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Chapter 5
An Adaptive Strategy for Measuring
Patient-Reported Outcomes: Incorporating
Patient Preferences Relevant to Cost-Benefit
Assessments of Vision Rehabilitation

Robert W. Massof and Chris Bradley

Abstract Vision rehabilitation aims to improve daily functioning in patients with
chronic disabling vision impairments – low vision – by providing vision assistive
equipment and teaching patients effective use of the equipment; teaching patients
adaptations to obviate dependence on vision; modifications of the patient’s environ-
ment to improve visibility and increase safety; and psychosocial counseling and
education to help patients cope with the stress of impaired vision. The interventions
that constitute vision rehabilitation are tailored to each patient’s functional goals and
personal preferences. This chapter describes the theory, structure, and mechanics of
an adaptive patient-reported outcome measure – the Activity Inventory (AI). The AI
was developed to identify each patient’s unique set of functional goals within a
hierarchical framework, to specify the cognitive and motor activities (i.e., tasks in
different functional domains) the patient customarily performs to achieve his or her
personal goals, and to elicit ordinal patient ratings of the importance and difficulty of
each goal and the difficulty of relevant subsidiary tasks under goals that meet or
exceed defined importance and difficulty criteria. The theoretical assumptions of a
Rasch psychometric model that is employed to estimate measures of the patient’s
overall visual ability from goal difficulty ratings and ability in each functional
domain from task difficulty ratings before and after vision rehabilitation are
presented and the results for a large group of low vision patients are reviewed.
This chapter then explores the issue of how individual patient preferences must be
factored into the outcome measures to determine the utility of functional improve-
ments from vision rehabilitation. A theoretical framework for incorporating the
utility of individual vision rehabilitation outcomes is offered and its application to
functional outcome data is demonstrated.

R. W. Massof (*) · C. Bradley
Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, USA
e-mail: bmassof@jhmi.edu

© The Author(s) 2023
W. P. Fisher, Jr., S. J. Cano (eds.), Person-Centered Outcome Metrology,
Springer Series in Measurement Science and Technology,

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07465-3_5&domain=pdf
https://orcid.org/0000-0003-0342-2682
mailto:bmassof@jhmi.edu
https://doi.org/10.1007/978-3-031-07465-3_5#DOI


Keywords Low vision rehabilitation · Personalized care · Adaptive instrument
administration

In this chapter, we describe our approach to developing a PROM, the Activity
Inventory (AI), for adaptively measuring the outcomes of rehabilitation of daily
functioning by people with chronic disabling vision impairments – low vision.
Vision rehabilitation aims to help people with chronic vision impairments overcome
vision disabilities through behavioral and environmental modifications, the use of
vision assistive equipment, education, and psychosocial counseling. The multiface-
ted and idiosyncratic nature of vision rehabilitation poses significant challenges to
measuring its outcomes. Consequently, with respect to the tenets of Rasch analysis
(specific objectivity, sufficiency of raw scores, and invariant comparison), our
approach to overcoming the challenges to measuring outcomes of vision rehabilita-
tion may seem iconoclastic. The most heretical features of our approach are:
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5.1 Introduction

Rasch rating scale models have three free parameters to be estimated from rating
scale questionnaire responses: (1) person measures; (2) item measures; and (3) rating
category thresholds. When developing and validating patient-reported outcome
measures (PROM), practitioners of Rasch analysis typically regard differential
item functioning (DIF), differential person functioning (DPF), mistargeting of item
measures to person measures, and disordering of rating category thresholds to be
distressing. These indicators, taken at face value, are interpreted as signs of metro-
logical trouble with the data that warrant modifying the list of items and rating
categories to improve measurement purity.

• Vision rehabilitation requires different interventions designed to target different
activities. Because patients respond to different subsets of items and the different
daily activities define the content of different items in the AI, a positive outcome
of vision rehabilitation is expected to manifest as intervention-specific DIF,
which when taken literally appears to challenge specific objectivity.

• Official definitions of vision disability traditionally have been based on a criterion
visual acuity in the better seeing eye [1] (e.g., �20/200 [USA] or <3/60 [WHO])
that cannot be improved with eyeglasses or contact lenses) or by peripheral vision
loss specified by the horizontal extent of the visual field (e.g., �20� [USA] or
�10� [WHO]). Given that these two types of vision impairment can occur
separately, or in varying degrees together, and they differentially affect the
person’s ability to perform different activities that define the AI item content,
we expect to see DPF, which also appears to challenge specific objectivity.

• The endpoint of vision rehabilitation is the attainment of activity-performance
goals that are defined and prioritized by the individual’s personal preferences.
Consequently, the AI items must be administered adaptively, drawn from a
calibrated item bank having anchored item measures. However, the choice of
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items is driven by the visually impaired person’s preferences, not by item
administration efficiency to achieve a criterion level of precision in the estimation
of the person measure. Thus, the items drawn from the item bank parallel the
content of the individualized rehabilitation plan and, unlike the strategy of
computer adaptive testing (CAT), are not necessarily well-targeted to the neigh-
borhood of the individual’s person measure. Contrary to this strategy, students of
Rasch analysis are taught that a well-designed instrument has a rectangular
distribution of item measures that spans the distribution of person measures, or
at least an item measure distribution that matches the person measure distribution
so that measurement precision is highest where the density of persons to be
discriminated is highest [2].

• The respondent to the AI is asked to rate the difficulty of performing activities
described by the item content. Particularly in light of intervention-specific DIF, to
be measurable the outcome of vision rehabilitation for each activity must manifest
as a change in the difficulty rating of the corresponding item. The responsiveness
of the AI to a change in difficulty depends on the number of rating categories and
on the sizes of the concatenated rating category intervals, which are separated by
category thresholds. However, the polytomous Rasch models most often used to
estimate measures from responses to rating scale questionnaires routinely esti-
mate disordered thresholds, especially as the number of rating categories is
increased in an attempt to improve resolution on the measurement scale. Because
disordered rating category thresholds are illogical and an unacceptable output
of a valid rating scale instrument, it has been assumed that the problem is with the
data. Consequently, instrument developers are advised to reduce the number of
rating categories after the fact through mergers of neighboring categories until the
offending threshold disordering is eliminated [2]. A more rational approach is to
assume that respondents understand what “ordered” means and the analyst
employs a measurement model in which proper ordering of category thresholds
is axiomatic.

5.2 A Person-Centered Measure for Vision Rehabilitation

The primary aim of vision rehabilitation is to improve the visually impaired person’s
functional ability on an activity-by-activity basis by ameliorating functional limita-
tions caused or exacerbated by the person’s vision impairment. Functional ability is a
multidimensional construct (e.g., cognitive, motor, psychological, sensory, etc.).
Vision rehabilitation targets one dimension of functional ability – visual ability
(i.e., the ability to perform activities that depend on vision), which in turn may be
multidimensional given the different types of vision impairments inherent in official
definitions of vision disability that can occur independently (e.g., reduced visual
acuity, visual field loss, impaired color discrimination).
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5.2.1 A Measurement Model for Visual Ability

For visually impaired people, each activity described by items in a visual function
rating scale questionnaire [3] requires some amount of visual ability to be
performed – a fixed latent variable called the item measure. In this chapter, we
will denote latent variables with Greek letters and manifest variables (as well as
constants, indices, functions, and operators) with Latin letters. Accordingly, we use
the lower-case Greek letter rho and the subscript j to represent the average amount of
visual ability required by the visually impaired population to perform the jth item
(ρj). However, the actual amount of visual ability required by an item can vary
randomly between persons depending on available technology, customary practices,
environmental factors, etc. Thus, for the nth person, the actual visual ability required
to perform the jth item (ρn, j) is expected to deviate from the average item measure
for the population of interest by an amount for each person that is randomly
distributed in the specified population (εn, j), such that ρn, j ¼ ρj + εn, j. By definition,
εn, j can be positive or negative and the mean of epsilon values across all persons is
zero for each item. Ignoring within-person variance in the deviate for the time being,
the standard deviation of epsilon between persons for the jth item is denoted as σj
(although technically the standard deviation is not a latent variable, it is referring to
the distribution of a latent variable, and sigma is the conventional notation for
standard deviation).

Each person has some amount of visual ability – a trait of the person represented
by a latent variable called the person measure. Thus, αn denotes the amount of visual
ability possessed by the nth person. If person n has far more ability (the value of
alpha) than is required to perform the activity described by item j, i.e., αn > ρn, j, then
the person is likely to report that the activity is “not difficult” to do. If person n has
far less ability than is required to perform the activity described by item j, i.e.,
αn < ρn, j, then the person is likely to report that the activity is “impossible” to
do. Between these two extremes, person n could use an ordinal rating scale to
estimate the level of difficulty she or he has performing the activity described by
item j (e.g., 1 – “very difficult”; 2 – “moderately difficult”; 3 – “somewhat difficult”;
and to complete the scale we would add the extremes: 4 – “not difficult” and 0 –

“impossible to do”). Theoretically, we interpret the chosen rating as the person’s
magnitude estimate of his or her functional reserve for the activity described by the
item content [4]. Functional reserve, denoted as φn, j for person n relative to item j, is
simply the difference between the person measure and the measure for the item that
person is responding to, φn, j ¼ αn � ρn, j. From the definition of ρn, j, functional
reserve also can be written as φn, j ¼ αn � ρj � εn, j, which incorporates the average
item measure for the specified population, ρj, and the deviation from the average for
person n, εn, j.

We can now think of creating a functional reserve ruler in units of the latent
variable phi. Although all persons are given the same ordinal difficulty rating
categories, each person divides the φ ruler into his or her own set of intervals –

the only thing persons agree on is that the interval for rating category 0 comes before



and is concatenated with the interval for rating category 1, which comes before and is
concatenated with the interval for rating category 2, etc. Although the sizes and
locations of these intervals on the φ ruler are likely to be unique to the person, they
must be in the order of the φ magnitude estimates they represent and separated from
their neighboring intervals by boundaries located at positions unique to the person.
The boundaries between ordered intervals on any given trial are called response
thresholds, and their locations in φ units for the example we have been using are τn,
1, τn, 2, τn, 3, τn, 4 for person n. The φ scale is open-ended so that the lower bound for
interval 0 is negative infinity and the upper bound for interval 4 is positive infinity.
People most likely do not agree with one another, and each person may be incon-
sistent from trial to trial in the positions of the different response thresholds on the
phi ruler, but by definition the thresholds must be ordered on every trial.
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As we did with the item measures, we can estimate a population-based average
threshold for each interval, which are fixed values, and define the threshold for the
xth interval as the average threshold (τx) plus a person-specific deviate (ηn, x) that is
randomly distributed between persons, i.e., τn, x ¼ τx + ηn, x, for x ¼ 1 to 4. The
average value of eta across persons for each threshold is zero and the standard
deviation of eta between persons is σx. With these definitions and explanations, the
use of a rating scale to make magnitude estimates implies that for person n to assign a
rating of x to item j, functional reserve (φn, j) must be greater than or equal to person
n’s threshold for category x and less than person n’s threshold for category x + 1, and
all intervals must be ordered:

⋯ < τn,x�1 < τn,x � φn,j < τn,xþ1 < τn,xþ2 < ⋯

Stated more precisely, we assume a real line is partitioned by ordered thresholds into
ordered intervals called rating categories, where the rating categories are defined
using half-open intervals so that every point on the real line corresponds to precisely
one rating category. Substituting terms in this expression with sums of fixed vari-
ables and randomly distributed deviates, we obtain

⋯ < τx�1 þ ηn,x�1 < τx þ ηn,x � αn � ρj � εn,j < τxþ1 þ ηn,xþ1 < τxþ2 þ ηn,xþ2 < ⋯

The deviate εn, j can be added to each term in the above expression, and defining a
new deviate, ζn, j, x ¼ ηn, x + εn, j, that is randomly distributed between persons, we
obtain

⋯ < τx�1 þ ζn,j,x�1 < τx þ ζn,j,x � αn � ρj < τxþ1 þ ζn,j,xþ1 < τxþ2 þ ζn,j,xþ2 < ⋯

ð5:1Þ

But there are two ways to interpret the error term, ζn, j, x, on the average rating
category thresholds used in expression (5.1): (1) the threshold error term can be
identified as a deviate or (2) it can be identified as a random variable. As a deviate we
can describe the trial-to-trial distribution of threshold values while enforcing



�

threshold ordering [5], whereas random variables can take on any value, including
those that result in threshold disordering. To represent this second interpretation of
rating category thresholds, expression (5.1) is modified to be less specific about the
ordering of thresholds:
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⋯, τx�1 þ ζn,j,x�1, τx þ ζn,j,x
� � � αn � ρj < τxþ1 þ ζn,j,xþ1, τxþ2 þ ζn,j,xþ2,⋯

�
ð5:2Þ

Expression (5.2) says that for person n to respond with rating category x on a given
trial, functional reserve must be greater than or equal to all the average thresholds
(plus a random variable) on the left and be less than all of the average thresholds
(plus a random variable) on the right (i.e., on each trial the person’s thresholds are
segregated into two subsets, one in which all elements do not exceed the functional
reserve and the other in which all elements are greater than the functional reserve).
Expression (5.1) is simply one form that the more general expression (5.2) can take.

Mathematically, the assumptions built into expression (5.1) require average
thresholds to be ordered whereas the assumptions built into expression (5.2) permit
average thresholds to be disordered. In other words, expression (5.1) emphasizes the
intervals – they must be ordered and concatenated on every trial for every person, but
their sizes and how they are centered as a group on the φ scale are free to vary
between persons and between trials by the deviate zeta. For expression (5.1), the
locations of the response category thresholds are identified as the boundaries of the
concatenated intervals. Thus, τx � 1 + ζn, j, x � 1 is always less than τx + ζn, j, x, which
in turn is always less than τx + 1 + ζn, j, x + 1, etc.

For expression (5.2), the definition of “threshold” is subtly changed, even though
when casually described it continues to be used as if it refers to the boundaries of an
interval in which φnj falls. But for expression (5.2) the ordinal value assigned to the
response refers to a count of the number of thresholds pre-labeled with ordered
numbers that are less than φn, j. That is, on each trial for each person the response
category thresholds are identified and permanently labeled (like a number on a
soccer player’s jersey). The numbers on the thresholds represent the order in
which they are counted, not necessarily the order of the threshold magnitudes.

Mathematically, to satisfy expression (5.2) it is not necessary for thresholds to
define boundaries of intervals – each threshold is tracked from trial to trial on the φ
scale as an independent entity. When the person responds with rating x, it is assumed
by the model that φn, j is greater than all thresholds less than τx + 1 + ζn, j, x + 1 and less
than all thresholds greater than τx + ζn, j, x. Trials that do not satisfy expression (5.2)
are ignored (i.e., estimated probabilities are conditioned on the requirement that
dichotomous scores assigned to each threshold satisfy a Guttman scale on each trial)
[6]. Unlike the requirement for expression (5.1), on each eligible trial the two sets of
thresholds plus error segregated by φn, j can have magnitudes in any order on their
respective sides of the inequalities. For this reason, Rasch models derived from
expression (5.2) can estimate disordered average thresholds, whereas Rasch models
derived from expression (5.1) always estimate ordered thresholds [5, 7, 8].
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Some Rasch models permit expected values of thresholds for response categories
to vary across items (i.e., τx is redefined as τj, x) [9]. If expression (5.1) must be
satisfied by τj, x (i.e., thresholds for each item must be ordered), expression (5.1) can
be rewritten as

⋯ < τj,x�1 þ ρj þ ζn,j,x�1 < τj,x þ ρj þ ζn,j,x � αn < τj,xþ1 þ ρj þ ζn,j,xþ1 < τj,xþ2 þ ρj þ ζn,j,xþ2 < ⋯

ð5:3Þ

by adding ρj to every threshold and to functional reserve, which in effect, creates a
different Likert scale for each item ( j). Expression (5.3) is consistent with
Samejima’s [10] graded response model if the variance of ζn, j, x depends on the
item ( j) – a common assumption of item response theory models. If the variance of
ζn, j, x is constant with respect to n, j, and x, as required by Rasch models [8], then
expression (5.3) reduces to a dichotomous Rasch model with τj, x + ρj defining the
measure for “item” x in domain j [6]. Using rating scale questionnaire terminology,
the τj, x values are playing the role of x ¼ 1 to mj dichotomously scored items ( j,x)
and the ρj values are playing the role of domain-dependent ( j) constants that offset
the item measures in domain j so that all items in the instrument share the same origin
on a common scale. The scoring rule for expressions (5.1, 5.2 and 5.3) is the same,
which can be stated explicitly as: if the respondent chooses category j,x, then
response category j,x and all categories less than j,x are given a score of 1 and all
categories greater than j,x are given a score of 0 [6, 11, 12]. This rule is the
consequence of requiring normative measurement models to conform to a Guttman
scale.

Unlike Rasch’s original application of his model to reading tests [12] and most
current applications in educational testing, in which ordinal scores represent error
counts, ordinal scores for rating scales are assigned to subjective magnitude esti-
mates, which are represented by a distance between two points on a number line
[13]. The only counts involved in a distance measure are counts of unit distances that
are concatenated to span the distance being measured, not counts of events. Expres-
sion (5.1) (and algebraic variations) represents a class of Rasch models for which
measurement units correspond to a distance on a number line. Expression (5.2) (and
algebraic variations) represents a class of Rasch models for which measurement
units correspond to counts of sequentially ordered events that are positioned inde-
pendently at points on the number line [6].

If rj, x is the correlation between ηn, x and εn, j, then the between-person variance in
ζn, j, x is σ2j,x ¼ σ2j þ σ2x þ 2rj,xσjσx. Invoking the central limit theorem, we assume the
probability density function for ζn, j, x is approximately normal, which in turn is further

approximated with the logistic density function: f ζn,j,xj0, σj,x
� � ¼ e

�ζn,j,x=σj,x

σj,x 1þe
�ζn,j,x=σj,x

� 2 .

From expression (5.1), the probability person n will rate item j with rating category



a

��

x is the probability τx + ζn, j, x < αn � ρj and αn� ρj < τx + 1 + ζn, j, x + 1. To satisfy this
requirement in expression (5.1), it must be true that τx + 1 + ζn, j, x + 1 > τx + ζn, j, x for
every person/item combination and for every value of x.
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For dichotomous response categories, there is only one threshold, which can be
added to ρj and its variance can be added to σ2j . The major difference between
dichotomous Rasch models and most dichotomous item response theory (IRT)
models is that dichotomous Rasch models assume σj ¼ 1 for all items, whereas
IRT models typically estimate σj for each item. This difference means that Rasch
models are normative measurement models (i.e., modeling the measurement, not the
data) and IRT models are descriptive statistical models (modeling the data, not the
measurement). This difference carries through to polytomous rating scale models
also – Rasch models assume σj, x ¼ 1 for all items and thresholds and most IRT
models assume σj, x ¼ σj for all items and thresholds – with the same consequences
for how the models are characterized. Our aim is to estimate measures of visual
ability from item difficulty ratings, so we employ a Rasch model, which means that
the probability density function for measurement errors is f(ζn, j, x| 0, σj, x)¼ f(ζ| 0, 1).
A result of this assumption is that all rating scale responses estimated by the model
must adhere to a Guttman scale, a sine qua non of measurement. In effect, Rasch
models estimate person and item measures that generate the most likely Guttman
scale underlying the observations, whereas IRT models estimate parameters that
generate responses that best fit the data [8].

Again returning to expression (5.1) with the assumption that σj, x ¼ 1, we see that
the probability person n responds to item j with category x or greater is p(τx + ζn, j,

x < αn � ρj), which is equal to p ζn,j,x < αn � ρj � τx
� � ¼ Rαn�ρj�τx

�1
f ζj0, 1ð Þdζ ,

dichotomous Rasch model. Similarly, we see from expression (5.1) that the proba-
bility person n responds to item j with less than category x + 1 is p(αn � ρj < τx + 1 +
ζn, j, x + 1), which also is in the form of a dichotomous Rasch model,

p ζn,j,xþ1 > αn � ρj � τxþ1
� � ¼ R1

αn�ρj�τxþ1

f ζj0, 1ð Þdζ ¼ 1� Rαn�ρj�τxþ1

�1
f ζj0, 1ð Þdζ .

The probability person n responds with category x to item j is

p xjαn � ρj
� � ¼ 1

� p ζn,j,x < αn � ρj � τx
� �þ p ζn,j,xþ1 > αn � ρj � τxþ1

�� ð5:4Þ

which is in the Rasch model form (σj, x¼ 1) of Muraki’s modification of Samejima’s
graded response model [10, 14]. The three polytomous Rasch model parameters ─
αnfor each person, ρj for each item, and τx for each threshold – are estimated for the
logistic difference model in Eq. (5.4) [15] using the method of successive
dichotomizations [5].
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5.2.2 Defining and Organizing the Activity Inventory Item
Content

Because of the demographics of low vision [16], vision rehabilitation primarily
targets older visually impaired adults [17]. The low vision patient evaluation typi-
cally begins with an intake interview that consists of a health history, visual
impairment history, psychosocial history, and functional history [18]. The functional
history itemizes how the patient’s visual impairment limits her/his ability to live
independently, ability to engage in social activities, and ability to engage in favored
leisure activities and avocations. For younger patients, the functional history might
also cover limitations on employment-related and/or school-related activities, how-
ever because most low vision is due to age-related eye diseases, those patients are
rare and tend to be referred out of the health care system for vocational rehabilitation
or special education services.

The Activity Inventory (AI) was developed both to structure the intake history, so
as to facilitate the development of individualized rehabilitation plans, and to provide
an adaptive visual function rating scale questionnaire for measuring the low vision
patient’s functional ability and outcomes of vision rehabilitation [19, 20]. A retro-
spective chart review of low vision patient intake histories identified 460 common
cognitive and motor activities that frequently were mentioned by patients as impor-
tant for them to be able to perform but were made unusually difficult or precluded by
their visual impairments. These very specific activities, called “Tasks” in the AI,
were grouped according to the activity “Goals” they serve [19]. Goals in the AI refer
to the reason for performing a coordinated set of Tasks (the first letter in the terms
“Goals” and “Tasks” is capitalized when referring to items in the AI). For example,
“prepare daily meals” is a Goal. There are many ways to prepare daily meals ranging
from performing a suite of customary Tasks required to prepare a meal from scratch
(e.g., read recipes, measure ingredients, cut food, adjust appliance controls, time
cooking, judge doneness of food, etc.) to heating up prepared food in a microwave or
conventional oven (e.g., read package instructions and adjust appliance controls).

Two rehabilitation strategies are employed to achieve activity Goals: (1) make
usual and customary Tasks less difficult to perform by using vision assistive
equipment to enhance vision (e.g., magnifier) or using sensory substitution technol-
ogy to obviate vision (e.g., bump dots on appliance controls, talking timer, electronic
liquid level indicator), or (2) employ adaptive strategies to make it possible to
achieve the Goal without having to perform the patient’s usual and customary
Tasks (e.g., heat prepared food instead of cooking from scratch). Overall outcomes
of vision rehabilitation generally are judged in terms of goal attainment, whereas the
effectiveness of vision assistive equipment and visual skills instruction tends to be
judged in terms of improvements in the performance of tasks.

The difference between education and rehabilitation can be captured by the
difference between learning to cook and regaining the ability to cook. Rehabilitation
goals are defined by lost functional ability and by patient preferences. However, how
much value the patient places on an activity depends on the Objective of the Goal.



For example, cooking to prepare daily meals might be an extremely important Goal
to the patient because it serves the Objective of daily living (i.e., necessary for the
patient to live independently). Cooking meals also could serve a social interaction
Objective that is important to the patient because the patient places high value on
entertaining guests. And cooking could serve a recreation Objective because the
patient is rewarded by the joy of cooking. Although heating prepared food in a
microwave oven might be an acceptable adaptation if cooking is serving the Daily
Living Objective, it might not be acceptable if it is serving the Social Interaction or
Recreation Objectives. As schematized by the example in Fig. 5.1, there are 50 com-
mon Goals in the AI that are nested under the three Objectives. Borrowing termi-
nology from project management, this hierarchical structure of AI Objectives, Goals,
and Tasks is called the Activity Breakdown Structure (ABS) [19]. The ABS orga-
nizes the items in the AI (Goals and Tasks) in a way that parallels the functional
history.
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Patient Life State

Daily Living Social Interactions Recreation

Cook Daily Meals

Woodworking

LeisureDine Out

Read recipes

Cut food

Set stove dials

Read menu Read poetry

Listen to musicWalk low light

See food Watch TV

Knitting/Crochet

Manage Finances

Shop

Entertain Guests

Attend Church

Fig. 5.1 Schematic of the hierarchical Activity Breakdown Structure (ABS) for the AI. Activities
can be grouped into three Objectives that define the patient’s life state: Daily Living, Social
Interactions, and Recreation (vocation and education are not included as objectives that are
addressed by vision rehabilitation services provided within the health care system). Under each
Objective are specific activity Goals (e.g., Cook Daily Meals under Daily Living) that often are
identified by low vision patients as needed to meet the parent Objective (the AI has 50 Goals:
18 under Daily Living, 11 under Social Interactions, and 21 under Recreation – Goals rated “not
important” or “not difficult” are not included in the ABS). The AI has a total 460 Tasks in its
calibrated item bank that are nested under the Goals they serve. Tasks rated by the patient as “not
relevant” or “not difficult” are not included in the ABS. Besides being nested under Goals, each
Task is also assigned to one of 4 functional domains: Reading; Mobility; Visual Motor (i.e.,
eye-hand coordination); or Visual Information (i.e., perception)
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The AI Tasks also are organized by grouping them into four sets according to the
type of rehabilitation intervention that might be used. Each set of Tasks is identified
as a functional domain: (1) reading function, (2) mobility function, (3) visual motor
function, and (4) visual information processing function. Interventions for reduced
reading function include various forms of magnification, speech output optical
character recognition apps, synthetic speech devices, audio recordings, and braille.
Interventions for reduced mobility function include orientation and mobility training
(e.g., white cane use), dog guide, navigation apps (e.g., GPS systems), ride share
services, talking signs, and remote sighted guide services. Interventions for reduced
visual motor function include signature guides, raised line guide for writing, needle
threader, syringe fillers, vegetable cutters, oversize keyboards, bump dots, oversize
nail clippers with magnifier, and organizational skill instruction. Interventions for
reduced visual information processing function include face and object recognition
smartphone apps, descriptive audio for movies and events, color identification
smartphone apps, and environmental modifications.

It is important to note, as illustrated above, most interventions that constitute
vision rehabilitation consist of tools and methods that are specific to a narrow set of
activities. The aim of each intervention is to reduce the difficulty of performing the
troublesome activity (e.g., liquid level indicators sound an alarm when liquid in a
glass or cup reaches a criterion level). Theoretically, this piecemeal approach to
vision rehabilitation translates to increasing functional reserve for each item by
reducing the visual ability required by the item, i.e., reducing ρj in the model
[21]. Selective reductions in item measures because of piecemeal intervention
translate to intervention-specific DIF.

5.2.3 Adaptive Administration of the AI

The present AI item bank consists of 50 Goals distributed under 3 Objectives (Daily
Living, Social Interactions, Recreation) and 460 Tasks nested under the Goals. There
is redundancy of item content within the list of 460 Tasks, however item measures
may vary between different Tasks that have the same content depending on the Goal
and Objective the Task is serving. Similarly, there is some redundancy in Goal
content because Goals could serve more than one Objective. Returning to the
cooking example, “prepare your daily meals” is a Goal under Daily Living, “prepare
food for guests” is a Goal under Social Interactions, and “cook or bake for recrea-
tion” is a Goal under Recreation. Although the list of Tasks for each of these Goals is
very similar with respect to content, they differ in their item measures due to varying
performance criteria that must be met to satisfy the Objective served by the
parent Goal.

Because the respondent is visually impaired, the AI is administered by interview,
usually over the telephone with the assistance of a secure computer-assisted tele-
phone interview (CATI) system. For the baseline interview (before vision rehabil-
itation services are rendered), the patient is asked to rate the importance of being able



to attain without the assistance of another person one of the 50 Goals. The response
choices are “not important”, “slightly important”, “moderately important”, or “very
important”. If the patient chooses “not important”, the response is recorded and the
interviewer moves on to the next Goal. If the patient chooses any of the other levels
of importance, the response is recorded and the interviewer asks the patient how
difficult it is to attain the Goal without the assistance of another person. The response
choices are “not difficult”, “somewhat difficult”, moderately difficult”, “very diffi-
cult”, or “impossible to do”. The patient’s response is recorded. If the patient
responded “not difficult”, then the interviewer advances to the next Goal. If the
patient responded with any of the other difficulty rating categories, then the inter-
viewer asks the patient to rate the difficulty of performing each of that Goal’s
subsidiary Tasks using the same five difficulty rating categories as used with the
Goal, or to respond the Task is “not applicable” to the respondent’s customary way
of achieving the Goal.
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After completing the rating of Tasks under the Goal, the interviewer moves to the
next Goal and repeats all the same steps. This approach is considered adaptive
because the patient’s preferences (importance ratings of Goals and applicability
responses for Tasks) determine which items will have difficulty ratings elicited.
Goals also must be rated at least “slightly difficult” to have difficulty ratings of its
subsidiary tasks elicited. The rationale for this adaptive approach is that if a Goal is
not important or not difficult at baseline, it will not be included in the individualized
rehabilitation plan.

5.2.4 Properties of Estimated AI Item and Person Measures
at Baseline

Generically, we refer to the estimated functional reserve, φnj, as functional ability of
person n with respect to the content of item j. Functional ability is a
multidimensional construct (e.g., cognitive ability, motor ability, sensory ability,
psychological ability, etc. are components of functional ability). Each functional
ability dimension has its own multidimensional structure (e.g., sensory ability can be
expressed as visual ability, hearing ability, taste ability, etc.), and each component
ability subdimension can be expressed further with its own dimensional structures
(e.g., visual ability can have independent components differentially affected by
ophthalmic diseases: night vision, visual acuity, peripheral vision, color vision,
etc.), all of which are properties of the person expressed at different levels of detail
that must be inferred from observations by way of theory.

The person and item measures estimated from Rasch analysis of AI difficulty
ratings correspond to the magnitude of an origin-bound functional ability vector in
the multidimensional functional ability space. The direction of the vector is deter-
mined by item content and by traits of the people rating the items. For example, some
vision-dependent items might describe activities, like reading medication instruc-
tions, that depend more heavily on cognitive ability than on motor ability and the



reverse might be true for other items, such as signing a check. Also, some low vision
patients might have cognitive impairments, whereas other low vision patients might
have physical impairments that differentially influence their ratings of different
items.
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These differences combined with variations between items in the demand placed
on vision and variations between people in vision impairment severity will give rise
to variations in the direction and magnitude of the resultant vector. To the extent that
variations in visual ability is the common denominator for all patients and items, we
presume the magnitude of the average vector across items and persons represents
visual ability. All else being equal, or at least randomly distributed, variations of
vision impairment severity between persons and variations of demand on vision
between items will give rise to variations in functional reserve, which can be
characterized as variations in the magnitude of the operationally-defined “visual
ability” vector in functional ability space. Variations between items in the direction
of this visual ability vector depend on how much demand the items place on other
functional ability dimensions (e.g., cognitive demand, physical motor demand,
psychological demand). Variations between persons in the direction of this visual
ability vector depend on the types and magnitudes of other functional impairments
the person may have (e.g., cognitive, physical motor, psychological disorders).
Variations in measurements of “visual ability” depend on both the amount of
deviation in vector direction and the magnitude of the deviated vector, which pro-
jects onto the defined visual ability vector, the magnitude of which corresponds to
the estimated measures. We use this vector representation to guide our analyses of
sources of variance and covariance in estimated person and item measures from AI
difficulty ratings by people with low vision.

Item measures for the 510 Goals and Tasks in the AI were estimated using the
method of successive dichotomizations [5] from the difficulty ratings of about 3600
low vision patients at pre-rehabilitation baseline [22]. Because activity Goals are
attained by successfully performing some subset of their subsidiary Tasks, the
difficulties of attaining Goals, and therefore their item measures, are expected to
be a monotonically increasing function of the difficulty of performing their subsid-
iary Tasks. The left panel of Fig. 5.2 illustrates a scatterplot of mean Task item
measures (on the ordinate) vs parent Goal item measures (on the abscissa), both
specified as a difference from the mean of all Goal item measures and the mean of all
average Task item measures respectively, along with the expected relationship given
the respective means (red line) [23]. The Pearson correlation is 0.48. These results
are consistent with the hypothesis that the difficulty of an activity Goal is inherited
from the difficulties of the more specific activity Tasks that serve the Goal.

The Goal and Task item measures are estimated simultaneously on the same
scale, therefore person measures estimated from Goal difficulty ratings should agree
with person measures estimated from Task difficulty ratings. The right panel of
Fig. 5.2 illustrates a scatterplot of person measures estimated from Task difficulty
ratings (on the ordinate) versus person measures estimated from Goal difficulty
ratings (on the abscissa) along with the expected identity relationship (red line) for
approximately 3600 low vision patients at pre-rehabilitation baseline. The Pearson
correlation is 0.71.
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Fig. 5.2 Left panel: Scatter plot of the average of all AI item measures of Tasks serving each Goal
versus the corresponding Goal item measure. The red line is the identity line with respect to
deviations of Goal measures from the mean Goal measure and deviation of the average Task
measures from the mean of the average Task measures. Each data point corresponds to one of the
50 Goals. Right panel: Scatter plot of person measures estimated from all Tasks rated by the person
at baseline versus person measures estimated from all Goals rated by the same person at baseline.
The red line is the identity line. Each data point corresponds to a separate person

Rasch models are normative measurement models. As opposed to most IRT
models, which are descriptive statistical models of observations, Rasch models
assume that the density function for random deviates, f(ζ| 0, 1), is the same for
every combination of persons and items. The validity of using a Rasch model to
estimate measures from observations is tested by determining if the observations
conform to the premises of the model (i.e., determining if “the data fit the model”
rather than fitting the model to the data). The information-weighted mean square fit
statistic (infit) is used to test the validity of item and person measure estimates.
Equation (5.4) is the probability that person n would respond with category x to
item j. Thus, if xn, j is the observed response of person n to item j and
 xn,jjαn, ρj
� � ¼P4

x¼0xp xjαn � ρj
� �

is the response of person n to item j expected
by the model, then the sums of squares of observed minus expected responses across
persons for each item is SSj ¼

PNj

n¼1 xn,j �  xn,jjαn, ρj
� �� �2

, where Nj is the number

of persons who rated item j. The expected sums of squares for item j is  SSj
� � ¼

 x2n,jjαn, ρj
n o

�  xn,jjαn, ρj
� �2

, for which  x2n,jjαn, ρj
n o

¼P4
x¼0x

2p xjαn � ρj
�

.

Assuming the source of variance is normally distributed, we expect SSj to have a
chi-square distribution with Nj � 1 degrees of freedom. The expected value of a
chi-square distribution is its degrees of freedom (df). Thus, the ratio of SSj to the
expected value of SSj, given the assumption of an underlying normal density function
as the source of variance, should be SSj

 SSjf g ¼ χ2

df j
. This ratio is called the infit. If df > 25,

a cube-root transformation of χ2 is a good approximation to a normal distribution (i.e.,
Wilson-Hilferty transform [24]).
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Fig. 5.3 Left panel: Scatter plot of item measures for each of the 50 Goals and 460 Tasks as a
function of the z-score for their respective item measure infit mean square. The Tasks are color
coded by the functional domain to which they are assigned: Goals (blue), Mobility (red), Reading
(green), Visual Information Processing (purple), and Visual Motor (yellow). The expected value for
the infit z-score is 0. Right panel: Cumulative frequencies of the infit z-scores for each functional
domain as identified by color in the left panel

We estimated the infit for each of the 50 Goals and 460 Tasks in the AI from the
responses of our large sample of low vision patients rating the difficulty of AI items
and transformed the infits to standard normal deviates (z-scores) for each item. The
results for all Goals and Tasks are illustrated in the left panel of Fig. 5.3 as the
covariance of infit z-scores (abscissa) and item measures (ordinate) for each item.
There is a very weak correlation between infit mean squares and item measures
(r¼ 0.12). If the estimated measures conformed to the unidimensional assumption of
the Rasch model (i.e., magnitude of a single visual ability vector, φn, j) contaminated
by a single source of normally distributed random error (ζ), 97% of the points would
fall symmetrically about zero within a z-score range of �2. Clearly, these assump-
tions are violated [25]. [N.B. Because the AI is adaptive, the number of persons who
rated each item varied between items, so df must vary between items. The mean of a
chi-square distribution is df, the variance is 2df, the skewness is

ffiffiffiffiffiffiffiffiffiffi
8=df

p
, and the

kurtosis is 12/df, thus variations in df across items result in variations in the shape of
the composite infit distribution. However, because df is very large for all items,
skewness and kurtosis are approximately zero. Although the Wilson-Hilferty trans-
form can be used for each item infit, it is necessary to employ each item’s respective
dfj when transforming to z-scores.]

As described above, each Task in the AI is assigned to one of four functional
domains: (1) reading, (2) mobility. (3) visual information processing, or (4) visual
motor. The AI Goals and the functional domains to which the AI Tasks are assigned
are color-coded in Fig. 5.3. It can be seen that the colors form different clusters of
infit z-scores. The right panel of Fig. 5.3 shows cumulative frequencies of infit
z-scores for Goals and for Tasks in each of the four functional domains. The infit
z-score cumulative frequency functions are similar for each of the five groups of
items, but the median z-score values (z-score corresponding to 0.5 cumulative
frequency) vary between functional domains (the expected value of the median is



a z-score of 0 – solid vertical line). The median of the infit z-scores for Goals (0.2)
and visual information processing Tasks (0.1) are very close to the expected value of
zero. The median infit z-score for reading Tasks (�3.2) is much lower than the
expected value of zero (indicative of error variance less than the expected amount of
variance) and the median infit z-score for mobility Tasks (6) and visual motor Tasks
(4.1) are much higher than the expected value of zero (indicative of error variance
more than the expected amount of variance). These results suggest a strong dimen-
sional structure to the estimated visual ability measure.
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Fig. 5.4 Left panel: Histogram (black bars) of the person measure infit mean square values. The
red curve is the expected probability mass function (same bin width as the histogram) for the person
measure infit mean square given the degrees of freedom (1 less than the number of items rated) for
each patient. Right panel: Difference between the observed (black bars in the left panel) and
expected (red curve in the left panel) probability mass values for each infit mean square value.
Differences greater than 0 indicate more variance observed in the distribution of person measure
deviates than expected and differences less than 0 indicate less variance than expected

An infit also can be estimated for each person, but since the AI is administered
adaptively, the number of items rated varies between people. The infit for person n is
SSn

 SSnf g ¼ χ2

df n
, for which dfn ¼ Jn � 1, where Jn is the number of items rated by person

n. Thus, for adaptive testing, the expected infit frequency distribution is a sum of
weighted chi-square distributions. The left panel of Fig. 5.4 illustrates a histogram of
person infits (black bars). The red curve is the expected chi-square mixture proba-
bility mass function [26] (pmf – same bin width as the histogram) estimated for the
3600 respondents to the AI. The chi-square mixture pmf is the sum of weighted
chi-square pmfs for different values of dfn with the weight equal to the fraction of
persons who rated dfn + 1 items in the AI.

The right panel of Fig. 5.4 illustrates the difference between the observed and
expected pmfs in the left panel of Fig. 5.4. About 27% of the persons had excess
error variance in the observed responses (positive differences for infits greater than
1) and 8% had less error variance than expected (positive differences for infits less
than 1). As discussed more formally in a later section, much of the excess variance
may be due to functional limitations caused by comorbidities.
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5.3 Functional Domains and Differential Person
Functioning (DPF)

The analysis of item infit statistics by functional domains, as summarized in Fig. 5.3,
suggests a strong dimensional structure to the estimated visual ability variable. Such
a dimensional structure would correspond to DPF. Figure 5.5 shows that person
measure distributions are significantly different when estimated from difficulty
ratings of Goals and of Tasks in each of the four functional domains (ANOVA:
F ¼ 30.95, dfB ¼ 5, dfW ¼ 20,502, p ¼ 1.7 � 10�31). Post hoc paired t-tests with
Bonferroni adjustment for multiple comparisons showed that differences between all
pairs are highly significant, except for visual information processing and visual
motor functions (p ¼ 0.37).

In a vector representation of covariances, vector magnitude corresponds to the
square root of the variance (i.e., standard deviation in units of the measure) explained
by orthogonal factors and the cosine of the angle between any pair of vectors
corresponds to the correlation between the variables those vectors represent. Such
factors could represent visual components of the visual ability variable and/or
contributions to estimated measures from other functional ability dimensions, such
as cognitive disorders, physical motor limitations, and depressed psychological state.

Therefore, we employed factor analysis with principal axis factoring and varimax
rotation (i.e., optimizing the rotation of the orthogonal factors to maximize the
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ratings of Goals and Tasks combined and from difficulty ratings of only Goals. Error bars represent
95% confidence intervals. All differences are statistically significant except the difference between
Visual Information Processing person measures and Visual Motor person measures



variance in each measure explained by each factor), on the five sets of person
measures estimated from difficulty ratings of Goals and of the four subsets of
Tasks representing the functional domains.
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Table 5.1 Correlation matrix for person measures estimated from AI difficulty ratings (gray cells)
and from Rasch analysis of responses to more general health questionnaires (orange cells) – the
GDS (depression), SF-36-PFS (physical ability), and TICS (cognitive disorders). The blue cells in
the upper right are normalized linear regression model weights (β) on person measures estimated
from GDS, SF-36-PFS, and TICS ratings to predict person measures estimated from AI difficulty
ratings for each of the functional domains

r READING MOBILITY VIS INFO VIS MOTOR GOALS GDS SF-36-PMS TICS
READING 1.00 * * * * 0.16 0.06 0.13
MOBILITY 0.48 1.00 * * * 0.11 0.13 0.02
VIS INFO 0.69 0.58 1.00 * * 0.11 0.06 0.01

VIS MOTOR 0.75 0.62 0.77 1.00 * 0.13 0.11 0.02
GOALS 0.75 0.60 0.72 0.81 1.00 0.29 0.24 0.01

GDS 0.21 0.30 0.24 0.32 0.39 1.00 * *
SF-36-PMS 0.18 0.37 0.22 0.35 0.36 0.43 1.00 *

TICS 0.19 0.26 0.15 0.23 0.15 0.21 0.29 1.00

We learned that two factors explain the correlation matrix (gray cells in Table 5.1)
and account for 70% of the variance in the five sets of person measures [22, 23,
27]. The left panel of Fig. 5.6 illustrates the two orthogonal factors and the vectors
for the five sets of person measures plus the vector for the principal axis (black).
Reading (green) loads most heavily on factor 1 and Mobility (red) loads most
heavily on factor 2. Visual information processing (yellow) and visual motor (violet)
vectors, and the vector for Goals (blue) are close to the principal axis (black vector,
which corresponds to all Goals and Tasks combined).

We speculate that factor 1 represents central vision (e.g., altered by visual acuity
and contrast sensitivity losses) and factor 2 represents peripheral vision (e.g., altered
by visual field loss and blind areas in vision called scotomas). Not only can these two
types of visual impairment occur independently, they also have different effects on
visual perception. There is neuroanatomical and neurophysiological evidence of two
visual pathways in the brain following visual processing in the primary visual cortex
(V1), one in the parietal cortex and the other in the temporal cortex. The parietal
pathway, sometimes called the “where” system, receives most of its input from the
peripheral retina and appears to be responsible for visual perceptual processing
related to spatial awareness and visual control of actions, whereas the temporal
pathway, sometimes called the “what” system, receives most of its visual input from
the central retina and appears to responsible for object identification and interpreta-
tion of patterns [28]. Changes in visual acuity results in changes in the reading
threshold (minimum size of print that can be read at all), whereas central scotomas
reduce the maximum (asymptotic) reading rate that can be achieved with enlarged
print [29], which suggests how the two factors can contribute independently to
reduced reading function in low vision.
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Fig. 5.6 Left panel: Results of exploratory factor analysis with varimax rotation on the correlation
matrix of 6 sets of person measures estimated from Task difficulty ratings in each of the 4 functional
domains (green, red, purple and yellow vectors), Goal difficulty ratings (blue vector), and difficulty
ratings of all Goals and Tasks combined (black vector). Vector magnitude corresponds to the square
root of the variance in the person measures that is explained by the two factors and the cosine of the
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Right panel: The Mobility vector loads most heavily on factor 2, the Reading vector loads most
heavily on factor 1, and the Goals/Tasks vector loads equally on the two factors. We hypothesize
that these factors are independent components of visual ability that reflect the two visual pathways
observed in the parietal and temporal lobes of the cortex. To the extent that mobility relies on spatial
awareness and control of actions, which are attributed to the parietal lobe that receives most of its
input from peripheral retina, and reading relies on object recognition, which is attributed to the
temporal lobe that receives most of its input from the central retina, we expect visual field loss and
scotomas to have their largest effect on functions that depend on factor 2 and visual acuity loss to
have its largest effect on functions that depend on factor 1

These two independent vision-related factors have been observed repeatedly over
the past several years contributing to person measures estimated for different
samples of visually impaired patients from their responses to different visual func-
tion questionaires [30, 31]. There also have been reports of significant contributions
to person measure estimates from physical functioning (as measured by the SF-36
physical functioning scale [SF-36-PFS] [32]), cognitive functioning (as measured by
the Telephone Interview for Cognitive Status [TICS] [33]), and psychological state
(as measured by the Geriatric Depression Scale [GDS] [34], Center for Epidemio-
logic Studies – Depression Scale [34], or Patient Health Questionnaire-9 [35]).

However, as itemized in the last three rows of cells below the diagonal in
Table 5.1 (pink highlight), the correlations (r) between these health state measures
and AI measures for Goals and each of the four functional domains are weak
[36]. These low correlations suggest that additional independent factors are required
to explain the covariances that are added to visual ability estimates by co-morbidities
[27, 37]. Even though individual correlations are weak, the physical, psychological,
and cognitive health states are statistically significant predictors of the Goal and



functional domain measures in a multivariate linear model. Table 5.1 lists above the
diagonal (blue highlight) the normalized weights in the linear model (β)
[36]. Although small in all cases, the GDS weight is significantly different from
zero for all five functional domains; the SF-36-PFS weight is significantly different
from zero for all domains except reading; and the TICS weight is significantly
different from zero for all domains except visual information processing.
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5.3.1 Latent Variable Model for Sources of Variance in AI
Visual Ability Measures

To better understand how co-morbidities contribute to estimates of visual ability
measures from AI Goal and Task difficulty ratings, we constructed the conceptual
path diagram schematized in Fig. 5.7. Estimated latent intervening variables are
symbolized with yellow ellipses; latent factors are symbolized with salmon and gray
ellipses; and observed manifest variables are symbolized with blue rectangles. The
arrows identify paths by which the inferred latent factors give rise to the observed
indicators (manifest variables, which are Goal and Task difficulty ratings), both
directly and by way of intervening latent variables (estimated person measures).
Vision Factor 1 corresponds to Factor 1 (“what” visual processing) in Fig. 5.7 and
Vision Factor 2 corresponds to Factor 2 (“where” visual processing) in Fig. 5.7.

The black arrows from the vision factors (salmon ellipses) to each intervening
latent variable has a fixed weight that is estimated from the factor analysis summa-
rized in Fig. 5.6. Each weight corresponds to the projection of the respective Goals
or functional domain vector onto that factor. Each red arrow from the independent
latent systemic health state factors (gray ellipses) to each intervening latent variable
has a weight estimated from structural equation modeling. From the perspective of
visual ability, the latent systemic health state factors are acting in the role of effect
modifiers on the intervening latent variables (i.e., person measures estimated from
Rasch analysis). The latent visual factors also are predictors of visual impairment
measures (visual acuity and visual fields by way of regression models), continuous
latent variables (incorporated in Psych, Cognitive, and Physical latent intervening
variables that are not shown in the paths to the manifest variables on the right in
Fig. 5.7) estimated from Rasch analysis of rating scale responses to depression
(GDS), cognitive functioning (TICS), and physical functioning (SF-36 PFS) ques-
tionnaires and categorical responses (scored as a dichotomous grouping variable,
i.e., 0,1) to a detailed health/functional/psychosocial intake history
questionnaire [36].

Each observation also has sources of random variance (not shown in Fig. 5.7) and
covariances (also not shown). The weights on the unfixed paths were estimated by
structural equation modeling.
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Fig. 5.7 Conceptual path model of how latent vision and non-visual factors contribute to
explaining observed difficulty ratings of items in the AI (blue rectangles on the left); to observed
psychophysical measures of visual impairments (blue rectangles for visual acuity and visual fields
on the right); to observed psychometric measures of depression severity (GDS), cognitive impair-
ment (TICS), and physical limitations (SF-36-PFS); and to self-reported co-morbidities (intake
history). The black arrows identify paths for which weights are estimated from Rasch analysis and
regression models and the red arrows identify paths for which weights are estimated from structural
equation modeling

The structural equation model constructed from the conceptual design in Fig. 5.7
anchored the intervening latent visual function domain variables to person measures
estimated from Rasch analysis of AI Goal and Task difficulty ratings; the latent
vision factor value for each person to values estimated from principal axis factoring
of the visual function domains plus visual acuity and contrast sensitivity covariance
matrix; and the systemic health state factor values for each person from Rasch
analysis of item responses to the GDS, TICS, and SF-36 PFS and from regression
models of intake self- reported indicators in the Intake History [27]. The first row of
Fig. 5.8 illustrates predicted reading function from the two vision factors vs mea-
sured reading function (left panel), predicted reading function from the 4 health state
factors vs measured reading function (center panel), and predicted reading function
from all 6 latent factors combined vs measured reading function (right panel). The
second row makes the same comparisons for mobility function, the third for visual
information function, and the fourth for visual motor function. The predicted person
measures from the vision factors for each functional domain (first panel in each row)
are linearly related to the measured values, but they are not accurate (i.e., they do not
fall on the identity line). If health state factors make a consistent contribution to
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Fig. 5.8 Left column: Scatter plots of person measures modeled from a general linear model
(GLM) using only loadings from exploratory factor analysis (vision factor 1 and vision factor 2 in
Fig. 5.7) versus the person measure estimated from Rasch analysis of difficulty ratings of AI items
for each functional domain: Reading (row 1), Mobility (row 2), Visual Information Processing (row
3), and Visual Motor (row 4). The identity line is the expected relationship if only vision factors
contributed to the estimated measures. Middle column: Scatter plots of person measures modeled
from a GLM using only loadings from the systemic factors (Psych, Cognitive, Physical, and
Sensory factors in Fig. 5.7) versus person measures estimated from Rasch analysis of difficulty
ratings of AI items in each functional domain. The horizontal line is the expected relationship if
non-vision factors did not contribute to the measures estimated from Rasch analysis. Right column:
Scatter plots of person measures modeled from a GLM using loadings from all 6 factors in Fig. 5.7
versus person measures estimated from Rasch analysis of difficulty ratings of AI items in each
functional domain. The identity line is the expected relationship if the 6 independent factors
accounted for all contributions to the observed person measures



visual function measures, then the predicted values in the second panel of each row
should correlate with the measured values. The Pearson correlations are 0.77 for
Reading (first row), 0.44 for Mobility (second row), 0.44 for Visual Information
(third row), 0.56 for Visual Motor (fourth row), and 0.61 for overall visual ability
(estimated from Goal difficulty ratings and not shown). The predictions of measured
values for the full model (2 vision factors and 4 systemic health state factors
combined) are shown in the third column of Fig. 5.8. The addition of contributions
from the systemic health state factors not only improve the accuracy of the predicted
person measures, it also increases variance about the identity line which provides
explanations of previously unexplained variance in the person measures.
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5.4 Intervention-Specific Differential Item Functioning
(DIF)

Upon completion of rehabilitation services, the AI is re-administered adaptively with
a follow-up CATI using a slightly different algorithm. Patient ratings are elicited the
same way they were at baseline, except that any Goals rated not important or not
difficult at baseline are not re-administered. If at baseline a Goal was given a
difficulty rating greater than not difficult, then the difficulties of that Goal’s subsid-
iary Tasks are rated irrespective of the Goal difficulty rating at follow-up. Also, any
Tasks rated not difficult or not applicable at baseline are not re-administered. The
rationale for this “item-filtering” approach is that rehabilitation of Goals and Tasks
rated not important or not applicable or not difficult at baseline is of no utility to the
patient and those activities would not be included in the individualized
rehabilitation plan.

5.4.1 Increasing Functional Reserve

In the case of vision rehabilitation, the aim of intervention is to increase the patient’s
ability to function, i.e., increase the patient’s functional reserve for activities targeted
in the individualized rehabilitation plan. We typically think of increasing functional
reserve by increasing the patient’s visual ability, φnj + Δφnj ¼ (αn + Δαn) � ρj, e.g.,
improving the patient’s vision by correcting refractive error with new glasses.
However, we also can increase the patient’s functional reserve by decreasing the
visual ability required to perform the activity, φnj + Δφnj ¼ αn � (ρj + Δρj), e.g., by
equipping the patient with a magnifier. Most generally, a change in the patient’s
functional reserve reflects either a change in the person measure and/or a change in
the item measure, Δφnj ¼ Δαn � Δρj. Thus, the overall outcome of vision rehabil-
itation for person n is the average change in functional reserve over the Jn activities
identified in that person’s individualized rehabilitation plan:
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Δφn ¼
XJn
j¼1

Δφnj

Jn
¼
XJn
j¼1

Δαn � Δρj
Jn

¼ Δαn �
XJn
j¼1

Δρj
Jn

ð5:5Þ

If Δρj 6¼ 0 in Eq. (5.5), we must conclude that the intervention resulted in
intervention-specific DIF [21]. In this case, calibrating the AI item bank at baseline
and anchoring the item measures, ρj, to their baseline values effectively defines
Δρj ¼ 0 for all items. Thus, anchoring item measures to calibrated values forces the

average change in functional reserve for person n,
PJn
j¼1

Δφnj

Jn
, into Δαn when estimating

outcome measures [38]. Although mathematically equivalent for a single patient (n),
from the patient’s perspective an average of changes in the difficulty experienced
performing selected individual activities might not be equivalent to an equal size
change in visual ability. Indeed, most low vision patients simply want to be able to
“see better”, not have to learn new behavior and function with the assistance of an
array of activity-specific and often costly devices. The limitation of Eq. (5.5) is that
Δρj has the same weight for every item even though the same size change in item
difficulty for different items might have different utilities for a given person
depending on their difficulty at pre-rehabilitation baseline.

5.4.2 Rehabilitation Demand and Item Filtering

If a person reported that none of the activities sampled by the AI were both important
(or relevant) and difficult, then it is likely that person would have no need for
rehabilitation. The visually impaired consumer’s demand for rehabilitation is driven
by that person’s desire to be able to perform activities that he or she deems necessary
to regain lost quality of life. If we use the criterion that an activity rated “not
difficult” or “not important” (or not applicable) at baseline is not worthy of being
included in an individualized rehabilitation plan, then that activity has no rehabil-
itation demand and the item should be dropped from the analysis [19, 20]. We refer
to this selective removal of items from the analysis based on the patient’s responses
as “item filtering”.

Filtering items by estimating the person measure at baseline from responses only
to items rated at least “somewhat difficult” biases the person measure toward more
negative values. The left panel of Fig. 5.9 illustrates this effect of item filtering on the
person measure estimate in a scatterplot of αn( filtered) versus αn(unfiltered) (points)
compared to the identity line (red line) for 3600 low vision patients. The person
measures estimated from responses to filtered items (remaining items after removing
those rated “not difficult”) are more negative than or equal to person measures
estimated from responses to unfiltered items (all rated items). The center panel of
Fig. 5.9 shows that the difference between filtered and unfiltered person measures
(αn( filtered) � αn(unfiltered)) is linear with a slope of �2 and an intercept of 0 as a



Þ

function of the percent of items filtered out. Written another way, which would
describe the trend in the data in the left panel of Fig. 5.9, αn( filtered) is equal to
αn(unfiltered) plus a negative bias that is twice the percentage of items that have been

filtered out for that person, αn filteredð Þ ¼ αn unfilteredð Þ � 2 Jn unfilteredð Þ�Jn filteredð Þð
Jn unfilteredð Þ

, for which

Jn( filtered) and Jn(unfiltered) refer to the number of filtered and unfiltered items, respec-
tively, that were rated by person n. However, note in the right panel of Fig. 5.9 that
the moving standard deviation of the change in person measure increases with
increasing percentage of the items filtered out (orange points) as the moving average
change in person measure (black points) decreases linearly along the regression line
(red line from the center panel of Fig. 5.9). The increase in variance with increases in
the percentage of items filtered out is likely linked to differences between persons in
the distributions of item measures among remaining items.
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Fig. 5.9 Left panel: Scatter plot of filtered person measures (i.e., items rated “not difficult”
excluded from the person measure estimates) versus unfiltered person measures (estimated from
all item ratings). Each data point is a different person and all points are on or below the red identity
line indicating that item filtering biases the person measure estimate toward lessor ability. Center
panel: Difference between the filtered and unfiltered person measure for each person versus the
percent of items that were filtered out before the estimate was made. The red-dashed regression line
fit to the data is plotted for comparison. Right panel: Moving average change in person measure
with item filtering (black points) is plotted along with the red regression line fit to the data in the
center panel. As the average change in person measure decreases with increasing percentage of the
items filtered out, the moving standard deviation of the change in person measure with item filtering
increases (orange points)

5.4.3 Utility to the Patient of Increasing Functional Reserve

In economics, the term utility refers to a quantity of how useful or desirable
something is to a person. Utilities are preference values specified in relative units,
often on a continuous ratio scale ranging from zero (no value) to 1.0 (maximum
value of things being compared). Currently, the closest the AI comes to eliciting
information from the patient about their preferences for being able to perform an
activity is the elicitation of ordinal importance ratings of Goals and dichotomous



responses of relevance to the individual of Tasks, both scored as 0 or 1. These binary
scores are used to weight the items for the purpose of determining whether the item is
filtered out or retained when estimating the person measure. Even though a
polytomous scale is used to rate the importance of Goals, the importance ratings
are dichotomized for the purpose of item filtering.
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For an outcome measure to be truly person-centered, it must factor in the
individual’s preferences for specific outcomes. The term disutility refers to a nega-
tive utility value, i.e., the utility of something a person is willing to trade to be rid of
something else that is undesirable. The greater the disutility of the patient’s func-
tional state, the greater is the rehabilitation demand. In the case of vision rehabili-
tation, the disutility for an individual of a particular functional state should be
estimated in terms of the amount of time, effort, and resources the person is willing
to expend to achieve a specific less disabled state. Although we can define functional
ability by how difficult it is for an individual to perform activities that are important
to her or him, the utility of the specific functional ability outcome would be
determined not only by the importance of the activity to the individual, but also by
the level of effort required to satisfy the objective of the activity. For example,
cooking daily meals may have high utility to an individual even if it is difficult to do
because of its contribution to the objective of independent daily living, whereas
cooking for the objective of recreation (i.e., joy of cooking) may have high utility to
the person only if it is easy enough to be enjoyable. Looked at another way, for the
person to realize a net gain from vision rehabilitation, the utility of a functional
ability outcome must be equal to or greater than the utility of the person’s time,
effort, and resources that must be expended to achieve that outcome.

5.4.4 Social Utility of AI Goals

The question we are raising is one of how best to measure the utility of a functional
outcome. So, why not simply have the patient rate the importance of being able to
perform with ease activities described by items in the AI and then use Rasch analysis
of those ratings to estimate the utility of the outcome of vision rehabilitation? As part
of its adaptive design, the patient already rates the importance of all the Goals in the
AI. Rasch analysis assumes agreement within the population of the ordering of
items, which might not be true of item importance. Applying Rasch analysis to
importance ratings of AI Goals implies the existence of a consensus, which would
translate to a latent variable that might best be described as the “social utility” of
performing the itemized activities independently [39]. We explored this idea by
using Rasch analysis to construct social utility measurement scales from importance
ratings by 600 low vision patients [39].

As illustrated in Fig. 5.10, we observed that the putative social utility of
performing personal hygiene activities independently (item measure ¼ 3.39) is
greater than the social utility placed on shopping independently (item mea-
sure¼ 1.86), but this is not necessarily true for an individual. The level of consensus



(dispersion between people of importance ratings relative to the expected ratings for
each Goal) is captured in the Rasch model infit statistic and, as shown in Fig. 5.10,
consensus is strong (low dispersion) for AI Goals with high social utility (Daily
Living – black circles) and Goals with low social utility (Recreation – red circles)
and is weakest (high dispersion) for AI Goals with medium social utility (Social
Interactions – green circles), giving rise to a parabolic relationship between consen-
sus and estimated social utility (i.e., people agree most on how to order the
importance of Goals on high valued activities and on low valued activities). Overall,
AI Goals under the Daily Living Objective have the highest social utility (mean item
measure ¼ 2.17; SD ¼ 1.21), Goals under the Social Interaction Objective have
intermediate social utility (mean ¼ 0.26; SD ¼ 1.16), and Goals under the Recre-
ation Objective have low social utility (mean ¼ �1.82; SD ¼ 1.16).
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Fig. 5.10 Scatter plot of the z-score for the item infit mean square versus the item measure
estimated from Rasch analysis of importance ratings of AI Goals. Each point is 1 of the 50 AI
Goals color-coded by the Objective in the Activity Breakdown Structure (Fig. 5.1) to which the
Goal is assigned: Daily Living (black), Social Interactions (red), or Recreation (green). The infit
z-score is 0 if variance of the distribution of deviates from the item measure estimate is at the
expected value, negative if the variance is less than expected (high agreement between persons), or
positive if the variance is more than expected (high disagreement between persons)

The objective of vision rehabilitation is to make activity goals that are important
to the individual and difficult or impossible to achieve easier by way of vision
enhancement methods and technology, adaptations (i.e., adopting new strategies and
using assistive technology that obviate performance of customary vision-dependent
tasks), and modified independence (limited use of human assistance to overcome



intractable or high safety risk barriers that prevent attainment of a specific end goal).
In terms of the theory behind the AI, the amount of difficulty a person experiences
when attempting a specific activity is determined by functional reserve (φnj). The
objective of vision rehabilitation is to increase functional reserve, thereby reducing
the difficulty of performing the activity, by modifying the way activities that are
important to the person are performed.
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Although the concept of social utility might be useful for policy making, it is not a
good starting point for developing a truly person-centered rehabilitation plan and a
person-centered measure of visual function outcomes in terms of net gain to the
individual. To achieve this aim, we must start with a model of utility measures of
vision rehabilitation functional outcomes in terms of reductions in rehabilitation
demand and verify the internal validity of the model and analytic methods by
applying them to simulations of the approach the model implies. The change in
difficulty of performing different activities that are important and difficult to the
patient can be estimated by the Rasch model from the change in rehabilitation
demand, which is equal to the change in functional reserve, Δφn ¼ Δαn in
Eq. (5.3) when item measures are anchored to baseline values so Δρj ¼ 0 for all
items and all changes are forced into the person measure. However, the utility of the
functional outcome for each specific activity is likely to be idiosyncratic to an
individual patient. For example, the utility of a small realized change in functional
reserve for cooking might have high value when serving the Daily Living Objective
(social utility of preparing daily meals is 1.30), less value when serving the Recre-
ation Objective (social value of recreational cooking and baking is�0.98), and even
less value when serving the Social Interaction Objective (social utility of cooking to
entertain guess is �1,24).

5.4.5 Utility of Vision Rehabilitation Outcomes

The utility of reducing rehabilitation demand of item j for person n to zero is υnj.
Since we are referring to a single item, upsilon denotes a marginal utility, which is a
person-specific function of both the item’s difficulty to the person (Dnj) and the
importance to the person of being able to perform the activity without difficulty (Inj).
While φnj, which determines the ordinal value of Dnj, is a continuous latent variable,
no equivalent continuous variable has been modeled for determining the ordinal
importance rating, Inj. Therefore, to illustrate the derivation of a utility weighting
model for the AI, we will employ discrete ordinal variables assigned by person n to
the difficulty rating (Dnj) and importance rating (Inj) of AI Goal j. The marginal
utility of totally successful vision rehabilitation (i.e., achieve a non-disabled state) of
Goal j for person n is υnj ¼ Un(Inj,Dnj).

To paraphrase Gertrude Stein, the utility of a utility is a utility. By definition, we
assume that the utility of vision rehabilitation on Goal j for the average person, U(Ij,
Dj), is a function of the respective part worth utilities associated with the importance
and difficulty ratings, conditioned on the kth Objective, Ok(j), so U(Ij,Dj) ¼ f(Ui(Ij|



Ok( j)),Ud(Dj|Ok( j ))). Individuals will randomly deviate from this average relation-
ship, so we model the mapping of Inj and Dnj to the utility of vision rehabilitation for
Goal j for person n as Un(Inj,Dnj)¼ U(Inj,Dnj) + Enj, where (Inj,Dnj) are the ratings of
Goal j by person n and Enj is the randomly distributed deviate. If either the impor-
tance or difficulty of Goal j is 0 for person n, then the utility of vision rehabilitation
for Goal j will be zero, i.e., U(Inj,Dnj) ¼ f(Ui(0|Ok( j )),Ud(Dnj|Ok( j))) ¼ f(Ui(Inj|
Ok( j)),Ud(0|Ok( j ))) ¼ 0, and by definition Enj ¼ 0 when Inj ¼ 0 or Dnj ¼ 0.
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We are conditioning the utility function for each Goal on the Objective it serves
because of the observed segregation by Objective of social values (estimated from
Goal importance ratings) and level of consensus in the LV population, which is
summarized in Fig. 5.9. Conditioning by Objective also is motivated by the possi-
bility that the relation of Goal utility to difficulty may be determined by the reason
for doing the activity (e.g., cooking to maintain independent living vs joy of
cooking). If there are three different utility functions, one for each of the three
Objectives, then we expect differences in utilities between Goals to be represented
by the distance between them in a 3-dimensional utility space.

The marginal utility of Goal j is likely to be characterized by a nonlinear function
(unique to Objective k) of the part worth utilities associated with the observed
ordinal importance and difficulty ratings of the Goal. For purposes of estimation,
we can approximate this nonlinear function with a Taylor series:

U Inj,Dnj

� � � b0 þ b1Inj þ b2Dnj þ b3I
2
nj þ b4D

2
nj þ b5InjDnj þ⋯

in which b0 is a constant and the other coefficients correspond to factorial-weighted
first, second, and higher order partial derivatives (ellipsis denotes the higher order
terms in the infinite series). To illustrate how this model can be applied to estimate
utilities of vision rehabilitation outcomes, we simulated the method. The simplifying
assumptions made within the model to create the simulation are: (1) the utility
function is the product of the part worth utilities for importance and difficulty, i.e.,
U(Inj,Dnj) ¼ Ui(Inj) � Ud(Dnj), which yields an overall utility of zero if either part
worth utility is zero, an overall utility of 1 if both part worth utilities are 1, and an
overall utility less than or equal to the lowest part worth utility; (2) the utility
function is the same for all objectives, i.e., Uk( j )(Inj,Dnj) ¼ U(Inj,Dnj) for all k; and
(3) the relation of utility to importance/difficulty rating combinations is fixed for the
population, i.e., Enj ¼ 0. These assumptions enable us to estimate a variable that is
equivalent to utility by constructing a dissimilarity matrix comparing all possible
deterministic importance/difficulty pairs (I,D).

In the AI, ordinal values for importance ratings range from 0 to 3 (where 0 is “not
important” and 3 is “very important”) and ordinal values for difficulty ratings range
from 0 to 4 (where 0 is “not difficult” and 4 is “impossible”). As schematized in
Fig. 5.11, we already have defined the utility of LVR for Goals with ratings (I,0) or
(0,D) to be zero for all values of I andD, leaving 12 (I,D) combinations for which the
partial utility associated with Goal importance and decrease of difficulty are greater
than zero. For the simulation we simply filled in arbitrarily-chosen ascending values



for the marginal utilities (light green areas) and products of the marginal values for
each (I,D) combination (purple area). Thus, a triangular matrix for the AI has
66 unique paired comparisons of different non-zero (I,D) combinations.

136 R. W. Massof and C. Bradley

Reducing Difficulty to  0
U�li�es 0 0.1 0.3 0.7 1

Importance Ra�ng Not Slight Moderate Very Impossible Difficulty
0 Not 0 0 0 0 0

0.2 Slight 0 0.02 0.06 0.14 0.2
0.5 Moderate 0 0.05 0.15 0.35 0.5
1 Very 0 0.1 0.3 0.7 1

Importance Products

Fig. 5.11 Relation of utilities to AI Goal importance and difficulty ratings as used in the simulation
to test estimation of the utility to the patient of vision rehabilitation outcomes. The 4 Goal
importance ratings range from “Not Important” to “Very Important” and are assigned the part
worth utilities in the left most column. The 5 Goal difficulty ratings range from “Not difficult” to
“Impossible” and are assigned the part worth utilities (of reducing difficulty to 0) in the top row. The
marginal utility for each Goal is the product of the part-worth utilities corresponding to Importance
and Difficulty ratings assigned by the patient to the Goal (entries in the purple cells)

We can think of the marginal vision rehabilitation utility of Goal x with impor-
tance and difficulty ratings (Ix,Dx) as mapping to a point Ux on a number line that
represents the utility of time, effort, and resources that would have to be expended on
vision rehabilitation. Similarly the partial vision rehabilitation utilities of Goals y and
z with respective importance and difficulty ratings (Iy,Dy) and (Iz,Dz), would map to
different points, Uy and Uz, on the same number line for the expenditure of time,
effort, and resources. Individuals then can be asked to judge the relative distances
between each pair of points.

For example, the person would be asked, “In terms of allocating your time, effort
and resources to rehabilitation, which of the three Goals would you give the highest
priority?” That question would be followed by, “Which of the remaining two Goals
would you give the lowest priority?” The final question would be, “Is the priority
you give to the left-over Goal closer to the highest priority Goal or the lowest
priority Goal?” Let’s imagine the person gave the highest priority to Goal x, the
lowest priority to Goal y, and said that the priority of Goal z is closer to the priority of
Goal y. Thus, on the utility number line, the distance between Ux andUy is the largest
of the three comparisons and the pairing of (Ix,Dx) and (Iy,Dy) in the matrix would be
assigned a dissimilarity rank of 3; the distance between Uy and Uz is the smallest of
the three comparisons and the pairing of (Iy,Dy) and (Iz,Dz) in the matrix would be
assigned a dissimilarity rank of 1; and the remaining pairing of (Ix,Dx) and (Iz,Dz)
corresponds to an intermediate distance and would be assigned a dissimilarity rank
of 2 in the matrix.

Repeating these judgments and assignment of dissimilarity rank scores for all
feasible triadic comparisons across all persons in the sample, and averaging relative
distance rank scores in each cell of the triangular dissimilarity matrix, we can employ
non-metric unidimensional scaling [40] (UDS) to map each (I,D) rating pair to a
variable that is monotonic with vision rehabilitation utility.
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Fig. 5.12 Utilities estimated from unidimensional scaling (UDS) of sums of ordinally-ranked
differences in utility of 3 unique combinations of Goal difficulty and importance ratings (i.e., triadic
comparisons) as a function of the product of corresponding part worth utilities for the ratings. In this
case, because the monotonic function was exponential, the log of the estimated distance metric is
plotted as a function of the 12 marginal utilities defined in Fig. 5.11 and the linear relationship
defines log distance as the UDS-estimated utility

Using the table in Fig. 5.11, we simulated the triadic comparison judgments by
assigning rank scores to (I,D) pairings in all 1320 possible triads based on the
products of the marginal utilities assigned to importance (I ) and difficulty (D)
resulting in 20 dissimilarity ranks contributing to the average in each of the
66 cells of the triangular matrix. [N.B. This scaling method effectively made Enj ¼ 0
for all simulated judgments]. Figure 5.12 illustrates a scatter plot comparing the
estimated utility (in arbitrary units) for each of the 12 (I,D) pairs from unidimen-
sional scaling (UDS) versus the products of the partial utilities assigned to impor-
tance and difficulty ratings in each pair (values in purple area of Fig. 5.11), which
were used to make the ranked distance judgments in each triadic comparison.

When applied to the real world, we will not know the true utilities associated with
the importance and difficulty rating categories as we do for this simulation. The UDS
(and more generally multidimensional scaling [MDS], which would be used if the
Objectives represent different utility dimensions) estimates distances using the
ordinal data in the dissimilarity matrix (non-metric scaling). The UDS (and MDS)
approach enables us to perform statistical tests of the goodness of fit of the estimated
distances in the dissimilarity matrix to the average ranks of dissimilarity scores from
the triadic comparisons (e.g., Shepard plots and estimates of “stress”).
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Fig. 5.13 Left panel: Estimated utilities as a function of the difficulty ratings of AI Goals for each
rating of importance. The slope of the line fit to the results is a function of the importance ratings.
Right panel: Estimated utilities as a function of the importance ratings of AI Goals for each rating of
difficulty. The slope of the line fit to the results is a function of the difficulty ratings

The left panel of Fig. 5.13 illustrates a scatterplot of marginal utility estimates of
U(I,D) from UDS coordinates vs ordinal ranks of different non-zero difficulty rating
categories for the 3 different levels of non-zero importance ratings (color-coded).
These linear relationships in the left panel of Fig. 5.13 imply U(I,D) ¼ mID, for
which the slope mI is dependent on I. The right panel of Fig. 5.13 similarly illustrates
a scatterplot of UDS estimates of U(I,D) vs ordinal ranks for different non-zero
importance ratings for the 4 different levels of non-zero difficulty ratings. The linear
relationships in the right panel of Fig. 5.13 imply U(I,D)¼ mDI, for which the slope
mD is dependent on D. The abscissa value where the lines converge corresponds to
the location of zero difficulty or zero importance, respectively (ordinal rank scores
arbitrarily are equally spaced on the abscissa). The horizontal deviations of the
points from the line must be construed as errors resulting from the assumption that
the ordinal ratings represent equal intervals. From these linear relationships, we
conclude that ∂U I,Dð Þ

∂I ¼ mD and ∂U I,Dð Þ
∂D ¼ mI . In Fig. 5.11 we defined the overall

utilities estimated from UDS to be the product of the respective importance and
difficulty partial utilities, U(I,D) ¼ Ui(I ) � Ud(D). This definition means that the
Taylor series approximation is first-order, ∂U I,Dð Þ

∂I ¼ ∂Ui Ið Þ
∂I Ud Dð Þ and ∂U I,Dð Þ

∂D ¼
∂Ud Dð Þ
∂D Ui Ið Þ. Combined with the conclusions we drew above from the linear relation-

ships in Fig. 5.13, we can see that the estimated slopes must be linear with the
respective partial utilities, mD ¼ ∂Ui Ið Þ

∂I Ud Dð Þ (blue points in Fig. 5.14) and mI ¼
∂Ud Dð Þ
∂D Ui Ið Þ (red points in Fig. 5.14). Figure 5.14 confirms the tautology, which

validates the analysis – we can estimate overall utilities from UDS (or more gener-
ally, MDS) on a matrix of average dissimilarity rank scores obtained from triadic
comparisons using the pre-assigned overall utilities to rank distances.
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5.4.6 Extension of the Utility Model to Estimation of Net Gain
from Vision Rehabilitation

Consider the functional outcome for person A who has 3 Goals in her individualized
rehabilitation plan and the functional outcome for person B who has 10 Goals in his
individualized rehabilitation plan, for which 3 of them are the same as the Goals in
person A’s plan with the same combinations of importance and difficulty ratings. If
vision rehabilitation results in the difficulty of all 3 of A’s Goals being reduced to
zero and the same 3 of B’s Goals also reduced to zero, but less than full reduction in
difficulty for some of B’s other 7 Goals, how would the net gain from vision
rehabilitation for patient A compare to the net gain for patient B? Using the current
method of measuring functional outcomes from vision rehabilitation, which is
equivalent to the average change in functional reserve for Goals in the individualized
rehabilitation plan, the effect size for B could be larger than the effect size for A, or
vice versa, depending on the magnitudes of changes in functional reserve for B’s
other 7 Goals relative to the change in the 3 that are the same as A’s.

However, from another perspective, A would have no need for additional reha-
bilitation after completion of vision rehabilitation, whereas B would. So, for every
scenario short of all 10 of B’s Goals being reduced to zero difficulty, in terms of
remaining rehabilitation demand [19], A’s functional outcomes would have greater
utility than B’s. If the difficulty of all 10 of B’s Goals were reduced to zero, then
neither A nor B would have any remaining rehabilitation demand and the utility of
additional vision rehabilitation would be zero for both. The conundrums raised by



this example suggest that to be truly person-centered, we should define the utility of
the vision rehabilitation function outcome as the difference between the disutilities
(rehabilitation demands) of post-rehabilitation and pre-rehabilitation. The question
we must answer is, how do we combine the marginal utilities of reducing rehabil-
itation demand for different Goals to estimate the multi-attribute (all Goals com-
bined) utility of reducing an individual’s overall disability?
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In a manifestation of dynamics related to the law of diminishing marginal utility,
B might temporarily be euphoric with the reduction of difficulty of the 3 Goals
having high rehabilitation demand, only to have the emotional high of successful
vision rehabilitation dissipate and the disutility of the remaining rehabilitation
demand emerge. The multi-attribute disutility function we seek, which combines
disutilities of rehabilitation demand for all Goals in the patient’s individualized
rehabilitation plan, could be the linear sum of disutilities for individual Goals, or a
nonlinear combination that ranges from diminishing rate of change in marginal
utility (attenuation effect) to increasing rate of change in marginal utility (amplifi-
cation effect) with increasing numbers of Goals having non-zero rehabilitation
demand. This range of options can be expressed with a Minkowski distance,

υnJn ¼
PJn
j
ubnj

 !1=b

where υnJn is the multi-attribute utility of vision rehabilitation

(or multi-attribute disutility of rehabilitation demand) for an individualized rehabil-
itation plan for patient n with Jn Goals after filtering.

Multi-attribute utility is a linear sum for b ¼ 1; attenuation corresponds to b > 1;
and amplification corresponds to b < 1. The Minkowski distance (ordinate) across
Goals with the same marginal utility ranging from 0.05 to 1.0 (colored functions) are
shown in Fig. 5.15 as a function of the number of Goals ranging from 1 to
10 (abscissa) in the patient’s plan. The left panel of Fig. 5.15 depicts attenuation
in the growth of multi-attribute utility with b ¼ 2; the middle panel of Fig. 5.15
shows the linear sum in the growth with b¼ 1; and the right panel of Fig. 5.15 shows
amplification in the growth with b ¼ 0.6.

5.5 Visual Ability Outcomes of Vision Rehabilitation

In the preceding section we reviewed a strategy for measuring visual ability out-
comes in terms of net gain to the patient by way of a multi-attribute utility model.
This model entails summed changes in the utilities of reducing the difficulty (and/or
reducing the importance) of attaining individual AI Goals. However, at the current
stage of development, operations in the multi-attribute utility model employ ordinal
rank scores assigned to the person’s importance and difficulty ratings of being able to
perform activities. Ideally, we would define utility to be a function of continuous
latent variables for importance and difficulty, υnj ¼ un(ιnj, δnj). Difficulty is the
inverse of functional reserve, δnj ¼ � φnj ¼ ρj � αn, a continuous latent variable



1

we already know how to estimate. However, estimating ιnj, which is the strength of
the personal preference assigned to item j by person n, is a thornier problem because
of the lack of consensus between people in the ordering of items by personal
preferences (cf., “social utility”).
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Fig. 5.15 Left panel: Multi-attribute utility as a function of the number of Goals, estimated from
marginal utilities using a Minkowski distance formula with the exponent variable b ¼ 2, which
results in an attenuation in the rate of growth with an increasing number of Goals. The marginal
utility is the same for every Goal with a different value for each curve ranging from u ¼ 0.05 to 1.0
(see legend). Center panel: Same as the left panel but for a Minkowsi distance formula in which the
exponent variable b ¼ 1, which results in a constant rate of growth with an increasing number of
Goals. Right panel: Same as the left and center panels but for a Minkowsi distance formula in which
the exponent variable b ¼ 0.6, which results in an acceleration of the rate of growth with an
increasing number of Goals

We will return to the issue of how the multi-attribute utility model can be used to
estimate the net gain from vision rehabilitation. But first we must review two
methods of measuring patient-centered visual ability outcomes of vision rehabilita-
tion with the AI in terms of (1) the distribution of changes in a continuous visual
ability outcome variable and (2) the likelihood of attaining a change in a visual
ability clinical endpoint. In both cases we employ the average change in functional
reserve as the measure of the patient’s self-reported visual ability before and after
rehabilitation.

5.5.1 Continuous Visual Ability Outcome Measure: Average
Change in Functional Reserve

The Low Vision Depression Prevention Trial in Age-Related Macular Degeneration
(VITAL) was a randomized, attention-controlled, clinical trial to determine the
effectiveness of behavior activation therapy as a supplement to in-home vision
rehabilitation with an occupational therapist in preventing the development of
major or minor depression in low vision patients with subsyndromal depressive
symptoms [41]. Low vision patients were randomized to six weekly sessions of
vision rehabilitation provided in the home by an occupational therapist who also
provided behavior activation therapy (BA – the treatment being tested) or to six
weekly sessions of supportive therapy (ST – a placebo attention control) provided in



the home by a clinical social worker. The ST control group received no additional
low vision services. The primary outcome measure, which was administered prior to
any low vision services (PRE) and again at 2 months after the completion of services
and assigned therapy (POST), was the PHQ-9, which was used to determine if the
patient exhibited depressive symptoms consistent with DSM-IV criteria for major or
minor depression. The AI also was administered PRE and POST low vision services
and psychotherapy. Prior to randomization, all study participants received standard
optometric low vision consultations; required vision assistive equipment was dis-
pensed to all participants at study expense; and all participants were trained at the
low vision clinic in how to use the equipment.
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Rasch analysis of the PHQ-9 responses was used to estimate person measures of
depression severity PRE and POST low vision services [35]. Rasch analysis also was
used to estimate overall visual ability from AI Goal difficulty ratings with anchored
item measures and thresholds for both the BA treatment group and ST control group
(with item filtering) prior to receiving low vision services and again 2 months after
completion of low vision services. The BA treatment group exhibited a statistically
significant improvement in visual ability (Cohen’s d ¼ 0.71; p < 0.001). The ST
control group also exhibited a statistically significant improvement in visual ability
(Cohen’s d¼ 0.55; p¼ 0.003). However, the distributions of change in visual ability
for the BA treatment group was not significantly different from the change for the ST
control group (Cohen’s d ¼ 0.10; p ¼ 0.39) [35]. The significant medium size effect
(POST-PRE) seen for both groups most likely can be attributed to the low vision
devices and services that were provided in the clinic after the PRE measures of visual
ability, but before the in-home vision rehabilitation supplemented by BA psycho-
therapy for the treatment group or the sham psychotherapy with no additional vision
rehabilitation for the control group.

Although there was no difference between groups for the effects of study
intervention on visual ability, the primary outcome for the VITAL study was a
psychiatric clinical diagnosis in low vision patients of major or minor depression as
defined by a criterion PHQ-9 score. As a study eligibility criterion, none of the
participants in the study had a PHQ-9 score at PRE that exceeded the threshold for a
clinical depression diagnosis. Thus, the PHQ-9 threshold for depression defined a
clinical endpoint, which was exceeded at POST by significantly more patients in the
ST control group than in the BA treatment group. The take-home conclusion of the
VITAL study was that in-home vision rehabilitation supplemented with BA psy-
chotherapy prevented the development of clinical depression in at-risk low vision
patients.

Applying Rasch analysis to PHQ-9 item responses results in valid estimates of
interval-scaled continuous person measures that can be interpreted as depression
severity [35]. The left panel of Fig. 5.16 shows PRE (blue curve) and POST (red
curve) cumulative frequency functions of PHQ-9 person measures for patients
assigned to the ST control group. Negative person measures correspond to low
depression severity and positive person measures correspond to high depression
severity.
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Fig. 5.16 Left panel: Relative cumulative frequency of PHQ-9 person measure values of depres-
sion severity at baseline (blue curve) and at post-intervention follow-up (red curve) for the
supportive therapy control group in the VITAL study. The shift of the median value to the left on
the person measure axis at follow-up indicates a decrease in depression severity post-intervention.
However, the curves cross, which means that about 80% of patients in the ST group had a decrease
in depression severity after intervention, whereas about 20% of patients had an increase – the main
effect reported for the study. Right panel: Same results for the BA group as shown for the ST group
at baseline, but at follow-up the cumulative functions do not cross, which indicates that nearly all
patients in the BA group had a decrease or no change in depression severity at follow-up

Similarly, the right panel of Fig. 5.16 shows Pre and Post cumulative frequency
functions of PHQ-9 person measures for patients assigned to the BA treatment
group. The decrease in depression severity from PRE to POST (leftward shift of
the red curve relative to the blue curve) demonstrates a large significant effect of
intervention for both the BA treatment group (Cohen’s d ¼ 2.12; p < 0.001) and for
the ST control group (Cohen’s d ¼ 2.02; p < 0.001). There is no difference between
depression severity distributions for the two groups at baseline (t-test; p ¼ 0.28 for
PRE).

There also is no difference between the means of the depression severity distri-
butions for the two groups at follow-up (t-test; p ¼ 0.25 for POST), but the slope of
the depression severity cumulative distribution is shallower for the ST group than for
the BA group. This change of slope that causes the ST PRE and POST curves to
cross in the right panel of Fig. 5.16 underlies the main effect of BA psychotherapy
supplementing in-home vision rehabilitation preventing the development of major or
minor depression, which was reported as the VITAL study primary outcome. But
this study also shows that the low vision devices and services provided in the clinic,
weekly in-home sessions with a professional therapist or counselor, and whatever
else the two groups have in common result in a large reduction of severity in
depression symptoms. Since the two groups in the study had equivalent improve-
ments in visual ability, we explored changes in that variable as a possible
explanation.
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5.5.2 Minimum Clinically Important Difference in Visual
Ability as a Clinical Endpoint

With reference to Eq. (5.5), anchoring AI item measures and thresholds to baseline
values forces all intervention-specific DIF into changes in the person measure, Δαn,
with all randomly distributed measurement error incorporated in the person measure
estimates. The lower bound on the standard error of the person measure estimate for
person n (SEn) is proportional to the standard deviation on ζ in expression (5.1) and
inversely proportional to the square root of the number of items rated by person n.
The left panel of Fig. 5.17 displays the distribution of standard errors of the person
measure estimate at baseline versus the person measure for VITAL study partici-
pants. To estimate the standard deviation of the person measure error distribution, we
multiplied each standard error of the person measure estimate by the square root of
the number of items rated by the person. The standard deviations of the person
measure error distributions, so estimated for each patient, are plotted as a function of
the patient’s estimated visual ability (person measure) in the middle panel of
Fig. 5.17.

However, the conventional logistic Rasch model normalizes the estimated mea-
sures to the standard deviation of ζ, so the expected value of the standard deviation
of the error distribution should be 1 for each person. The U-shaped functional
relationship between the estimate of SDn and αn in the middle panel of Fig. 5.17
(which shows that all SDn values are greater than 1) can be attributed to the increased
uncertainty at the extremes of the person measure distribution due to the progressive
change in frequency of responding with the half-open categories (“not difficult” or
“impossible” that extend from τ4 to 1 and from τ1 to �1, respectively). The right
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Fig. 5.17 Left panel: Scatter plot of the standard error (SE) of the person measure estimates from
difficulty ratings of AI Goals versus the estimated person measure at baseline in the VITAL study.
Center panel: The same results shown in the left panel but with each SE value multiplied by the
square root of the number of items rated by that person resulting in an estimate of the standard
deviation of the distribution of deviates (ζ). Notice the U-shape in the plot of the data which can be
attributed to greater numbers of difficulty ratings corresponding to half-open intervals contributing
to the estimate as person measures become more extreme. Also note that all values are greater than
the expected value of 1. Right panel: Person measure standard errors were re-estimated after
omitting items for which the response represented a half-open interval. The revised standard error
estimates were multiplied by the square root of the number of items retained in the estimate (points).
These revised estimates of the standard deviation of the deviates, ζ, have an average value of 1 (red
line) – the expected value. The red dashed lines define the 95% confidence interval



o
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¼

panel of Fig. 5.17 displays the distribution of SDn when the value is estimated by
multiplying SEn by the square root of the number of items the person rated with
non-extreme difficulty categories (i.e., “somewhat difficult”, “moderately difficult”,
and/or “very difficult”). The average estimated standard deviation of ζ is 1 (solid red
line), which agrees with the measurement scale normalization built into the model.
The dashed lines in the right panel of Fig. 5.17 bound plus and minus two standard
deviations of the between person distribution of SDn estimates.
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The variance of each person’s error distribution, σ2ζn,j,x , is the sum of within and

between person squared deviations from the expected value of zero,  ζ2n,j,x

n
,

whereas the variance of the between person error distribution is σ2j,x ¼ σ2j þ σ2x þ
2rj,xσjσx , as introduced earlier in this chapter, in which σ2j refers to between person
variance in the item measure for the jth item and σ2x refers to between person variance
in the threshold for the xth response category. All within person variance can be
assigned to visual ability, σ2αn , so the total variance of each person’s measurement

error distribution is σ2ζn,j,x ¼ σ2αn þ
PJn
j¼1

σ2j,x . But, in the case of comparing PRE to

POST intervention measures for each person, the item measures, ρj, and response
category thresholds, τx, are fixed to calibrated values that are the same for both
measures (the deviates due to between person differences are fixed and manifest as

the same person-dependent bias for PRE and POST measures, so
PJn
j¼1

σ2j,x ¼ 0) and the

error variance on the estimate of Δαn is determined entirely by within person
variance, 2� σ2αn . In most cases, the number of items rated (Jn) is the same at PRE
and POST, however, that is not a requirement. Also the proportion of items rated
with extreme response categories is likely to be different between PRE and POST,
which will differentially affect the standard error of the estimate, even when there is
no change between PRE and POST in within person variance. Thus, the standard

error of the estimate of α is SE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SE2 Preð Þ þ SE2 Postð Þ

q
.

The smallest change in the person measure of an individual that we can say with
confidence represents a real change in response to an intervention is called the
minimum clinically important difference (MCID). The MCID is a clinical endpoint.
We transform the clinical outcome for person n to a t-statistic, t Δαn, df nð Þ Δαn

SEΔαn

with dfn ¼ Jn(Pre) + Jn(Post) � 2, and the MCID for person n as the t value that
corresponds to a criterion probability of making a type I error (e.g., p ¼ 0.05). If
t(Δαn, dfn) exceeds the criterion corresponding to the chosen p value, thenMCID¼ 1
for person n, otherwise MCID ¼ 0.

The odds of MCID ¼ 1 is 0.45 for the BA treatment group and 0.395 for the ST
control group, resulting in an odds ratio of 1.14, which is significantly different from
1.00 (p < 0.05). In other words, a significantly greater number of patients in the BA
treatment group had a change in visual ability that exceeded the MCID clinical
endpoint than occurred in the ST control group.
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After combining the BA and ST groups, we compared the change in depression
severity estimated from Rasch analysis of PHQ-9 responses of patients with
MCID ¼ 1 to the change in depression severity of patients with MCID ¼ 0. There
was no significant effect in the VITAL study of MCID in visual ability on changes in
depression severity (t-test, p ¼ 0.22).

5.5.3 Reducing Rehabilitation Demand: Net Gain from
Vision Rehabilitation

The VITAL study and other vision rehabilitation outcome studies that employed the
AI [42, 43] agree that on average vision rehabilitation results in a moderate to large
size effect of intervention (Cohen’s effect size in the range of 0.7 and 1.1). However,
as described above for the VITAL study, a recent Cochrane review of randomized
controlled trials that compared the effectiveness of different levels or components of
vision rehabilitation concluded that additional services beyond the initial low vision
consultation produce no or very small incremental effects [44]. In other words, based
on current practices there appears to be a diminishing return on investment with
increasing amounts of rehabilitation. Thus, to be truly patient-centered we not only
want to measure improvements in functional ability, but also measure the utility of
those improvements to the patient. To demonstrate how this can be done, even
though we still have an incomplete model of a continuous latent variable for the
utility of reducing rehabilitation demand, we apply the fabricated parameters that we
used for the simulation (listed in Fig. 5.11) to VITAL study outcome data obtained
with the AI.

Both importance (Inj) and difficulty (Dnj) ratings were obtained on AI Goals at
PRE and POST intervention in the VITAL study. Goal items were filtered out
(no difficulty rating elicited) if the Goal was rated “not important” (i.e., if Inj ¼ 0).
Using the simulated “as if” model specified in Fig. 5.11, importance and difficulty
ratings of each Goal for each patient at PRE and at POST were replaced with their
corresponding part worth utilities (numbers created for the simulation in the green
margins of Fig. 5.11). Next, as done for the simulation, the marginal utility of each
Goal for each patient at PRE and at POST was computed by taking the product of the
assigned part worth utilities. Finally, multi-attribute utilities of totally successful
rehabilitation (i.e., utility of reducing rehabilitation demand to zero) were estimated
for both PRE and POST intervention Goals for each patient using the Minkowski
distance with b¼ 2 (re. left panel of Fig. 5.2), an arbitrarily chosen value that results
in attenuation of utility growth with increasing numbers of Goals (the number of
Goals with non-zero utilities varied across patients from 2 to 40 at PRE [mean ¼ 16
and SD ¼ 7] and from 2 to 44 at POST [mean ¼ 15 and SD ¼ 9]).

In this hybrid simulation, there is no significant difference in rehabilitation
demand (multi-attribute utility) estimated between the BA and ST groups at PRE
(p ¼ 0.344) or at POST (p ¼ 0.405). However, this “as if” model does result in a
significant reduction in rehabilitation demand from PRE to POST for both groups



(p ¼ 1.27 � 10�5 for ST and p ¼ 0.00055 for BA). Figure 5.18 displays histograms
of net gains in the utility of vision rehabilitation outcomes (i.e., reductions in
rehabilitation demand) for the BA (red) and ST (black) groups. The inset in
Fig. 5.18 displays the two distributions as relative cumulative frequency functions.
These results would be interpreted as an average reduction in rehabilitation demand
of 0.53 (SD ¼ 1.42) for the BA group and 0.82 (SD ¼ 1.5) for the ST group. This
difference between groups, however, is not statistically significant (p ¼ 0.11).

5 An Adaptive Strategy for Measuring Patient-Reported Outcomes. . . 147

0%

2%

4%

6%

8%

10%

12%
Pe

rc
en

t o
f P

at
ie

nt
s

Utility of Low Vision Rehabilitation (Net Gain)

ST

BA

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

-5 -4 -3 -2 -1 0 1 2 3 4 5

Pe
rc

en
t o

f p
at

ie
nt

s

Utility of Low Vision Rehabilitation (Net Gain)

ST
BA

Fig. 5.18 Histogram of the distribution of outcomes of intervention in the VITAL study when the
outcome measure is estimated as the utility of rehabilitation demand reduction, estimated with the
hybrid (simulation and data) model, from intervention for the ST (black bars) and BA (red bars)
groups. Both groups exhibited a significant increase in the utility of visual ability outcomes
(decrease in rehabilitation demand). As shown by the cumulative distribution of the outcome
measures in the inset, the ST group (control intervention) had slightly better outcomes than did
the BA group (experimental intervention), but that difference is not statistically significant

5.5.4 Next Steps in the Development of Preference-Based
Patient-Centered Outcome Measures for Vision
Rehabilitation

The above estimates from AI Goal importance and difficulty ratings of multi-
attribute utilities representing rehabilitation demand are premature. They were
presented here as a demonstration of the next aim in the development of patient-
centered outcome measures that incorporate patient preferences. To achieve this aim
we ultimately must develop a valid method of estimating the importance of each AI
Goal on a continuous interval scale for each respondent (ιnj) that incorporates the
stochastic error distributions (Enj). We then must collect sufficient triadic comparison



data on a large sample representing the low vision patient population to map
continuous importance (ιnj) and difficulty (δnj) latent variables onto marginal utilities
and to define the utility function that maps the part worth utilities onto the total utility
for the Goal, υnj ¼ un(ιnj, δnj).
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Rasch analysis, or some variant of traditional Rasch analysis in the case of
importance ratings, must be used to measure the continuous latent variables (ιnj
and δnj) estimated from ordinal ratings of individual patients (Inj andDnj). It then will
be necessary to build a large database for a sample of the target low vision patient
population to estimate, validate, and anchor model algorithms and parameters for the
part worth utility, marginal utility for each Goal, and multi-attribute (rehabilitation
demand) utility functions. This theory-driven approach also can give us the tools to
identify, estimate, and ultimately understand stochastic and systematic deviations of
individual patients from the trends for the targeted population.

A theory-driven approach to the development of patient-centered outcome mea-
surements also promises to provide the tools needed for principled cost-benefit
analyses of specific interventions. The ultimate concern to the clinician when
assessing risks, costs, and benefits of intervention is the clinical outcome, including
adverse events, at a physiological (e.g., ocular pathology) and/or behavioral (e.g.,
visual impairment) level. The ultimate concern to the patient when assessing risks
and benefits of the same intervention is net gains and losses in her or his quality of
life, a multi-dimensional construct that ultimately is quantified as a personal multi-
attribute utility of the intervention. To facilitate communication between the patient
and clinician and thereby facilitate meaningful and ethical shared decision-making, it
is necessary to model the relationships between manifest variables observed by the
clinician (e.g., visual impairment measures) and latent variables observed by the
patient (e.g., visual ability), which we attempt to do with the conceptual (and
preliminary computational) model schematized in Fig. 5.7. The clinician has a
myriad of sophisticated tools to make objective measurements of publicly observ-
able variables. Rasch models provide us with the tools needed to make objective
measurements of latent variables that are observed privately by the patient. What we
need now is a rigorous psychophysics to build a crosswalk between the two worlds of
measurement by way of testable theories.
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