transformed into mea-
surements which are in the same, explicit unit relative to a specified origin. Because
the illustrative context is complex, it is considered that the Rasch measurement
theory applied in this chapter could be applied to a range of social contexts where
assessments on different instruments need to be transformed to measurements in a
common unit referenced to a common origin and where the focus is on making
decisions at the person level.
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8.1 Introduction

Measurement, the quantification of the magnitude of some property of an object
from a specified, convenient or natural origin in a constant unit of an instrument, is a
deep abstraction. For example, the elementary measurement of mass using a beam
balance is both simple and sophisticated. Though the balance is a relatively simple
instrument, the conceptualization to quantify the mass of the object in a meaningful
way is a remarkable abstraction. The balance involves having a three-dimensional
object, potentially of any shape, volume, color, and so on, on one side, and a set of
equivalent objects on the other side that balances it, mapping the count of this set on
a real number line, itself partitioned into equal contiguous distances. There is little in
the natural world that even approximates a real number line, which is totally abstract,
where even a drawn line to represent it is ragged when looked at through a
microscope.

Despite aspects of deep abstraction and scientific implications, school-children
understand the concept of measurement of mass using a beam balance, and under-
stand more generally the idea of measurement in a constant unit relative to a
specified origin. The motivation for measurement of common properties was not
to advance physical laws, but the fair trade of objects with properties such as mass,
length, and volume. The standardization of units for this purpose is exemplified by
the development of the metric system [1]. Although standardized for purposes of fair
trade, the metric system was developed by scientists of the highest order. The
relationship of science to measurement from this perspective is summarized by
Alder:

We often hear that science is a revolutionary force that imposes radical new ideas in human
history. But science also emerges from within human history, reshaping ordinary actions,
some so habitual we hardly notice them. Measurement is one of our most ordinary actions.
We speak its language whenever we exchange precise information or trade objects with
exactitude. This very ubiquity, however, makes measurement invisible. To do their job,
standards must operate as a set of shared assumptions, the unexamined background against
which we make agreements and make distinctions. So it is not surprising that we take
measurement for granted and consider it banal. Yet the use a society makes of its measures
expresses its sense of fair dealing. That is why the balance scale is a widespread symbol of
justice [1, p. 1].

This chapter is concerned with scientific measurement in which the prime pur-
pose is transparency and fairness, and not the advancement of laws. Nevertheless, for
this important purpose, measurement needs to be as rigorous as that needed to
advance quantitative, scientific laws, and needs to be of the same kind that advances
such laws. Thus, although rigorous measurement will be required for the develop-
ment of quantitative laws in the social sciences, there are social contexts where
transparency and fairness of decisions seem sufficient to require rigorous scientific
measurement. This chapter provides such an example.
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8.1.1 A Complex Social Science Context

In educational assessment of proficiency, it is common to refer to the instruments of
assessment as tests. Because the example of this chapter is illustrative of a general
approach to equating, and because of the connections made with measurement in the
natural sciences, they are referred to as instruments. The typical study and process of
equating scores from different instruments assumes that they assess the same
variable [24]. The context of the example of this chapter, referred to as the frame
of reference for reasons that emerge later, is substantially more complicated than
that. The context is the selection of students into universities in Western Australia
based on their assessment on instruments from an array of disciplines at the end of
12 years of schooling. There are some 40 disciplines of possible study, and students
must have scores on at least four, including in the discipline of English, though many
have scores on five or more disciplines. Although there are prerequisites for univer-
sity entry in some fields, such as engineering, to meet other policy requirements – for
example, not specializing studies too early – these are minimal. In addition, where
there are prerequisites, additional electives may be chosen, and these are not the
same among the candidates. Each instrument’s scores range from 0 to 100 and,
because a summary score of each student’s profile is calculated and the students are
ranked for competitive entry into universities in Western Australia, the scores of all
instruments need to be equated onto a measurement scale with the same unit relative
to a specified origin.

Within each discipline area, the instrument scores can be considered to reflect
causal variables in which proficiency of the student in the discipline area governs the
performance on the instrument. In principle, within each instrument, different items
that assess the same proficiency are exchangeable. However, the summary score
across a range of disciplines, can be considered an index variable [4, 39, 40,
43]. This variable can be considered a higher order, thick variable, one thicker
than those from each of the disciplines, that reflects a general capacity to profit
from a university education as evidenced from previous relevant study.

The frame of reference is complex for the following reasons. First, the summary
index variable is even more complex than the kind illustrated by Stenner, Burdick
and Stone [39]. Their example defines socioeconomic status (SES) by education,
occupational prestige, income, and neighborhood. In defining SES in this way, none
of the components are exchangeable. These same components define the variable for
each person. However, in the example of university selection, they are not defined by
a fixed set of disciplines, and in principle, they are exchangeable. For example, two
candidates may be competing for entrance to the same university study, such as law
or psychology, with only one instrument score out of four or five which is common.
Second, because candidates self-select the disciplines they study, and they have
scores on different combinations of instruments, no pair of instruments have entirely
common candidates. Third, although the instrument scores are positively correlated,
the correlations among instrument scores are not homogeneous. For example, the
correlation between instruments of Mathematics and Chemistry is greater than that



between either discipline and English or History. Fourth, the scores are probabilistic,
not deterministic, relative to proficiency, and for their analysis a measurement theory
that is inherently probabilistic is required. Finally, as indicated above, for various
historical reasons, the scores have a finite range, and therefore, especially close to the
higher limits of the range where competitive scores are most relevant, the relation-
ships among the scores are not linear. How each of these complexities is accommo-
dated in producing measurements on the same scale relevant for the purpose of
university entry is the substance of this chapter. Because of the complexities of this
frame of reference, it is considered that many other contexts that require equating of
instruments might be accommodated by the application of the Rasch measurement
theory described in this chapter.
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8.1.2 Empirical Understanding and the Role of the Rasch
Model for Measurement

In the natural sciences, advanced measurement is derived from the scientific, theo-
retical understanding of the relevant variables and their relationships [26]. Direct
reading of measurements from the instrument hides the substantive theory and
design that manifests the property measured and controls properties that disturb
it. The beam balance exploits the effect of gravity and simply controls other factors,
for example measurements in very small units of chemical properties used antique
balances that were enclosed to ensure no disturbance from air movement. Appro-
priately anchored, and elegantly for such an elementary instrument, the balance will
give the same measurement whether under the gravitational force of the Earth or the
Moon and whether it is stationary or accelerating relative to either of them. From the
perspective of scientific theory, the separation of the concepts of mass and gravity
took the geniuses of Galileo and Newton, and at the time was controversial. The
studies of mass and gravity in physics, from nuclear energy to gravity waves,
continue to be advanced areas of physics. However, to ensure transparency and
equity, everyday transactions also require accurate measurement of mass.

The beam balance is not only familiar, but its application is relatively tangible,
thus disguising some of the sophistication in the understanding of mass and gravity.
On the other hand, the now equally familiar mercury thermometer for measuring
human and day temperatures, though now easy to apply, is conceptually much less
tangible than the beam balance. In particular, the origin and unit are more abstract
than a unit of mass, for example, a kilogram. In Celsius, at one atmosphere of
pressure, 0� C is set at the freezing point of water, 100� C at the boiling point, and the
unit is one 100th of this range. These end-points are chosen for convenience of
relatively observable everyday phenomena. Empirical work was required to ensure
that the uniform expansion of mercury in a thin tube in the range specified, also
implied uniform increases of temperature.
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The thermometer requires the control of the relative expansion of all of its other
components. This control requires the scientific understanding of vacuums, pressure
of gases, and so on. This is the reason that the construction of reliable, practical
thermometers required the work of the best scientists of the nineteenth century.
Indeed measurement of temperature was developing before the concept of heat as the
kinetic energy of atoms was understood, meaning that the measurement of this
variable and its understanding were more or less simultaneous [15]. An important
inference from this example is that the reliable measurement of a variable indicates a
substantial understanding of its properties, and reciprocally, that successful mea-
surement can enhance further understanding.

In the frame of reference in the example of this chapter, the counterpart to the
theoretical understandings of variables are the transparent, explicit syllabuses for
each discipline for Years 11 and 12 of schooling, the teaching of these syllabuses by
qualified teachers, the design of instruments to assess a range of proficiencies that
reflect each syllabus, and the anonymous scoring of the performances of each
candidate by two independent qualified markers. Even the studies up to Year
10, in the development of student proficiencies to enable them to study at Years
11 and 12, are relevant. Thus a great deal of professional, intellectual and empirical
work goes into the production of scores on the instruments by students. The ultimate,
substantive, validity of each instrument is the public outcry in the newspapers, and
these days, social media, if questions stray from the syllabus.

It is stressed that such substantive, empirical work is essential and that the
application of Rasch measurement theory to equate instruments and to map observed
scores into measurements cannot overcome, through probabilistic modelling, any
shoddy, superficial, and poorly constructed instruments that do not validly reflect
candidates’ relative proficiencies in the respective disciplines. The function of the
application of Rasch measurement theory, where scores of all instruments are valid,
is to ensure that the different instruments are transformed onto a measuring instru-
ment with the same unit relative to the same specified origin. The reason this is
necessary is that each instrument is designed to align the range of the difficulties of
its items to the proficiencies of the candidates, and that relative to the higher order
index variable described above, these proficiencies are not the same in each disci-
pline. In addition, the structure, format, and scoring of different questions, which is
natural to the different disciplines, is not the same across these disciplines. As a
result, every instrument has its own implied relative unit, which may not even be
consistent across its own continuum of proficiency. Finally, each is referenced to its
own relative origin; in common parlance, instruments are more or less difficult and
instrument scores are more or less skewed.

8.1.3 Descriptions of Measurement

Because of its role in science and everyday applications, it is not surprising that
measurement has been studied by physical and social scientists, among many of
them are Campbell [13], Duncan [16], Finkelstein [19], Fisher and Stenner [20],



Luce and Tukey [27], Mari [30], Ramsay [35], and Wright [47]. Perhaps surpris-
ingly, physical scientists can, and most do, take the concept and need for measure-
ment for granted. On the other hand, social scientists generally do not have that
luxury. This section does not provide a review of discourses on the history, structure,
function and definitions of measurement; instead, to set up the distinctive definition
in Rasch measurement theory, and why this definition is most germane to the
example of social science measurement of this chapter, it only summarizes briefly
three common definitions of measurement.
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Measurement assumes that magnitudes of properties can be mapped on a real
number line. This is assumed with the measurement of mass and temperature
summarized above. With this assumption, three definitions are most common.
First classical, second representational, and third additive conjoint. They all attempt
to describe measurement by formalizing the properties illustrated above with the
measurement of mass and temperature.

The classical definition emphasizes measurement as the ratio of the amount of the
property of an object relative to an amount defined as the unit [33]. The represen-
tational definition emphasizes that the relationship among the properties is the same
as the relationship among the numbers assigned to the objects [25]. For example, for
certain physical relationships among masses, concatenating two objects is equivalent
to having a single object whose mass is the sum of the measures of each object. The
additive conjoint definition is more abstract, requiring that the rows, columns, and
cells of a two-way table with real numbers, which reflect the magnitudes of proper-
ties, can be transformed monotonically to produce an additive structure [27].

Rather than considering some of its operational aspects as a basis for formalizing
a definition of measurement, Rasch arrived at his requirement from his empirical
studies in reading proficiency [36]. Specifically, that within a specified frame of
reference, and with stimuli (referred to as instruments in this chapter) and individuals
characterized by real numbers,

The comparison between two stimuli should be independent of which particular individuals
were instrumental for the comparison. . . Symmetrically, a comparison between two indi-
viduals should be independent of which particular stimuli within the class considered were
instrumental for comparison; . . . [37, p. 332].

From the mathematical abstraction of his definition, and further derivations from
them, Rasch observed that the properties of measurement that are characterized by
classical, representational, and additive conjoint, are satisfied [36]. However, he
considered that the requirement of invariant comparisons stood as a more funda-
mental basis for measurement than any description of measurement [38]. Andrich
[6] makes the case that, not only is Rasch’s definition compatible with the other
three, but that it explains them. Moreover, the other definitions are deterministic,
whereas Rasch’s theory is set in both deterministic and probabilistic contexts, where
the probability characterizes the uncertainty in the observation when one person
encounters one instrument. It is not concerned with the distributional properties of
populations of persons. This chapter applies the probabilistic formulation.
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8.1.4 Measurement of Variables with No Physical
Counterpart

Rasch’s formulation of invariant comparisons, conveniently and elegantly, abstracts
measurement further than typically considered in the natural sciences in that it makes
no reference to any physical properties. Rasch was not the first to consider such an
abstraction and the quest for invariance of comparisons. In abstracting measurement
from his work on comparative judgements of pairs of a set of objects with respect to
a physical property such as sound pitch or luminescence, Thurstone commented:

One of the main requirements of a truly subjective metric is that it shall be entirely
independent of all physical phenomena. In freeing ourselves completely from physical
measurement, we are also free to experiment with aesthetic objects and with many other
types of stimuli to which there does not correspond any known physical measurement [44,
pp. l82–83].

Thurstone emphasized that the mapping of the magnitude of the property on a real
number line involved very specific focus on a variable, and the control of all other
variables. In the construction of instruments for measuring attitudes in terms of
statements that reflected different degrees of the attitude through the opinion they
expressed, he writes that

The various opinions cannot be completely described merely as “more” or “less”. They
scatter in many dimensions, but the very idea of measurement implies a linear continuum of
some sort, such a length, price, volume, weight and age. When the idea of measurement is
applied to scholastic achievement, for example, it is necessary to force the qualitative
variations into a scholastic linear scale of some kind [44, pp. 218–19].

On the requirement of invariance of comparisons, he articulates that

If a scale is to be regarded as valid, the scale values of the statements should not be affected
by the opinions of the people who help to construct it. This may turn out to be a severe test in
practice, but the scaling method must stand such a test before it can be accepted as being
more than a description of the people who construct the scale [44, p. 228].

Rasch’s requirements of invariant comparisons with respect to any properties that
can be characterized by real numbers, physical or not, are compatible with
Thurstone’s. However, the distinctive part of Rasch’s formulation is that the require-
ments are expressed formally in mathematical terms [37, 38]. As a result, further
mathematical derivations can be carried out. Among other epistemological implica-
tions of these derivations [6], it makes it possible to apply the resultant model to real
data. This chapter is concerned with one such example where the measurement
model applied to define a unit and origin of a standard instrument could only have
been formulated through a mathematical derivation.
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8.1.5 Structure of This Chapter

The rest of this chapter is structured as follows. Section 8.2 provides a summary of
the polytomous Rasch model and the special case of the Rasch distribution which
makes tangible the analogy between measurement in the natural sciences and Rasch
measurement theory. The thresholds in the Rasch distribution are equidistant, and
the common distance is identical in interpretation to the unit of a measuring
instrument in the natural sciences. In addition, this distribution, which is the inferred
distribution of replications, is a discrete analogue of the continuous Gauss distribu-
tion of uncertainty for replicated measurements. In order to satisfy the unidimen-
sionality property of the Rasch model, and therefore optimize the relationship
between the instruments in deriving the equating functions, this section also provides
a rationale for editing the profiles of persons. This editing is based on obtaining
relatively homogeneous profiles, that is, those for which the total score is sufficient.
In a complementary fashion, the section also provides a rationale for identifying, at
the person measurement stage, those profiles which can and cannot be characterized
by their total score. Then, because of the frame of reference of the measurement,
those profiles that cannot be summarized by their respective total scores need to be
considered in terms of both a summary estimate and the properties of the profile.

Section 8.3 provides an empirical example from the frame of reference described
above. Specifically, it shows the details of real data from six instruments used for
university entrance examinations and the results of equating these instruments to a
common instrument of the Rasch distribution, where the origin and unit are defined
identically, and not merely analogously, to those of an instrument measuring phys-
ical variables and are chosen for convenience in their frame of reference. Descriptive
statistics before and after equating are provided with the example, emphasizing its
illustrative properties that can be transferred to other contexts. The final section is a
summary.

8.2 The Rasch Model and Distribution

From three successive papers [2, 3, 37], where the theoretical characteristic of these
papers is emphasized by there being no data analysis in any of them, the Rasch
model for ordered categorical data can be expressed in the now familiar forms, as
either a rating or partial credit parameterization [31] according to

P Xni ¼ x; βn,ψ xif g ¼ exp ψ xi þ xβnð Þ½ �=γni, ð8:1Þ

where Xni takes integer values x ¼ 0, 1, 2, . . ., mi when person n, measure βn, is
assessed with instrument i; ψ xi ¼ �Px

k¼0τki k ¼ 1, 2, . . .mi, τki are the instrument’s
mi thresholds where τ0i � 0 is introduced for notational convenience; and γni is a
normalizing factor. In common psychometric applications, the instrument in
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Eq. (8.1) is an item of an instrument or questionnaire. The relevant part of the partial
credit parameterization, relative to the rating parameterization, is that in the former
all the thresholds of the different instruments can have different values, whereas in
the latter the means of the thresholds of the instruments can be different but the
deviations of the thresholds from their mean is the same across instruments.
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The response structure for any one person responding to one instrument is the
same in both parameterizations. However, interpreting the thresholds as steps, and
presenting Thurstone thresholds reconstructed from the Rasch model [31, 32], is not
compatible with the Rasch model [5, 34]. Moreover, although estimates from data
for an instrument can result in reversed threshold values relative to their natural
order, it is evidence of a problem with the responses produced by the instrument.
Although there are multiple reasons for this conclusion, as seen later, there are two
particular reasons thresholds must be in their natural order for the purposes of this
chapter. First, if they were disordered, it would not be possible to define a unit of an
instrument as the common, equal distance between successive thresholds, as in a
measuring instrument in the physical sciences and in this chapter. Second, the
distribution of uncertainty around any measurement would be bimodal, whereas
all random error distributions of uncertainty, including the Gauss distribution are not
only strictly unimodal, but the transition between successive probabilities is smooth.
With thresholds in their correct order, the Rasch model satisfies this criterion of
smooth, strict unimodality [9].

In any analysis, the parameter β is expressed in what are commonly referred to as
logits, though the logit is not a unit of the instrument of the kind found in the natural
sciences, nor of the unit as defined in this chapter [22]. Specifically, the same logit
value across separate analyses of different data sets is not expressed in the same unit
in the sense of the unit used in the present chapter.

At threshold τki, the probabilities of responses in its two adjacent categories are
equal. With a maximum score of 100 for each instrument, as in the example of this
paper, there are 100 thresholds. This is an over-parameterization of the model, and
with zero frequencies in the data, especially with low scores, direct estimation fails
without modifying the model in some way [28, 46]. Therefore, instead of attempting
to estimate all thresholds directly, they are estimated through their first four principal
components given by

ψ xi ¼ �xδi þ x mi � xð Þ=2f gΔi þ x mi � xð Þ 2mi � xð Þf λi
þ x mi � xð Þ 5x2 � 5xmi þ m2

i þ 1
� ��

ζi,
ð8:2Þ

where δ, Δ, λ, ζ characterize the location, spread, skewness and kurtosis of the
thresholds of the instrument. It is stressed that these parameters characterize prop-
erties of the thresholds, not the distribution of persons. It is also emphasized that the
person parameter β is a scalar, and therefore is said to be unidimensional [7].

It is relevant to stress the implied interpretation of the Rasch model of Eq. (8.1).
Namely, that given the values of the instrument parameters, then for a given value of
β, Eq. (8.1) is the inferred distribution of responses as if the same person responded



to the same instrument an infinite number of times. Clearly, this is not administra-
tively feasible, but even if it were, if the same person responded to the same
instrument multiple times, there would be substantial local dependence. However,
that is not the point; as part of the abstraction from the data by applying the model,
the distribution is an inferred distribution of replicated responses. An important
aspect of this distribution when applied to real data is that, by analogy to the Gauss
distribution, it is a random distribution [9]. This implies that no unaccounted-for
factors are producing systematic errors in the measurements, which is checked by
both ensuring fit between the data and the model and that the thresholds estimates are
in their natural order [10].
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8.2.1 The Expected Value Curve and the Equating Function

The estimation of the instrument parameters is considered briefly in a later section.
Here we consider the relationship between observed scores and person estimates
given an instrument’s values (δi,Δi, λi, ζi), which may be estimates. The estimate ofbβn for each person is given by a maximum likelihood estimate (MLE) individually.
However, the relationship between a score xni and the estimate is analytic, and holds
whether or not any person in a sample obtained such a score.

For a set of instruments for which person n has scores, bβn is given by the solution
to the implicit equation

tn ¼
XIn

in¼1
xni ¼

XIn

in¼1
E Xni½ � ¼

XIn

in¼1

Xmi

x¼0
xbPr xnif g, ð8:3Þ

where in, In indicate the instruments to which person n has responded and tn is the
total score on these instruments. Thus, for the person estimates β to be on the same
scale, not all persons need to respond to all instruments, a key feature of the
application of the model in the frame of reference of the example.

For each instrument, Eq. (8.3) specializes to Eq. (8.4), which given the observed
score xi, gives the estimate bβxi on instrument i. Reciprocally, given any person value
β, Eq. (8.4) also gives the expected value, E[Xi| β], on the instrument:

xi ¼ E Xi½ � ¼
Xmi

x¼0
xbPr xif g: ð8:4Þ

Equation (8.4) can be solved for each total score xi whether or not any person
obtained that score, giving a unique estimate which we denote bβxi and drop the
person subscript n. In this case, though real numbers, because xi 2 {0, 1, 2, . . .,mi}
are discrete, the bβxi are discrete. On the other hand, Eq. (8.4) can be solved for E[Xi]
given any β and is in principle continuous. Both relationships of Eq. (8.4) are applied
in this chapter. This application is introduced in Fig. 8.1.
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Fig. 8.1 E[X| β], (δ,Δ, λ, ζ) ¼ (�0.06325, 0.05025, 0.00024, 0.00001) for CHE; E[X| β],

(δ,Δ) ¼ (0.20000, 0.04000); and the linear measurement function x Lð Þ
SI of the Standard Instrument

(SI), x Lð Þ ¼ E x Lð Þjβ ¼ 0
h i

þ β =Δ ¼ 45þ 25β

Figure 8.1 shows the relationship between the observed score xi and person
estimate bβxi , and the expected value curve E[Xi| β] as a function of β, for one of
the instruments called CHE which is analyzed in detail later in this chapter. The
values of the parameters of this instrument are shown in the caption of Fig. 8.1.
Because of the large value of 100 for the maximum score, the values of these
parameters are small – therefore they are shown to five decimal places. Although
referred to as an item characteristic curve when responses are dichotomous because
it is more descriptive in its meaning, the graph of Fig. 8.1 is referred to as an expected
value curve (EVC).

Figure 8.1 also shows a second EVC of an instrument that is linear over a
substantial range of the continuum with curvature only at the extremes. This
instrument has only two parameters, the first two principal components (δi,Δi) of
Eq. (8.2), whose values are shown in the caption of the Figure. In anticipation of
further detail below, this instrument is referred to as the Standard Instrument (SI),
and is the instrument to which all instruments are equated or mapped. The SI has
equidistant successive thresholds, Δi, the value which is identical to βx � βx � 1 over
a well-defined range. Therefore, it is analogous in interpretation to the unit of a
standard measuring instrument. Moreover, again in anticipation of further elabora-
tion, over the same range of the values, the random, uncertainty distribution is the
discrete counterpart of the Gauss distribution, the distribution of random variation of
replicated measurements. The SI is not simply an empirical regression equation, but
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an instrument whose unit and origin are both explicit and are deliberately chosen for
context relevance and convenience. Accordingly, a value on the SI is referred to as a
measurement.
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Here we note that Fig. 8.1 shows the effective mapping function of the instrument

CHE onto the SI. In particular, the score x ¼ 75 on CHE, bβjx ¼ 75
n o

¼ 0:664,

gives the measurement, E[XSI| β ¼ 0.664] ¼ 61.591, on the SI. Finally, Fig. 8.1
shows a full linear extrapolation of the SI beyond the minimum and maximum scores
of 0 and 100, which is explained later in this chapter.

8.2.2 The Rasch Distribution of Uncertainty

We now explain in detail the SI. A special case of the Rasch model of Eq. (8.2)
involves just the first two principal components, (δi,Δi), giving

P Xni ¼ x; βn, δi,Δið Þf g ¼ �xδi þ x mi � xð Þ=2f gΔi þ xβn½ =γni: ð8:5Þ

This distribution has a distinctive role in showing measurement of the kind found in
the physical sciences. Therefore, two of its characteristic features are
elaborated now: first, the presence of the explicit unit Δ relative to the specified
origin δ, directly equivalent to that in the physical sciences; and second, the resultant
random distribution of measurement uncertainty which is the discrete analogue of
the Gauss distribution of uncertainty of replicated measurements in the physical
sciences.

Because of these features, Eq. (8.5) is referred to as the Rasch distribution, rather
than simply a model.

8.2.3 The Unit in the Rasch Distribution

The EVC of the empirical instrument in Fig. 8.1 has a non-linear relationship with
the continuum β. The non-linearity results from the presence of skewness and
kurtosis in the thresholds. On the other hand, because its thresholds have no
skewness or kurtosis, the SI is linear over a substantial range. An excerpt of the
relationship between x, E[XSI| β] and β is shown in Table 8.1, where the observed
scores and expected values in the range 15–86 inclusive are highlighted in bold.
Table 8.1 also shows a column referred to as x Lð Þ

SI which is defined formally below as
measurements on the SI.

Not only is the relationship between x, E[XSI| β] and β linear in the range shown,
but it makes the unit explicit. Thus the difference between two successive values
βx + 1, βx is not only constant and linear with the observed score x, but the difference
between them is exactly the unit Δ ¼ 0.04, that is, βx + 1 � βx ¼ Δ; x ¼ 15, 16, 17,



β β

SI SI

h i
x x

. . ., 84, 85, 86. This relationship can be shown algebraically. Thus let the measure-
ment on the SI be notated x Lð Þ

SI where the superscript (L ) indicates that x Lð Þ
SI is linear

throughout, and not an expected value or an observed measurement which is
constrained between 0 and 100. Then relative to E[XSI| β ¼ 0],
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Table 8.1 The relationship between x, E[XSI| β], β of the Standard Instrument of Fig. 8.1

x, E[X| β] βx + 1 � βx x Lð Þ
SI x, E[X| β] βx + 1 � βx x Lð Þ

SI

0 �3.114 . �32.9 . . . ... . . . ...

1 �2.400 0.714 �15.0 82 1.480 0.040 82.0

2 �2.051 0.349 �6.3 83 1.520 0.040 83.0

3 �1.880 0.171 �2.0 84 1.560 0.040 84.0

4 �1.768 0.112 0.8 85 1.601 0.040 85.0

5 �1.684 0.084 2.9 86 1.641 0.040 86.0

6 �1.616 0.068 4.6 87 1.682 0.041 87.1

7 �1.557 0.059 6.1 88 1.724 0.042 88.1

8 �1.504 0.053 7.4 89 1.766 0.042 89.2

9 �1.456 0.048 8.6 90 1.810 0.044 90.3

10 �1.410 0.046 9.8 91 1.856 0.046 91.4

11 �1.366 0.044 10.9 92 1.904 0.048 92.6

12 �1.324 0.042 11.9 93 1.957 0.053 93.9

13 �1.282 0.042 13.0 94 2.016 0.059 95.4

14 �1.241 0.041 14.0 95 2.084 0.068 97.1

15 �1.201 0.040 15.0 96 2.168 0.084 99.2

16 �1.160 0.040 16.0 97 2.280 0.112 102.0

17 �1.120 0.040 17.0 98 2.451 0.171 106.3

18 �1.080 0.040 18.0 99 2.800 0.349 115.0

19 �1.040 0.040 19.0 100 3.514 0.714 132.9

SI : δ ¼ 0:200; Δ ¼ 0:040; x Lð Þ ¼ E x Lð Þjβ ¼ 0 þ β =Δ ¼ 45þ 25β

βx ¼ x Lð Þ
SI � E XSI jβ ¼ 0½ �

n o
Δ, ð8:6Þ

showing that values of βx increase by the value of the unitΔ for each integer increase
in the observed score x. In addition, relative to the origin, this relationship between
an observed integer count x and the value of β is directly analogous to a measurement
of an object, relative to its origin, in the unit of the instrument.

Rearranging Eq. (8.6), gives the general relationship

x Lð Þ
SI ¼ E x Lð Þ

SI jβ ¼ 0
h i

þ β=Δ: ð8:7Þ

The last column of Table 8.1 shows values of x Lð Þ
SI . Note Eq. (8.7) is not estimated as

a regression equation, but is expressed analytically as a relationship between the
measurement x Lð Þ

SI given the value of β. Table 8.1 shows that in the range in which the



relationship is linear between x, E[XSI] and β, their values are identical to three
decimal places. These values are also highlighted in bold. Outside this range, for the
same value of β, x Lð Þ

SI is different from x, E[XSI]. Table 8.1 also shows that only at the

extremes of the range of the instrument, 0, 1 and 99, 100, the values of x Lð Þ
SI show very

large extrapolations. This in part is a result of the choice of the unit and origin. How
this range is determined is described in the next sub-section. However, it is because
of the properties of the distribution, in particular that of Eqs. (8.6) and (8.7), the
values of x Lð Þ

SI have been, and continue to be, referred to as measurements.
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8.2.4 The Rasch Distribution of Measurement Uncertainty

As indicated above, the Rasch model distribution of Eq. (8.1) is the inferred
distribution of replications of responses of the same person to the same instrument.
This is simply a property of the probabilistic model. However, this inference holds
for data only if the responses also fit the model. If they do fit the model, and the
thresholds are ordered, then this distribution is of random uncertainty, with no
evidence that any unaccounted-for factors are disturbing the responses [10]. This
same inference holds for the Rasch distribution of Eq. (8.5) which has only the two
parameters, the origin and the unit of the instrument specified. Of course, in this
distribution of the SI, the thresholds are defined to be ordered. Because this distri-
bution is directly analogous to the Gauss distribution of measurement uncertainty,
now taken for granted in the natural sciences, we briefly review the motivation and
role of the Gauss distribution in measurement.

Although the Gauss distribution is so mainstreamed that it is referred to generally
as the normal distribution, the motivation and lengthy evolution of this distribution
is generally not presented in textbooks. Besides Gauss, the derivation of the distri-
bution exercised the best mathematicians in the late 18th and early 19th centuries,
including De Moivre, Lagrange, La Place, and others [17, 41]. It was derived to
account for the consistent evidence that . . .repeated measurement of a fixed quantity
by the same procedure under constant conditions. . . did not give the same values but
a distribution of values. The derivations culminated . . . in the quadratic exponential
law of Gauss [17, p. 1]. This distribution satisfied the requirement that it character-
ized variation that was random, it having been realized that rather than propagating
errors, random variation cancelled them. Thus the distribution is a theoretical
distribution of random variation of replicated measurements, not a distribution
derived to describe any particular data set. However, to the degree that any data
set does conform to the Gauss distribution, to that degree it provides evidence that
variation is no more than random, and therefore that relevant inferences can be
drawn from the data, for example, that the mean is an ideal characterization of the
object of measurement. Measurement of uncertainty continues to be a concern of
natural scientists [23].
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Fig. 8.2 Two Rasch distributions of the Standard Instrument where the probabilities of extreme
measurements vanish, interpolated by the Gauss distribution in which E[XR] ¼ μG, V XR½ �
σ2G ¼ 1=Δ

Figure 8.2 shows the Rasch distribution for the SI of Fig. 8.1 in which
(δ,Δ) ¼ (0.200, 0.040). The figure also shows the mean, E[X| β] for the two
measurements (βl, βu) ¼ (�1.160, 1.560). The Rasch distribution is clearly discrete
with respect to the possible integer measurements. The discrete probabilities in
Fig. 8.2 are interpolated with a continuous distribution. Perhaps unexpectedly, this
is the continuous Gauss distribution. The possibility of this interpolation is no
coincidence. For completeness, Eq. (8.8) shows the now common form of the
Gauss distribution,

P X ¼ xjμ, σ2� � ¼ exp � x� μð Þ2=2σ2
h i

=
ffiffiffiffiffi
2π

p
σ, ð8:8Þ

where (μ, σ2) are the mean and variance of the distribution.
In elaborating this relationship, we first note an observation made by Gauss

regarding the limits of the applicability of the distribution of Eq. (8.8):

Gauss commented that (1) (the distribution) cannot represent a law of error in full rigor
because it assigns probabilities greater than zero to errors outside the range of possible
errors, which in practice always has finite limits; that such a feature is unavoidable because
one can never assign limits of error with absolute rigor; but this shortcoming is of no
importance in the case of (1), because it “decreases so rapidly, when [(x � μ)2/2σ2] has
acquired a considerable magnitude, that it can safely be considered as vanishing.” [18, p. 2].

The values (βl, βu)¼ (�1.160, 1.560) were chosen because they are just inside the
limits of the range for the SI where the probabilities of the extreme measurements,
0 and 100, vanish. Thus they are the limits within which the Gauss distribution
would be applicable. Four aspects of the relationship between the Rasch and Gauss
distributions are relevant to note here. First, as evident from the first term in
Eq. (8.2), just as is the Gauss distribution, the Rasch distribution is a quadratic
exponential. Second, within the range in which the Gauss distribution is applicable,



the mean of the Rasch distribution is identical to the mean of the Gauss distribution,
E[XR] ¼ μG, and in particular, the distribution is symmetrical about the mean. Third,
and perhaps most surprisingly, the variance of the Gauss distribution is not only the
variance of the Rasch distribution, V XR½ � ¼ σ2G, but it is also the inverse of the unit in
the Rasch distribution, V XR½ � ¼ σ2G ¼ 1=Δ. Finally, and importantly, it is within the
range in which the Gauss distribution holds, that the relationship between the
measurements β, the observed scores x, and expected values, are linear as shown
in Fig. 8.1, Table 8.1 and Eq. (8.6).
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Fig. 8.3 Two Rasch distributions of the Standard Instrument where the probabilities of extreme
measurements do not vanish and in which E[XR] 6¼ μG, V XR½ � 6¼ σ2G 6¼ 1=Δ

For completeness, and because it is relevant to account for the finite range of the
instrument, Fig. 8.3 shows the Rasch and Gauss distributions of two locations,
(βl, βu) ¼ (�1.680, 2.080), where the limits of the instrument play a role. The figure
shows the Gauss distributions as if the range of the instrument did not play a role,
and the Rasch distributions which take account of the range. It is evident that the
Gauss distributions are outside the range of the instrument, a feature which
concerned Gauss as indicated in the above quote. The Rasch distributions of course
are within the limits of the range. However, reflecting the impact of the limited range
of the instrument, the mean and variance (E[XR], V[XR]) of the Rasch distributions
are regressed relative to their values if the range were not constrained. The property
of the estimates bβx is that they undo this regression to a large degree.

Given the properties described above, this chapter presents a justification for
transforming the estimates of proficiencies β from each instrument to a measurement
on the SI of the form of the Rasch distribution with the origin and unit chosen for
convenience in the frame of reference. Specifically, from the estimates of the person
locations βx for each score x of an instrument, measurements in the chosen unit of the
SI can be obtained from the linear extrapolation of Eq. (8.7). This linear extrapola-
tion is shown in Fig. 8.1 and Table 8.1. It is evident that from this extrapolation, the
measurements close to the limits of the range of the instrument are outside this range.
However, these measurements are linear extrapolations that indicate the values that



would have been obtained had the limits of the instrument not regressed the observed
scores. It is these linearized measurements to which the observed scores on all
instruments are mapped in the example shown in the next section.
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It would be more desirable if assessments were such that few if any person
locations were affected by the limits of the range of the scores (0 and 100) with
these instruments, and it is generally achieved in the frame of reference of the
example described next. However, where they do occur, especially at the higher
limit where competition is most relevant, then the limits of the range for scores close
to the extreme need to be taken into account. It is an example where the Rasch
distribution, which is discrete and is a function of both the unit and maximum score
on each instrument, can be applied to advantage.

8.2.5 Maximum Likelihood Estimates of the Instrument
Parameters in the Rasch Model

Estimates of instrument parameters ψxi of Eq. (8.2) can be derived from Eq. (8.9)
below, where (xni, xnj) j rn are the responses of person n to two instruments (i, j), and
where rn ¼ xni + xnj is the sufficient statistic for βn:

Pr xni, xnj
� �jrn; βn,ψxi,ψ xj

� � ¼ exp ψ xi,ψ xj

� �� �
=γni: ð8:9Þ

Because of sufficiency, Eq. (8.9) is independent of β. To estimate parameters
(δi,Δi, λi, ζi) of multiple instruments, Eq. (8.9) is generalized over multiple instru-
ments I. The algorithm, described in detail in Andrich and Luo [7], is implemented in
the software RUMM2030Plus [12] and is used in the analysis of the example of this
chapter. The only constraint required in the estimation is that

PI
i¼1

bδi ¼ 0: Then δi is
the relative origin of each instrument in an analysis. This origin, as shown with the
SI above and illustrated with the example below, can be defined independently.

Because the coefficient of each principal component is a function of frequencies
in all categories, rather than of each category, the estimation is not impeded by the
presence of zero frequencies, except in very extreme cases, nor is it impeded by the
structurally missing data.

8.2.6 Profile Analysis and Editing of Profiles

One of the complexities of the frame of reference listed above is that the latent
correlation among the instruments is not 1, which implies lack of unidimensionality.
The effect on the parameter estimates of the instruments when analyzed with the
Rasch model is that they are all regressed to their mean [29, 42].
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To account for this feature of the data from the perspective of the frame of
reference, a complementary focus to unidimensionality, one which focuses on the
profiles of persons, is taken [42, 45]. Unidimensional instruments, those with a latent
correlation of 1, have two implications for profiles with respect to the Rasch model:
first, that each person’s profile is relatively homogeneous; second, that the total score
is the sufficient statistic for the person parameter, with no further information in the
profile. For example, a relatively high score on one instrument implies a relative high
score on other instruments, where the variation among the scores of the profile on the
instruments is no more than random. In contrast, and at the other extreme, if the
latent correlation were 0, there is no such relationship.

Therefore, not only from the perspective of the application of the Rasch model,
but also from the requirements of the frame of reference, the profiles that need to be
used to obtain the equating functions between instruments are those that are rela-
tively homogeneous. This ensures that the properties of the instruments as reflected
by their parameters, for example their relative difficulties are a property of the
instruments and not of the persons who happen to have scores on the instruments.
In more general terms, the profiles that need to be used are from those persons who
are relatively equally proficient on all instruments.

A comparison and contrast might be made with equipercentile scaling which can
be applied when instruments do not have a latent correlation of 1, but are adminis-
tered to the same sample of persons [24]. Here the assumption is that, although the
individual persons are not expected to have homogeneous profiles, the latent distri-
butions of the proficiencies of the sample as a whole are the same for the different
instruments, and any differences in scores is a property of the instruments. There-
fore, with this assumption, scores with the same cumulative percentage on each
instrument are deemed equivalent. This method has its own problems for equating,
including with zero frequencies and extreme scores, and in addition, impeding its
application in the example of this chapter, the students with scores on different pairs
of instruments are not common. However, when applicable, the assumption is the
equivalence of the distributions on the different instruments. It is relevant to compare
the assumptions made between the equipercentile and Rasch model applications to
equating. In applying the former, the assumption is that the sample has the same
proficiency distribution on the different instruments; in applying the latter, it is
ensured that the persons whose profiles are used have equivalent proficiencies on
the different instruments.

The method of obtaining the subset of profiles whose scores are homogeneous
requires two successive analyses of the data. The first is simply the standard analysis
of all data. Then, given the estimates of the instruments’ parameters, and each
person’s estimate of β, the expected value, E[Xni], is calculated for each instrument
using Eq. (8.4). A comparison is then made between the observed score xni and E
[Xni] for each person n on each instrument i for which they have a score. This
comparison is made in terms of the standardized residual,
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zni ¼ xni � E Xni½ �ð Þ= V Xni½ �: ð8:10Þ

Then if the absolute value of the residual is greater than some chosen magnitude, that
score in the profile is deleted, creating further missing responses. Because there are
already structurally missing responses, further missing responses are no impediment
to the estimation. However, it is necessary to choose the magnitude of the residual
criterion judiciously. If it is too large, there will be a substantial number of hetero-
geneous profiles in the analysis; and if it is too small, then relative to the variation of
the model, there will be insufficient variation creating a form of local dependence.
This method of editing profiles is analogous to that used by Andrich, Marais and
Humphry [11] and Andrich and Marais [8] in editing responses to control the bias on
item parameter estimates from guessing for multiple choice items. Specifically,
given each person’s and each item’s parameter estimates, if there is a greater
probability than random that the person guessed or at least partially guessed a
response on that item, whether the response is correct or not, the response is
converted to missing data. This editing of responses removes the bias in the item
parameter estimates due to guessing in the data.

The criterion for deleting a response chosen in the analysis of the example in this
chapter is jzni j > 0.85. Evidence which shows this choice is reasonable is that
the latent correlation between each pair of instruments, when corrected for error, is of
the order of 1. This implies that, for the purpose of obtaining equating functions, the
complementary properties of unidimensionality and sufficiency of the total score of
the Rasch model are satisfied.

The classical definition of reliability, when applied to the Rasch model estimates,
is given by

rβi ¼ V bβi
h i

� V bεi½ �½ Þ=V bβi
h i

,
	

ð8:11Þ

where V[βi] is the estimate of the variance of the persons on instrument i, and V[εi] is
the estimate of its error variance [21]. The latent correlation between two instru-
ments, corrected for attenuation because of error, is given by

ρij ¼ rij=
ffiffiffiffiffiffiffiffiffiffi
rβirβj

p
: ð8:12Þ

In the application of Eqs. (8.11) and (8.12) in the Rasch model, bβxi is the estimate of
proficiency of the person given the score x and V bεi½ � is the mean error variance of the
estimates bβxi from the persons who have scores on both instruments. These estimates
are elaborated next.
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8.2.7 Person Estimates

Given estimates bψ xið Þ of instrument i, the maximum likelihood estimate bβn for each
person n from all instruments the person has responded to, is given individually by
the solution to implicit Eq. (8.3). However, in application to the frame of reference of
this chapter, it is necessary to have an estimate, bβni , of each person on each
instrument. This estimate is given by the solution to Eq. (8.4). For this estimate of
each person’s proficiency on each instrument, the parameters bψxið Þ, following the
editing of the profiles in the terms described above, are used. These are the estimates
based on homogeneous profiles which, because of sufficiency of the total score for
these profiles, are independent of the actual distribution of the person parameters.

However, for the person estimates based on these instrument parameters, and for
evidence of sufficient proficiency for selection into university studies, every score of
each person, that is the full profile before editing, must be used. Finally, each
estimate of each person from each instrument is transformed to a measurement on
the SI in the form of the Rasch distribution described above.

Because the original profiles are used for the final estimates, the latent correla-
tions between instruments will not be in the range 0.90–1.00. That means that there
will be profiles which, when transformed to the SI, will not be homogeneous and the
sum of the estimates, or their mean, will not characterize the profile fully. How the
distinction between those profiles that are homogeneous, and those that are not, is
dealt with in its frame of reference is described in the context of the example. The
next section provides the results of analysis of data from the example.

8.3 An Illustrative Example

The data for university selection from 2018 were provided by the School Curriculum
and Standards Authority of Western Australia. As indicated above, the example
comes from a series of instruments used to assess the proficiency of students in a
range of disciplines for university selection in Western Australia. The total number
of disciplines is as large as 40. For the purpose of illustration in the example of this
chapter, scores from examinations of the following six disciplines were analyzed:
English (ENG), English Literature (LIT), Mathematics 1 (MA1), Mathematics
2 (MA2), Modern History (HIM), and Chemistry (CHE) which was introduced in
Fig. 8.1. These disciplines were chosen because relative properties of these instru-
ments can be anticipated, and they illustrate some complexities that are overcome.

First, one of the disciplines of English must be taken to be eligible for university
entry, and either ENG and LIT are acceptable. Therefore, very few students have
scores in both disciplines. On the one hand, because it is a specialized unit, students
studying LIT may be expected to have greater proficiency in English, and therefore a
higher mean proficiency on the SI than those studying ENG.
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Second, MA1 and MA2 have a partly different relationship from that between
ENG and LIT. MA2 has more challenging material than MA1. However, to study
MA2 it is necessary to either study MA1 simultaneously or otherwise know its
content. Therefore, it is expected that MA2 will be shown to be more difficult than
MA1, and that the mean proficiency of students studying MA2 (and MA1) will be
greater on the SI than that of those studying only MA1. Finally, the disciplines HIM
and CHE are chosen because one is a humanities and the other a science discipline,
and they are expected to show properties that are commensurate with ENG and MA1
respectively.

For purposes of efficiency of exposition, the results are not presented in the order
in which they were obtained. Following the summary of the raw data, the results of
the estimates of the proficiencies and their relationships among the disciplines are
shown first, followed by the estimates of the instruments’ parameters, the equating
functions, and finally graphical presentations of the equating functions and
distributions.

8.3.1 The Raw Scores on the Instruments

An excerpt of the data file used for analysis is presented in Table 8.2, illustrating the
structurally missing responses in the data file and integer scores recorded for the six
disciplines.

Table 8.3 shows descriptive data in the form of the number of students, the
means, standard deviations and the skewness of the distribution, and the observed
pairwise frequencies and correlations. First, it is evident that ENG has the greatest
number of students, which is expected because an English discipline assessment is a

Table 8.2 Excerpt of the first
15 cases from the data file for
analysis

ID CHE ENG HIM LIT MA1 MA2

S00001 45

S00002 56 56 64

S00003 39 50

S00004 10

S00005 39 50

S00006 56 56 64

S00007 59 61 67 43

S00008 52 79 72

S00009 46

S00010 58 50 35

S00011 64 57

S00012 64

S00013 59 61 67 43

S00014 62 40

S00015 80



requirement for university entry. LIT and MA2 have the least number, reflecting
their specialist status. The table shows no common students between ENG and LIT.
There were seven common students but the reason for students taking both disci-
plines is idiosyncratic to different circumstances and the correlation between the two
disciplines was �0.188. Therefore, this frequency and the correlation are not shown
in Table 8.3.
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Table 8.3 Pairwise frequencies (F), observed correlations rij between instruments, and descriptive
statistics of observed scores for each instrument from the total sample of 13617

F/rij ENG LIT MA1 MA2 HIM CHE

ENG * 2800 937 1589 3480

LIT * 661 267 381 698

MA1 0.289 0.247 1530 237 3255

MA2 0.409 0.348 0.867 39 1221

HIM 0.581 0.635 0.434 0.566 266

CHE 0.417 0.433 0.764 0.788 0.578

N 10,974 1463 4426 1594 2014 4973

Mean 57.96 70.89 65.14 61.24 60.06 58.50

St dev 11.38 9.96 18.65 19.43 13.18 17.31

Skew �0.37 �0.89 �0.65 �0.50 �0.89 �0.44

Note. *Frequency of less than 20 not shown. Number of common persons above the diagonal;
observed correlations below the diagonal. Correlation between ENG and LIT not shown because of
the small number of common students

Second, all but one mean is in the range between 55 and 65, showing that the
difficulties of the instruments were well aligned to the expected proficiencies of the
students, except for LIT which has a mean above 70. Proficient students choose LIT,
but this mean seems relatively high. There is a greater relative range in the standard
deviations, where the two mathematics and the science instruments show greater
standard deviations than the humanities instruments and all distributions are skewed
negatively. The table also shows that the number of students assessed by each
instrument varies, as does the number who are assessed by any pair of instruments.
Because of the different samples, the properties of the distributions such as their
means cannot be compared directly. Important from the perspective of measurement
on a single variable, is that the observed initial correlations among the instruments
has a large variation, ranging from 0.247 to 0.867.

The data in Table 8.3 are shown graphically in Fig. 8.4. The differences in the
distributions, including their negative skewness is clear. Some of the low scores
might be taken as resulting from not taking the examination seriously, but these
scores are included in the analysis for completeness and illustration. Not only does
the distribution of LIT show a high mean, it is also very narrow. It is also clear that
the distributions of CHE, MA1 and MA2 are somewhat similar as are those of ENG
and HIM. The former three instruments assess mathematics and science disciplines,
the latter two assess humanities. Although the distributions cannot be compared
directly, it can be inferred how well the instruments align themselves to the pro-
ficiencies of the samples. This alignment is important in distinguishing validly



between candidates. In addition to LIT, and even though they spread the students
well, the three science instruments were relatively lenient, while the two humanities
instruments were better aligned. ENG, which assesses an effectively compulsory
discipline in which the sample is less self-selected than the other disciplines, has
noticeably the smallest value for its mode.
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Fig. 8.4 Percentage frequency distributions of observed scores in class intervals of 5 score points

8.3.2 The Equating Functions

The section begins with a graphical presentation of the equating functions and the
principal component estimates from which the equating functions are derived. The
equating functions are obtained from an analysis in which the profiles were edited as
described above. The section finishes with the latent correlations between instru-
ments from these equating functions and the equated scores of all instruments on
the SI.

Figure 8.5 shows the equating functions based on EVCs of the kind shown for
CHE in Fig. 8.1. In addition, each curve has its observed means in 10 class intervals
shown. It is evident that the means are very much on the curves, indicating fit to the
model for the data from these instruments. An approximate Chi Statistic value which
compares these observed means and their expected values across all instruments is
32.237 on 54 degrees of freedom, confirming excellent statistical fit. It is clear from
Fig. 8.5 that the curves are non-linear and intersect, and require equating before
comparisons can be made. This evidence that the edited data fit the model is
considered sufficient for this example.

Table 8.4 shows the principal component estimates and their standard errors.
Because, with a maximum score as large as 100, the values of the parameters are
small in magnitude, they are shown to five decimal places. As expected, the relative



difficulty of MA2, the specialist mathematics discipline, is more difficult
(δ ¼ 0.19814) than MA1, the one that has the content as its prerequisite
(δ ¼ � 0.23313). The difficulty of LIT, the specialist English discipline,
(δ¼ 0.08213) is likewise more difficult than ENG, which is studied by most students
as a required discipline, (δ ¼ � 0.08586).
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Fig. 8.5 EVCs from edited profiles with observed means in 10 class intervals

Table 8.4 Estimates of the four principal components (δ,Δ, λ, ζ) of the thresholds from a profile
analysis with residuals jzni j > 0.85 removed

δ(origin) SE(δ) Δ(unit) SE(Δ) λ(skew) SE(λ) ζ(kurt) SE(ζ)

ENG �0.08586 0.00220 0.03747 0.00020 0.00055 0.00000 0.00000 0.00000

LIT 0.08213 0.00630 0.03257 0.00040 0.00110 0.00000 0.00000 0.00000

MA1 �0.23313 0.00290 0.03530 0.00020 0.00008 0.00000 0.00000 0.00000

MA2 0.19814 0.00510 0.03385 0.00020 0.00019 0.00000 0.00000 0.00000

HIM 0.10197 0.00510 0.04553 0.00040 0.00069 0.00000 0.00000 0.00000

CHE �0.06325 0.00280 0.05025 0.00020 0.00025 0.00000 0.00000 0.00000

Mean 0.00000 0.00407 0.03916 0.00027 0.00048 0.00000 0.00000 0.00000

St Dev 0.14267 0.00150 0.00649 0.00009 0.00035 0.00000 0.00000 0.00000

8.3.3 The Equated Scores to Measurements on a Standard
Instrument

For each observed score of each person on each instrument, the proficiency estimatebβni is obtained from Eq. (8.4) and CHE is illustrated in Fig. 8.1. Then each estimatebβni is transformed further to a measurement on the SI according to Eq. (8.7) in which
E[XSI| βSI ¼ 0] ¼ 45 and Δ ¼ 0.04..

For completeness, Table 8.5 shows the equivalent measurements on the SI for a
series of scores on each of the instruments. Figure 8.1 illustrates this equivalence for
CHE. Table 8.5 shows that a score of 50 on ENG, for example, is a measurement of



31.8 on the SI, while the same score on MA2 is a measurement of 46.2. For scores up
to 70, the greatest measurement on the SI is for MA2, the advanced mathematics
discipline. For scores greater than 70, HIM (modern history) has greater measure-
ments on the SI. This order results from it being more difficult to obtain a very high
score in HIM than in MA2 for the respectively very proficient students. It is not
uncommon for it to be difficult to obtain very high scores in humanities disciplines,
while it is much more common to obtain very high scores in the mathematics and
science disciplines. The EVCs of Fig. 8.5 reflect the relative difficulty at the higher
end of the proficiency continuum.
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Table 8.5 Equivalent measurements on the SI for the same score on each of the instruments

Score ENG SI LIT SI MA1 SI MA2 SI HIM SI CHE SI

20 15.3 26.0 18.8 27.6 18.7 15.3

30 16.8 26.4 28.0 34.4 22.9 26.9

40 21.7 26.8 33.6 40.3 27.5 33.5

50 31.8 27.6 37.6 46.2 33.8 38.5

60 44.7 34.2 42.0 52.9 43.4 44.5

70 59.4 49.6 48.6 61.5 57.9 54.6

80 74.8 71.9 59.8 73.0 78.8 72.3

90 90.1 101.4 78.0 88.5 107.6 101.1

95 98.9 119.5 91.0 99.1 125.8 121.0

Table 8.6 Pairwise latent correlations and descriptive statistics for each instrument from the total
sample of 13617, anchored to principal components from the analysis of edited profiles at 0.85 and
transformed according to βSI ¼ βi/0.04 + 45

ρij/rij ENG LIT MA1 MA2 HIM CHE

ENG * 0.9723 1.0160 0.9680 0.9907

LIT * 0.9836 0.9989 0.9484 1.0092

MA1 0.2987 0.2632 1.0592 1.0389 1.0192

MA2 0.4418 0.4096 0.9845 0.9187 1.0348

HIM 0.6759 0.7483 0.4881 0.6510 1.0338

CHE 0.4640 0.5167 0.8496 0.8698 0.7344

N 10974 1463 4426 1594 2014 4973

Mean 43.25 54.68 49.61 57.05 47.17 47.86

St Dev 14.26 18.24 16.41 17.19 15.58 17.33

Skew 0.48 0.83 0.22 0.17 0.62 0.49

Note. *Frequency of less than 20 not shown. Mean of the pairwise latent correlations for homoge-
neous profiles: ρij ¼ 0:9994. Some observed correlations are slightly greater or less than 1 due to
random variation around 1. Mean of the pairwise latent correlations for measurements of all data: rij
¼0.5997

Table 8.6 shows two sets of latent correlations and the distribution properties of
measurements on the SI for scores on each instrument. Above the diagonal, it shows
the latent correlations corrected for errors of measurement for the analysis of the
edited profiles, which results in homogeneous scores. It will be recalled that this



analysis ensures that the equating functions are obtained from profiles that are
effectively unidimensional. The average latent pairwise correlation of 0.9994
ensures that the profiles are homogeneous. Of the 5708 profiles that had at least
two measurements after the profiles were edited, 24% had a standard deviation less
than 5. Given the unit of the SI,Δ¼ 0.04, which implies a variance of σ2¼ 1/Δ¼ 25
for replicated measurements in the linear range between 15 and 86, where the
majority of measurements are, it would be expected from a Gauss distribution that
some 32% would have a standard deviation less than 5. Thus if anything, the profiles
are slightly more homogeneous than under total randomness.
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Below the diagonal, Table 8.6 shows the latent correlations between the instru-
ments for measurements of all profiles of all persons. Clearly, with all profiles
measured, the latent correlations are not homogeneous, and of course not close to
1. As expected, with a mean of 0.5997, they mirror the observed correlations
between the raw scores shown in Table 8.3. Such correlations are reflected in
non-homogeneous profiles. Of the 7334 profiles with two or more scores, 55.83%
have a standard deviation greater than 5 which indicates that they deviate from their
respective means by approximately five score points. For example, a profile with two
scores and a standard deviation of 5, has measurements of 48.90 and 58.90. 22.08%
have a standard deviation greater than 10, which indicates scores that essentially
deviate 10 points in either direction from their respective means. For example, a
profile with two measurements and a standard deviation of 10.00 has measurements
of 69.30 and 89.30.

The profiles with a standard deviation greater than 10 are not characterized by
their total scores. This seems very relevant in the system of selection, which is based
primarily on the total score. Depending on which course of study the student is
planning, those profiles with a marginal case for selection on the basis of their total
score, would need to be considered individually. For example a relatively low score
in the required discipline of English and relatively high scores in the mathematics
and science disciplines, may not preclude a student marginal for selection on the
basis of the total score, being selected for an engineering course. It is stressed that in
formal university entry, at least four measurements, including one of ENG or LIT,
are required to meet the eligibility requirements for university entry. Then the
application is based on the mean of the four highest scaled measurements. In the
illustrative example of this chapter, where the maximum number of measurements is
only six, very few people have the minimum four and therefore the means and
rankings from these illustrative data are not useful to study.

Recognizing that many profiles are not characterized by their total scores,
Table 8.6 shows the proficiencies of all students on all instruments. The measure-
ments on MA2 have the greatest mean (57.05), followed by LIT (54.68). It will be
recalled that these are more advanced specialist disciplines in mathematics and
English respectively, and therefore it is expected that their relative means will be
the greatest. That they are, also confirms the success of the equating. It is noticeable,
however, that the mean of LIT, which was 70 from the raw scores and the largest, is
no longer the largest. ENG, the discipline taken by many students because English
proficiency is required for university entry, has the smallest mean among this group
of students.
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Fig. 8.6 Distributions of equated scores to a standard instrument in class intervals of 5 score points

Figure 8.6 shows the distributions of these measurements in class intervals of five
score points. It reflects the distributional statistics in Table 8.6, with the standard
deviations relatively homogenous. On the other hand, unlike the original scores,
which show a negative skew, the measurements on the SI all show a positive skew. It
is noticeable that only the distributions of the two mathematics disciplines, MA1 and
MA2, have a skew value clearly less than 0.5, suggesting they are the only ones with
clearly normal distributions, while the others, and in particular LIT, show deviation
from normality. A final point to observe is that the distributions of the two specialist
disciplines, LIT and MA2, show similar features, while the distributions of the other
disciplines are also similar.

8.4 Summary and Discussion

This chapter began by observing two contrasting but interrelated aspects of the idea
of measurement. First, that the historical motivation for physical measurement, the
standardization of a unit and origin within a frame of reference, was fairness of
transactions of goods for trade in everyday applications. The aim of such measure-
ment was to ensure that comparisons among objects, for the relevant property, were
invariant with respect to which specific instrument was employed. Second, that
although in its elementary form, measurement is understood by school children,
the mapping of the magnitude of a property of an object onto a number line
partitioned into equal units, is a deep abstraction, and that the advanced application
of measurement has evolved in conjunction with the remarkable advancement of the
quantitative, natural sciences. Although many scientific measurements remain in the
realm of scientific theory, many have also become mainstreamed and are applied in
everyday applications. Measurement of temperature is an example, where although
integral to the theory of thermodynamics, thermometers for measuring human
temperatures in the case of potential illness have become indispensable.
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The success of quantitative laws in explaining phenomena in the natural sciences
provides an aspiration for quantitative laws in the social sciences. The coevolution of
measurement and quantitative laws of the natural sciences implies that any quanti-
tative laws of the social sciences will evolve in conjunction with social measure-
ment, where the concept of measurement transcends the natural and social sciences.
However, there are frames of reference in the social sciences where the historical
motivation for measurement in the natural sciences prevails – that of fairness of
transactions. By analogy to the use of rigorous measurement of temperature in
routine applications, measurement in the social sciences may require measurement
which is just as rigorous as is the measurement of variables that will produce
scientific laws. This chapter is concerned with such an example.

The frame of reference of this chapter is the competitive selection of students into
universities in Western Australia based on their assessments in a range of disciplines
in their Year 12 studies. The assessments are not of the form of intelligence or
aptitude tests, but based on explicit syllabuses that the students have been taught.
The students may choose to pursue their university studies in a wide array of courses
based on their Year 12 studies in a similarly wide array of disciplines. In general,
satisfactory performance in the discipline of English is required for selection into all
university courses. Many courses, such as law, psychology, and economics, have no
prerequisite studies, while some courses such as engineering, natural sciences, and
mathematics, may require studies in those disciplines, but permit electives which
may vary among students. The selection is based primarily on the mean of four
performances, from the disciplines they have studied, which give the greatest mean.
The implication of these features is that, in the interest of fairness, the selection of
students for various university courses needs to be invariant with respect to which
disciplines they studied. This requires rigorous measurement, with the same unit and
origin, of each discipline.

It is recognized that, because different students may have studied different
disciplines, their summary scores do not reflect a degree of proficiency on the
same substantive, content variable. Instead, the variable is an abstracted index
variable of causal variables in which the proficiency of a student in a discipline
governs their performance on the relevant assessment instrument. The variable is
inferred to be one of a capacity to succeed and benefit from university studies based
on previous studies. The example is described in some detail with the expectation
that it has properties that can be transferred to other social sciences cases where
rigorous measurement is required.

In part because of the advancement of the natural sciences with the coevolution of
quantitative laws and measurement, social scientists have studied and attempted to
define measurement generally from the perspective of advancing quantitative laws in
the social sciences. One of these is the work of Rasch, termed in this chapter, Rasch
measurement theory. The principle on which Rasch’s theory is based is the require-
ment of invariant comparisons of objects with respect to instruments (and vice versa)
within a specified frame of reference. The consequences of this definition have been
shown to lead to quantitative relationships which are entirely compatible with other
definitions of measurement and with the laws of the natural sciences.
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Rasch’s formulation has at least three distinctive elements compared to other
definitions of measurement. First, it is relevant in both probabilistic and deterministic
frameworks. The probabilistic contexts immediately provide evidence of statistical
variation that may or may not be random. Second, because Rasch formulated his
requirement of invariant comparisons mathematically, rather than merely descrip-
tively, further derivations of the model for measurement are possible. Third, the
requirement of invariant comparisons is relevant for quantitative laws in general, and
not only measurement; therefore, it seems a more fundamental basis for understand-
ing measurement than simply describing measurement. All three features of Rasch
measurement theory are applied explicitly in the example of this chapter.

Rasch’s probabilistic formulation is used in this chapter. It specifies the proba-
bility that a person will obtain a score on the instrument as a function of the person’s
hypothesized, scalar, proficiency and the threshold parameters of the instrument
which reflect its relative difficulty (origin) and their tendency to spread and skew the
responses. The thresholds are points of equal probability of two adjacent scores.

Then, given estimates of its parameters, the estimate of every person’s proficiency
on each instrument is transformed to an expected value on a SI (standard instrument)
that is termed a measurement. The procedure was introduced and summarized in
Fig. 8.1. The distribution of the SI has been derived from Rasch’s original formu-
lation and is unlikely to have been formulated in any other way. The origin and unit
of the SI are as explicit as they are in measuring instruments in the natural sciences,
and are chosen for convenience. In particular, over a substantial and defined range of
the instrument, the difference between two successive measurements is the unit. In
addition, in this range, the distribution of inferred replicated measurements of each
person to each instrument is a discrete analogue of the continuous Gauss distribution
in which the variance on the SI is the inverse of the unit. It was recalled that the
Gauss distribution was derived to characterize random variation of replicated mea-
surements of the same object with the same instrument. Finally, the region in which
the relationship between the measurement on the SI and student proficiency is not
linear is near scores of 0 and 100 where the limits of the instrument interfere with the
random variation from replications. This is a region in which the Rasch distribution
of the SI is applicable, but in which the Gauss distribution is not.

The origin and unit of the SI in the example were chosen to minimize the number
of measurements in the region in which the proficiency and the expected value of the
SI are not linear. The advantage of this choice is that the variance of the SI for any
person reflects no more than random variation. Therefore, if the observed variance of
the SI scores on a profile is greater than random variation, the total score does not
summarize the profile. In this case, not only should the magnitude of the mean
measurement of a profile be considered for selection, but the profile should also be
studied for evidence of specific capabilities that might be relevant for the choice of
further studies.

The motivation for transforming the scores of each instrument to a measurement
on the SI is that of invariance of comparisons – that comparisons between students
for competitive selection is invariant with respect to the subset of disciplines that
they have studied from a wider set of relevant disciplines. This motivation, rather



than that of advancing quantitative laws in the social sciences, is identical to the
original motivation of much of measurement of physical variables. Importantly,
although the motivation for invariant comparisons in this case is clearly that of
fairness of selection, it is the same motivation that led to Rasch’s measurement
theory of invariance and which is relevant for understanding and constructing
measurements which can lead to quantitative laws in the social sciences.
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It was also indicated that, because the frame of reference was complex, the
example can be taken as illustrative and that the approach taken to equating can be
generalized to other frames of reference. One of these is person-centred outcomes in
health assessment. As is evident throughout the example, the concern is with
personal profiles and selection of individuals; therefore the example can be consid-
ered to be person-centred in its concern, an approach exemplified in Cano, Pendrill,
Melin, and Fisher [14]. In the case of the assessment of an individual on multiple
instruments in the health outcomes area, the principles, first that a summary score
characterizes a higher order variable which is primarily an index variable, and
second, that there will be individuals whose profiles are summarized by the total
score and others which are not, is readily applicable.

In summary, it is stressed that, analogous to the Gauss distribution, the Rasch
distribution of the SI employed in this chapter was derived from theoretical consid-
erations, and not to describe any particular data set. Just as the Gauss distribution sets
up a criterion that the variance of real or inferred replications is no more than
random, and therefore that the mean can be used as a summary measure for the
replications, the Rasch distribution sets up the criterion that the distribution of
inferred replications from an instrument is no more than random, that the total
score is sufficient to characterize the profile, and that the mean can be used to
summarize the profile. By implication, comparisons which are invariant with respect
to the instruments across profiles can be made. In short, it is a criterion for
measurement. In conjunction with stressing that the Rasch distribution is derived
as a criterion for measurement and not to describe any data set, it is stressed that the
observed scores from instruments can only be transformed successfully to measure-
ments if the data themselves permit such a transformation. To ensure such a
possibility, extensive substantive empirical and theoretical work and understanding
is required.
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