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Abstract Over the past few decades, scientific collaboration has been widely
considered an important driver of research innovation. By collaborating together,
scientists can benefit from both methodological and technological complementari-
ties and synergy, improving the quality and quantity of their research outputs. As
evidence of this, collaboration among scientists is increasing in all disciplines and
government policies in international exchange programs are aimed at promoting
collaboration among researchers. Collaboration among scientists can be represented
as a network, usually adopting co-authorship as linkages. In this view, Social
Network Analysis provides a useful theoretical and methodological approach
because collaboration features can be related to the topological characteristics of
the network. Recently, several empirical studies have found positive associations
between researchers’ position in the co-authorship network and their productivity,
although the results can be different depending on the discipline, scientific perfor-
mance measure, and data source retrieved to construct the co-authorship networks.
In this contribution, we propose the use of SNA tools for scientific evaluation
purposes. Network indices at the individual and subgroup levels will be introduced

D. De Stefano (�)
Department of Political and Social Sciences, University of Trieste, Trieste, Italy
e-mail: ddestefano@units.it

L. Kronegger
Faculty of Social Sciences, University of Ljubljana, Ljubljana, Slovenia
e-mail: luka.kronegger@fdv.uni-lj.si

V. Leone Sciabolazza
Department of Economics and Law, Sapienza University of Rome, Rome, Italy
e-mail: valerio.leonesciabolazza@uniroma1.it

M. P. Vitale
Department of Political and Social Studies, University of Salerno, Fisciano, Italy
e-mail: mvitale@unisa.it

S. Zaccarin
Department of Economics, Business, Mathematics and Statistics ‘B. de Finetti’, University of
Trieste, Trieste, Italy
e-mail: susanna.zaccarin@deams.units.it

© The Author(s) 2022
D. Checchi et al. (eds.), Teaching, Research and Academic Careers,
https://doi.org/10.1007/978-3-031-07438-7_7

165

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-07438-7_7&domain=pdf

 66 3018 a 66 3018 a
 
mailto:ddestefano@units.it

 66 3309 a 66 3309 a
 
mailto:luka.kronegger@fdv.uni-lj.si

 66 3599 a 66 3599 a
 
mailto:valerio.leonesciabolazza@uniroma1.it

 66 3890 a 66 3890 a
 
mailto:mvitale@unisa.it

 66 4263 a 66 4263 a
 
mailto:susanna.zaccarin@deams.units.it

 -151 4612 a -151 4612 a
 
https://doi.org/10.1007/978-3-031-07438-7_7


166 D. De Stefano et al.

to analyze the relation with both the individual research productivity and scientific
output quality measure provided by the Italian academic researchers involved in
VQR from the period 2011–2014.

1 Introduction

Over the past few decades, scientific collaboration has been considered an important
driver of research progress that supports researchers in generating novel ideas
(see, among others, Beaver 2001). The role of scientific collaboration has been
emphasized in recent government policies and international exchange programs that
aim at stimulating the mobility of researchers and fostering scientific collaboration
and productivity (Wuchty et al. 2007; Defazio et al. 2009; Leone Sciabolazza et al.
2020). Recently, university administrations and research funders have explored a
variety of programs and policies to stimulate interdisciplinary collaboration. Among
them, it is worth recalling the funding initiatives targeting: interdisciplinary projects,
such as the INSPIRE program of the US National Science Foundation (NSF),
the Interdisciplinary Research Consortia program of the US National Institutes
of Health (National Institute of Health 2007), the EU funding research network
(Commission of European Communities 2006), and the national Spanish Ingenio
2010 Program (Ministry of Education and Science 2006); interdisciplinary training
programs such as the NSF IntegrativeGraduate Education and Research Traineeship
(IGERT); and interdisciplinary university fellowship programs (Sà 2008). Scientific
collaboration has also been recognized as a key factor in measuring and evaluating
scholars’ scientific performance (Ferligoj et al. 2015; De Stefano & Zaccarin 2016).

Moving from this perspective, this chapter aims at presenting the main results
of the SnEval (Social Network tools for the Evaluation of individual and group
scientific performance) research project. The main contribution of the project was
to show novel results based on a network analysis on the ANVUR VQR data. The
proposed methodology can be adopted in future research evaluation exercises.

The analysis focuses on the co-authorship networks among academic scholars
in two research areas of the Italian university system, namely Area 2—Physics and
Area 13—Economics and Statistics. These areas have different characteristics in the
evaluation exercise. In particular, Area 2 is classified as a fully “bibliometric” area,1

that is, the majority of scientific products in the area are published in international
journals and bibliometric indicators (journal metrics and citations indicators) are
commonly used for evaluation purposes. Conversely, Area 13 is classified as a
“non-bibliometric” area. Although a few disciplines in this area are characterized
by bibliometric-like publication behavior, the evaluation of scientific products
is performed mainly by a peer-review process (or informed peer review where

1 In the Italian Evaluation exercise, scientific disciplines are divided into bibliometric and non-
bibliometric areas (however, each SSD has its own evaluation committee that can choose the
criteria on which the evaluation is performed).



Social Network Tools for the Evaluation of Individual and Group Scientific. . . 167

reviewers additionally take into account a number of bibliometric indicators). Co-
authorship information has been derived from the scientific products scholars in the
two areas submitted for the VQR exercise in the period 2011–2014. Co-authorship
networks were built at different levels of the official aggregations (macro-sectors
and meso-sectors or Settore concorsuale) of the disciplines2 belonging to the two
abovementioned areas in the VQR exercise period (see Sect. 4).

We then selected some of the most appropriate network indices—at the individual
and subgroup network levels—and some useful techniques (as described in Sect. 3)
to disentangle the different publication and collaboration styles characterizing the
two areas. These indices are used both to characterize the structure of the disciplines
and to look for their effect on the quality of the research outputs. More specifically,
we compared the different co-authorship networks by considering their topology
and authors’ position. This analysis is crucial to understand how the authors
are related and how the collaboration patterns change across time and between
disciplines. In particular, we considered the structural properties of the observed
networks and their local characteristics. Furthermore, we fitted a regression model
to provide empirical evidence of the relation between the network results, here at
the author and network levels, and the VQR scores at the individual level, the latter
representing the “dependent variables” in the model.

The results suggest that even in the Italian scenario, it would be worth fos-
tering intra and interdisciplinary collaboration to improve group and individual
productivity.We show how the proposed analytical tools can provide useful insights
on the co-authorship network topology and detect those researchers in certain
structural positions who can be the target of some network-based interventions (for
instance, in scale-free networks, few important nodes act as hubs). Furthermore, the
fitted models affirm that the researchers in a central position in the co-authorship
network are also those scholars whose performance is significantly higher than the
researchers in a more peripheral position.

2 Related Literature

Collaboration in science is a complex phenomenon that affects scientific productiv-
ity in various ways, as well as knowledge diffusion within and between disciplines.

It is straightforward to represent collaboration among scientists as a network, in
which the nodes are scholars tied by the various forms of scientific collaboration
among them. In this view, Social Network Analysis (SNA) (Wasserman & Faust
1994) provides a useful theoretical and methodological approach for studying
collaboration among these individuals. Because collaboration features can be related
to the network properties, this approach can help in the understanding of the
structure and the evolution of research collaboration over topics and time (Yan &

2 https://www.miur.gov.it/settori-concorsuali-e-settori-scientifico-disciplinari.
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Guns 2014), as well as to cluster researchers and determine research groups (see,
among others, Mali et al. 2012 and their related references).

Most of the empirical studies on scientific collaboration mainly refer to the
analysis of co-authorship networks, with co-authorship ties being used as a proxy of
scholars’ collaborative behavior (Ponomariov & Boardman 2016). The increasing
availability of electronic databases allows for good-quality data on co-authorship to
be collected in a relatively inexpensive way. Over the past few decades, several SNA
co-authorship studies have been carried out in various fields. Among them, seminal
papers can be found in Albert and Barabási (2002) and Newman (2004) for physics
and biomedical research, in Goyal et al. (2006) for economics, and in Moody (2004)
for sociology. More recently, Abel et al. (2019) investigated the driving factors
behind co-authorship both within and across institutions among demographers.
The common aims of these network-based studies were understanding of the
topological properties of networks and their implications for the evolution of topics
and methods. For instance, a “small-world” pattern (Watts 1999) can support
disciplinary fragmentation and specialty areas that are clustered into distinct groups
of scientists, mainly because of scientists’ research group membership, university
affiliations, or geographic proximity. On the contrary, a broad connectivity among
a large proportion of scientists can suggest theoretical integration, while more
centralized structures that are driven by few highly connected scientists (usually
called “stars”) can imply the existence of a peculiar tie formation mechanism
named “preferential attachment” (Albert & Barabási 2002). Clear evidence of the
presence of small-world properties has been observed in the fields of economics
(Goyal et al. 2006; Maggioni & Uberti 2011) and physics (Newman 2004). Physics,
mathematics, neurosciences (Albert & Barabási 2002), and economics (Goyal et al.
2006) have also shown statistical properties consistent with a preferential attachment
mechanism. Sociology is the one exception because it is better represented by an
integrated (cohesive) collaboration network structure resembling a random network
(Moody 2004).

Co-authorship networks can also be exploited to predict the scientific perfor-
mance of researchers, that is, evaluating the effect of actors’ embeddedness in
co-authorship networks and their individual research outputs (Abbasi et al. 2011).
Several empirical studies found positive correlations between researchers’ position
in the co-authorship network and their productivity (e.g., see Fischbach et al. 2011;
Abbasi et al. 2012; Uddin et al. 2013; Ferligoj et al. 2015), even if the results depend
on disciplines and by the measures used for scientific productivity or scientific
performance (Melin 2000; Lee & Bozeman 2005), as well as by the characteristics
of the data sources retrieved to construct the co-authorship networks (De Stefano &
Zaccarin 2016).

A myriad of studies also focuses on specific scientific communities at the country
level. Among them, see, for example, the contributions of Kronegger et al. (2012)
on Slovenian scientists, Digiampietri et al. (2017) on Brazilian PhDs working in
probability and statistics field, and Leone Sciabolazza et al. (2017) on researchers
hired at the University of Florida. In Italy, Maggioni and Uberti (2011) analyzed co-
authorship networks among academic economists, while De Stefano et al. (2013)
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and Fuccella et al. (2016) studied academic statisticians. Bellotti (2012) considered
the links among Italian physicists participating in funded national projects, and
Bellotti et al. (2016) extended the analysis to several disciplines in Italian academia.
Abramo et al. (2018) examined the collaboration behavior of stars and top scientists
among Italian academic scientists, while gender and academic rank differences in
collaborationwere analyzed, respectively, in Abramo et al. (2014) and Abramo et al.
(2019).

3 Basic Concepts on Networks

The basic notations and concepts to formally describe a co-authorship network in
the SNA context are presented below. Co-authorship data are extracted from a set
of authors and their papers and are arranged in an affiliation matrix that represents
a bipartite network (i.e., two-mode network).

Let N = {1, 2, . . . , n} be the set of n authors and P = {1, 2, . . . , p} the set of
p papers observed on n authors. An affiliation matrix A(n × p) author-by-paper is
defined with the elements aik , assuming a value of 1 if i ∈ N authored the paper
k ∈ P, and 0 otherwise. The co-authorship network is derived from the matrix
productY = AA′, which helps in defining the undirected and valued n×n adjacency
matrix (i.e., one-mode network)Y author-by-author. The element yij ofY is greater
than 0 if i, j ∈ N co-authored one or more papers in P, and yij = 0 otherwise. The
relations embedded inY can be represented by a graphG(N,L), that is, a collection
of a set N of nodes (authors in our case) connected by the set L of their links (co-
authorship relationships). The cardinality ofL is l = |L| = 1/2

∑
i

∑
j yij , ∀i �= j .

Several network statistics at the global and individual levels have been defined
both to describe the structural characteristics of G and to test the consistency of G

with theoretical network structures that have well-known topological features and
properties.

The most basic network statistics at the global level is the density �(G) =
2l/n(n − 1), which measures the cohesion of G. When �(G) ≈ 0, G is said to
be sparse. The network connectivity is described by the average path length �(G),
which is defined as the average number of links along the shortest paths (geodesic
distance �(i, j)) for all possible

(
n
2

)
pairs of nodes (Watts 1999). The largest �(i, j)

over all pairs of nodes is called the diameter of G. In the presence of disconnected
graphs, �(G) is computed on the so-called giant component, which is the largest
subgraph in terms of the number of reachable connected nodes (that is a path
connecting two randomly selected nodes).

Besides global network statistics, node-level centrality indices refer to the
position of each node (or actor) in the network according to various definitions
of “centrality”. The most used centrality measures are: degree, closeness, and
betweenness (Freeman 1979). The degree di of the i-th node is the basic one among
these measures. It expresses the number of links that i has with the other nodes
in the network. If di = 0, the node i is isolated; on the contrary, if di = n − 1
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(the maximum value for degree), the node is the most central one in terms of its
overall connectivity. In co-authorship networks, di indicates the number of distinct
co-authors of the i-th author. Denoting with σj,k = σk,j the number of shortest
paths from node j to k and with σj,k(i) the number of those shortest paths passing
through i, a further centrality measure is the so-called betweenness bi . This is
related to the bridging role of an actor and his/her potential to control the flow
of information or the exchange of resources (e.g., knowledge). The authors with
large betweenness values denote the propensity to connect otherwise disconnected
groups of researchers (e.g., connecting members of different labs or departments).
In general, in network studies, high betweenness is observed for the authors with
high interdisciplinary behavior.

Let Ni = {v : �(i, v) = 1} be the neighborhood of the i-th node, so that i /∈ Ni .
A measure of the overlap between the links of distinct nodes in Ni is the (local)
clustering coefficients (also called transitivity) (Fronczak et al. 2003) of the i-th
node: �i = |Li | /

(
di

2

)
, where |Li | is the total number of links in the subnetwork

Ni . The network clustering coefficient �(G) is defined as the average of the �i ,
∀i ∈ N. �(G) represents the average number of closed triplets of nodes (triangles)
in the network out of the total number of triads, that is, arbitrary connected (or
disconnected) triplets of nodes. Hence, this measure captures the extent to which
authors are embedded in cohesive clusters characterized by high collaboration.
High �(G) is a characteristic associated with the so-called small-world behavior
in networks.

Furthermore, following the procedure proposed by Albert et al. (2000), degree
centrality can also be used to analyze the extent to which most connected authors
(i.e., scientists with the highest degree centrality) are crucial for the connectivity
in the network. To this purpose, the consequences of deleting nodes at random and
nodes that are highly connected could also be investigated.

The interest in the analysis of co-authorship networks lies in the fact that col-
laborative behavior within a scientific community closely depends on the network
topological features. In particular, a frequent finding in co-authorship networks is
that they are consistent with some theoretical network models with well-defined
topological and relational properties, which have a meaningful interpretation in
terms of knowledge diffusion in specific discipline. The simplest network models
start with the idea that the connections between actors occur at random, as in the
Erdos–Renyi (ER) random graphs, a family of networks in which the probability of
a tie between actors’ pairs is equal to p, independently of the rest of the network
and actor neighborhood (i.e., actors do not have any preference to connect with
other nodes). This model represents the baseline model for assessing evidence of
non-random behaviors in the observed co-authorship networks.

Empirical evidence shows that co-authorship networks are usually nonrandom
because they tend to exhibit distinctive statistical properties deriving from peculiar
attachment mechanisms among authors. In particular, scale-free (Albert & Barabási
2002) and small-world (Watts 1999) configurations are the theoretical models that
most frequently emerge in a co-authorship analysis.
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Looking at the degree distribution, that is, the frequency distribution of the
number of co-authors per author, if a power law distribution is observed, then there
is evidence for the emergence of a scale-free structure in the network. This implies
the existence of a peculiar tie formation mechanism named preferential attachment,
which formally accounts for the tendency to interact with the best connected authors
(i.e., the authors with the highest degree, usually called stars or hubs). A strategy
to test if the degree distribution of the network is consistent with a power law
distribution is provided in Clauset et al. (2009). This strategy generates ER random
networks equivalent to the observed network to check the departure from the pure
randomness of the co-authorship network under study.

The small-world configuration, instead, describes the simultaneous presence
of dense local clustering (i.e., high value of a clustering coefficient) with short
network distances (i.e., shortest path length) that can facilitate knowledge flows
inside a network. In a co-authorship network, this means that there exist small
cohesive groups of researchers with few connections between them that strategically
reduce the overall distance among actors. Specifically, networks consistent with
this topology have high node connectivity with a low average distance among
regions of the network, that is, the average path length is not greater than the value
observed in random networks of equal size together with a high tendency toward
author clustering. Also, in small-world structures, the diameter is lower than the
one observed in ER graphs.

4 The VQR 2011–2014 Data

The data used in this analysis are bibliographic information (authors, co-authors,
and the quality of the paper according to the assigned VQR scores) derived from
the publications submitted by the academic researchers for the evaluation exercise
VQR 2011–2014, which assesses the quality of the scientific products published in
the period 2011–2014. According to the official governmental Italian classification,
scientific disciplines are classified in several research areas. For the VQR, these
areas are divided into bibliometric and non-bibliometric classes, depending on the
use of bibliometric indicators for the research quality assessment or the use of peer-
review mechanism, respectively). In particular, we analyze Area 2 (Physics) and
Area 13 (Economics and Statistics) scientific areas.

Area 2 comprises four macro-sectors: Physics of Fundamental Interactions
(02/A), Physics of Matter (02/B), Astronomy, Astrophysics Earth and Planetary
Physics, Applied Physics (02/C), and Physics Teaching and History of Physics
(02/D). Each macro-sector encompasses one or two meso-sectors. Meso-sector
02/C1 is associated with a unique micro-sector, while each of the remaining
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Table 1 Scientific areas 2 (Physics) and 13 (Economics and Statistics) and macro and meso-
sectors according to the official Italian classification

Area Macro-sector Meso-sector

Area 02 02/A Experimental Physics of Fundamental Interactions (02/A1)

Theoretical Physics of Fundamental Interactions (02/A2)

02/B Experimental Physics of Matter (02/B1)

Theoretical Physics of Matter (02/B2)

02/C Astronomy, Astrophysics Earth and Planetary Physics, Applied
Physics (02/C1)

02/D Physics Teaching and History of Physics (02/D1)

Area 13 13/A Economics (13/A1)

Economic Policy (13/A2)

Public Economics (13/A3)

Applied Economics (13/A4)

Econometrics (13/A5)

13/B Business Administration and Accounting Studies (13/B1)

Management (13/B2)

Organization and Human Resource Management (13/B3)

Financial Markets, Financial Institutions, and Corporate Finance
(13/B4)

Commodity Sciences (13/B5)

13/C Economic History (13/C1)

13/D Statistics (13/D1)

Economic Statistics (13/D2)

Demography and Social Statistics (13/D3)

Mathematical Methods of Economics, Finance and Actuarial
Studies (13/D4)

meso-sectors comprises two micro-sectors. This categorization is non-mutually
exclusive,meaning that a researcher can be affiliated with multiple micro- andmeso-
sectors.3

Similarly, Area 13 is composed of four macro-sectors: Economics (13/A),
Business Administration and Management (13/B), Economic History (13/C), and
Statistics and Mathematical Methods for Decisions (13/D). Also, in this case, each
macro-sector consists of one or more meso-sectors. The details of the classification
of both scientific areas and the corresponding macro and meso-sectors are reported
in Table 1

As a result of the evaluation, a VQR score on a 5-point scale, as shown in
Table 2, was assigned to each product submitted by the academic researchers. In

3 In particular, the researchers belonging to the SSD FIS/01 (experimental physics micro-sector)
are associated either to the 02/A1 or to the 02/B1 meso-sector. Since we have anonymized data,
we choose to allow for the 02/A1 (macro-sector 02/A) to include all members of the experimental
physics micro-sector.
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Table 2 Labels and associated numerical scores in the VQR 2011–2014 evaluation exercise

Label Score

Eccellente (excellent) 1

Elevato (high) 0.7

Discreto (fairly good) 0.4

Accettabile (acceptable) 0.1

Limitato o non valutabile (limited or not evaluable) 0

Table 3 Average VQR scores at the macro-sector level

Macro-sector VQR score (mean)

02/A 0.85

02/B 0.83

02/C 0.81

02/D 0.72

13/A 0.63

13/B 0.41

13/C 0.42

13/D 0.57

Note: For each macro-sector, we report the average VQR scores (see Table 2). The macro-sector
relative to the code is indicated in Sect. 4

Table 3, the average VQR scores for each analyzed macro-sectors are reported. We
can notice a slightly higher overall VQR performance of the physics macro-sectors
with respect to the economics and statistics macro-sectors. A transformation of such
scores, representing the “excellence” of the individual research outputs, will be used
as the dependent variable in the regression model illustrated in Sect. 5.4.

The co-authorship networks at different levels of aggregation (macro- and
meso-sectors) are built by retrieving all co-authors from the scientific production
submitted for the evaluation exercise. To this end, it is worth noting that, on
average, we observe two publications per author. In fact, in the VQR, each evaluated
researcher should submit at most two scientific products (however, some researchers
can appear as a co-author in a paper submitted by someone else). For this reason,
the co-authorship network under analysis is a sample of the overall co-authorship
networks among Area 2 and Area 13 researchers. Despite this limitation, we
can consider these co-authorship networks as determined by the most significant
production according to each researcher’s auto-evaluation.

4.1 Co-authorship Networks

For each macro- and meso-sector considered, we create a co-authorship network,
where each node indicates a researcher involved in the VQR exercise, and a link
registers the presence and intensity of the collaboration between the two of them.
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Table 4 Areas 2 and 13 macro-sectors—descriptive table

Macro-sector 02/A 02/B 02/C 02/D 13/A 13/B 13/C 13/D

Number of nodes 389 523 580 87 227 552 542 36

Number of edges 194 278 329 35 3 110 184 2

Density*1000 1.3 1.0 1.0 4.6 0.1 0.4 0.6 1.5

Nodes making up to 50% of collaborations 21 28 36 9 1 25 24 1

Nodes making up to 90% of collaborations 46 60 78 16 2 53 56 2

Degree—average 1 1.06 1.13 0.8 0.03 0.4 0.68 0.11

Degree—standard deviation 1.29 1.42 1.35 0.82 0.19 0.65 1.02 0.32

Giant component—size 12 10 12 5 3 5 14 2

Giant component—percentage 3% 2% 2% 6% 1% 1% 3% 6%

Isolated authors—number 182 258 247 38 222 378 311 32

Isolated authors—percentage 47% 49% 43% 44% 98% 68% 57% 89%

Clustering coefficient in giant component 0.56 0.58 0.56 0 0 0.6 0.57 0

Distance in giant component: average 4.5 3.76 3.85 3.2 1.33 2.2 3.15 2

Distance in giant component: standard 2.44 2.04 2.07 1.82 0.52 1.01 1.86 0

deviation

Note: For each macro-sector network, indicated with its relative code (in columns), we report a
number of descriptive metrics. For a precise definition of metrics, refer to Sect. 3. The macro-
sector relative to a code is indicated in Sect. 4

Intensity is proxied by the number of times two researchers co-authored a paper
together.

Table 4 summarizes the main characteristics of the co-authorship networks at the
macro-sector level. Networks are often composed of more than 500 authors (the
number of nodes), who are linked by rare collaborations among them. The average
number of co-authors of a scientist (i.e., degree centrality) is either zero or one, and
the density of the network is in the order of 10−3.

The number of scientists involved in a collaboration is extremely small in each
macro-sector; hence, it is plausible to expect that the circulation of knowledge and
information is relatively limited. In all networks, 90% of the collaborations are
activated by no more than 80 researchers, and at least 40% of the researchers are
isolated. Moreover, most of the collaborations occur within small components, that
is, a set of authors directly or indirectly connected among them. In fact, the density
× 1000 is barely larger than 1 for most cases. The denser network is the macro-
sector 02/D (physics teaching and history of physics). The giant component (largest
component) in each network never comprises more than 6% of the total number of
nodes. This suggests that the diffusion of information among connected scientists
is likely to become rapidly redundant. Notably, however, the low propensity to
collaboration is higher in Area 13 than in Area 2.

A similar picture emerges when considering the statistics relative to the networks
of collaborations at the meso-level sectors, which are reported in Table 5. Density
and degree centrality are extremely low in each meso-sector, and most of the authors



Table 5 Areas 2 and 13 meso-sectors—descriptive table

Meso-sector 02/A1 02/A2 02/B1 02/B2 02/C1 02/D1 13/A1

Number of nodes 389 392 165 358 222 87 89

Number of edges 194 259 25 226 53 35 3

Density*1000 1.28 1.69 0.92 1.76 1.08 4.62 0.38

Nodes making up to 50% of collaborations 21 25 6 23 9 9 1

Nodes making up to 90% of collaborations 46 55 15 51 21 16 2

Degree—average 1 1.32 0.3 1.26 0.48 0.8 0.07

Degree—standard deviation 1.29 1.52 0.57 1.44 0.77 0.82 0.29

Giant component—size 12 10 5 10 6 5 3

Giant component—percentage 3% 3% 3% 3% 3% 6% 3%

Isolated authors—number 182 156 123 143 143 38 84

Isolated authors—percentage 47% 40% 75% 40% 64% 44% 94%

Clustering coefficient in giant component 0.56 0.58 0.5 0.58 0.56 0 0

Distance in giant component: average 4.5 3.76 2.1 3.76 2.4 3.2 1.33

Distance in giant component: standard deviation 2.44 2.04 0.97 2.04 1.1 1.82 0.52

Meso-sector 13/A2 13/A3 13/A4 13/A5 13/B1 13/B2 13/B3

Number of nodes 317 121 50 51 13 214 198

Number of edges 47 13 7 9 1 49 79

Density*1000 0.47 0.89 2.80 3.46 5.92 1.07 2.02

Nodes making up to 50% of collaborations 12 4 3 5 1 9 12

Nodes making up to 90% of collaborations 29 8 6 9 1 19 26

Degree—average 0.3 0.21 0.28 0.35 0.15 0.46 0.8

Degree—standard deviation 0.55 0.49 0.5 0.48 0.38 0.77 0.99

Giant component—size 4 3 3 2 2 9 6

Giant component—percentage 1% 2% 6% 4% 15% 4% 3%

Isolated authors—number 237 99 37 33 11 142 94

Isolated authors—percentage 75% 82% 74% 65% 85% 66% 47%

Clustering coefficient in giant component 0.6 1 0 0 0 0.19 0.75

Distance in giant component: average 1.33 5.33 2.67 1 1 2.67 2.2

Distance in giant component: standard deviation 0.49 0.52 1.37 0 0 1.03 1.3

Meso-sector 13/B4 13/B5 13/C1 13/D1 13/D2 13/D3 13/D4

Number of nodes 50 55 25 36 172 32 17

Number of edges 17 9 9 2 56 7 2

Density*1000 6.80 2.98 14.40 1.54 1.89 6.84 6.92

Nodes making up to 50% of collaborations 2 3 3 1 12 2 1

Nodes making up to 90% of collaborations 4 5 5 2 23 4 2

Degree—average 0.68 0.33 0.72 0.11 0.65 0.44 0.24

Degree—standard deviation 1.17 0.67 0.79 0.32 0.81 0.67 0.44

Giant component—size 6 3 3 2 5 5 2

Giant component—percentage 12% 5% 12% 6% 3% 16% 12%

Isolated authors—number 30 43 12 32 91 21 13

Isolated authors—percentage 60% 78% 48% 89% 53% 66% 76%

Clustering coefficient in giant component 0.75 1 0 0 0 0 0

Distance in giant component: average 1.93 1.33 1.33 2 2.6 2.4 1

Distance in giant component: standard deviation 0.78 0.52 0.52 0 1.39 1.31 0

Note: For each meso-sector network, indicated with its relative code (in columns), we report a number of
descriptive metrics. For a precise definition of metrics refer to Sect. 3. The meso-sector relative to a code
is indicated in Sect. 4
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are either isolated or embedded in a very small number of components. Also, in this
case, scientists from Area 13 show the smallest propensity to collaborate.

The comparison between the largest components of the networks of area 13 and
area 2 shed some light on the different behaviors of the researchers in these two
areas. At the macro level, scientists in Area 2 tend to share a higher number of
collaborators with respect to the scientists in Area 13, as shown by their highest
clustering coefficient. However, we observe the opposite when considering networks
at the meso-level: scientists fromArea 13 feature a higher number of co-authorswith
respect to their colleagues from Area 2. This suggests that the scientists from Area
2 are more inclined to activate collaborations across meso-sectors, while those from
Area 13 are more prone to work with those belonging to their own meso-sector.

5 Network Analysis Results

In this section, we investigate the main features of the largest components of the
networks, both at the macro- and at the meso-levels, to infer some relevant insights
into the co-authorship behavior of the scientists considered in the current study.

5.1 Analysis at the Global Level

We begin by investigating the overall architecture of the networks’ largest com-
ponent, with the aim of finding evidence of specific model of interactions among
scientists.

First, we find that scientists tend to form dense collaborations in the largest
components, and many of them share one or more collaborators: that is, they feature
a relatively high clustering coefficient. In Table 6, we compare this metric with that
obtained from equivalent random (ER) networks, where macro-sector collaborations
are formed by chance. We find that the clustering coefficient registered in the
actual networks (CgC) is always higher than that observed in simulated networks
(Crand ). This is not surprising, and it is consistent with the fact that the scientists
did not activate collaborations at random. On the contrary, scientists tend to choose
a new collaborator among those already in contact with one of their co-authors,
thus creating groups of collaborations presumably focused on a specific field of
research, where skills are likely to be compatible.4 The same behavior is observed
when considering the networks at the meso- level, as reported in Table 7.

Second, we observe that the transmission of information among groups of
scientists in the same component tends to be rather inefficient. This can be inferred

4 It is worth noting that this behavior improves the chances to find new trusted collaborators, and
it decreases screening costs.
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by comparing the actual value of average path length (LgC) with that registered
in ERs (Lrand ). In most cases, the distance among nodes which are linked by the
relations formed at random in ERs, is lower than that among the nodes connected
by actual relations. It follows that scientists tend to interact in small groups, being
clumped into different and distant areas, even when embedded in the same largest
component. However, this is not always the case. A more efficient configuration of
the distance among nodes, similar to that observed in ERs, is observed in macro-
sectors 13/B and 13/C (Table 6) and meso-sectors 02/B1, 02/C1, 13/A2, 13/B2,
13/B4, 13/B5, 13/C1, and 13/D2 (Table 7).

Taken together, our results point to the presence of a specific model of interaction
for researchers in some sectors. When the clustering coefficient is higher than that
registered in ERs, that is, some sort of specialized collaborations emerge among
groups of scientists, and the distance between scientists is similar to that observed
in ER, which means that the diffusion of information is relatively fast, we then
find evidence for small-world behavior: a peculiar network structure with unique
properties of local specialization and efficient information transfer. Such small-
world behavior seems to be compatible with all networks found with a high value of
average path length: that is, macro-sectors 13/B and 13/C and meso-sectors 02/B1,
02/C1, 13/A2, 13/B2, 13/B4, 13/B5, 13/C1, and 13/D2. The researchers affiliated
with these sectors can rely on the fast and efficient exchange of information with
their colleagues because of the network structure in which they are embedded.
Overall, it seems that the researchers in Area 13 tend to interact more according
to this mechanism with respect to researchers affiliated to Area 2.

Finally, we focus on the degree distribution of large components. In particular, we
are interested in finding evidence in favor of or against a power law distribution with
the parameter α ranging between 2 and 3 (for more details, see Albert & Barabási
2002; Clauset et al. 2009). When this is the case, the authors follow a preferential
attachment behavior, that is, scientists prefer to activate collaborations with those
who already have many collaborations in place and who are pivotal in their sector.
By looking at Tables 6 and 7, almost none of the network degree distributions fit
with a true power law distribution in the macro-sectors and meso-sectors. The only
exception is the network of those affiliated with meso-sector 13/B5, for which there
is evidence of a preferential attachment behavior.

5.2 Analysis at the Local Level: Centrality Measures

We now turn to an analysis of the centrality measures (Freeman 1979) associated
with the largest component of the networks. In particular, we focus on the relation
between (i) degree centrality vs betweenness centrality and (ii) degree centrality vs
the clustering coefficient (or local transitivity).

When the degree centrality is positively correlated with both betweenness
centrality and the clustering coefficient, the network features a core-periphery
structure where nodes located at the core of the subnetwork are densely connected
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with one another (high degree centrality), acting as brokers (high betweenness) for
the nodes situated at the periphery of the network. A core-periphery structure points
to an uneven exposure to information among researchers: only those located at the
core of the network can easily access to new information, while those located at the
periphery tend to be excluded from the process of knowledge diffusion.

By contrast, when degree centrality is positively correlated with betweenness
centrality and negatively correlated with the clustering coefficient, we say that the
network has a structure similar to that of interlinked stars: few researchers play
the role of a hub (high betweenness centrality) for others who are loosely connected
with each other (low clustering coefficient). In this case, the diffusion of information
becomes problematic. Most researchers will rely on a small number of colleagues
to access knowledge produced in different areas of the networks. In other words, a
small number of scientists act as information gatekeepers in these networks because
the diffusion of knowledge heavily depends on the extent to which they are prone
to receive new information from one part of the network and transmit it to different
parts.

The analysis of the correlation between centrality measures is summarized in
Tables 6 and 7. We observe that many of the largest components feature a core-
periphery structure (02/A, 02/B, 13/B, 13/C) at the macro-level, and only macro-
sector 02/C is characterized by relations arranged like interlinked stars. Moreover,
no clear structure arises for the largest component of macro-area 02/D. As for meso-
sectors, we detect the presence of a core-periphery structure in more than 60% of
the giant components (meso-sectors 02/A1, 02/A2, 02/B1, 02/B2, 02/C1, 13/A2,
13/B2, 13/B3, and 13/B4).

5.3 Network Attack

Next, we test the resilience of the networks’ architecture in macro-sectors by
simulating different breakdown scenarios. Specifically, this is done by looking at
global changes in the network topology after deleting 5% of the nodes. The results
of our simulations for the macro-level networks are presented in Table 8.

The first row of the table indicates the number of components generated after
deleting random nodes in the network. The third row reports the same statistics
when attacking the topmost connected nodes (i.e., those with the highest degree
centrality). The second and fourth rows report the ratio between the number of
nodes in the giant component before and after the attack, respectively, when this
is random or targeted. We see that by targeting random nodes, giant components
remain substantially unaltered. By contrast, when an attack is targeted, the giant
components of macro-sectors 02/A, 02/B, and 02/C lose 50% of the nodes. This
is somewhat similar to what happens to macro-sector 13/B. This means that the
topmost connected scientists in these networks are almost all embedded in the giant
component, and they play a crucial role in sustaining the core of the collaborations
in the macro-sectors. Even stronger is the effect in macro-sector 13/C, where the
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Table 8 Areas 2 and 13 macro-sectors—network attack

Macro-sector 02/A 02/B 02/C 02/D 13/B 13/C

Number of generated components—random 237 331 351 56 435 379

Giant component (after/before)—random 1.00 0.90 0.92 1.00 1.00 1.00

Number of generated components—target 266 353 368 59 463 407

Giant component (after/before)—target 0.50 0.50 0.50 1.00 0.60 0.29

Note: For each macro-sector network, indicated with its relative code (in columns), we report the
number of components generated after deleting 5% of random nodes in the network (first row),
and the ratio between the number of nodes in the giant component isolated after node deletion
(second row), the number of components generated after deleting 5% of topmost connected nodes
in the network (third row), and the ratio between the number of nodes in the giant component
isolated after node deletion (fourth row). For a more detailed description of this procedure, refer
to Sect. 5.3. The macro-sector relative to a code is indicated in Sect. 4

giant component loses about 70% of its members. Interestingly, there is no effect in
macro-sector 02/D. This suggests that most collaborative scientists in this network
are not embedded in the giant component; instead they work separately from the
area where most researchers are involved.

The effect of random failures is less drastic than that produced by a targeted
attack when evaluating the number of components generated by our simulations.
The latter attacks consistently produce a higher number of components. This
suggests that scientists benefiting from the diffusion of information channeled
throughout network components heavily rely on the presence of the topmost
connected authors.

The results remain substantially unchanged when testing the same effect at the
meso-level, as reported in Table 9. Most meso-sectors rely on the topmost connected
authors for the general connectivity of their networks.

Our findings hint to some policy indications: for example, replacing an eminent
scientist collaborating with many laboratories (e.g., a node with high degree
centrality) may compromise the chances of his/her colleagues rapidly finding in both
macro- and meso-level networks new collaborators outside their research group or
to access new information. In fact, by removing him/her from the network, his/her
collaborators will remain isolated in small components with no direct or indirect
connections to colleagues located in different zones of the network.

5.4 Co-authorship Networks and Scientific Performance: A
Regression Analysis

In this section, we provide some insights into the relation between individual
researchers’ network position and their average VQR scores as obtained by the
evaluation of the papers they submitted for the evaluation exercise in 2011–2014.
We carry out a linear regression analysis where the dependent variable is the
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Table 9 Areas 2 and 13 meso-sectors—network attack

Meso-sector 02/A1 02/A2 02/B1 02/B2 02/C1 02/D1 13/A2

Number of generated components—random 237 226 134 203 169 56 261

Giant component (after/before)—random 1 0.90 1 1 1 1 1

Number of generated components—target 266 236 141 220 181 59 275

Giant component (after/before)—target 0.50 0.80 0.40 0.50 0.50 1.00 0.50

Meso-sector 13/A3 13/B2 13/B3 13/B4 13/B5 13/C1 13/D2

Number of generated components—random 104 161 129 38 45 17 119

Giant component (after/before)—random 1 1 1 1 1 1 1

Number of generated components—target 109 177 140 39 48 18 124

Giant component (after/before)—target 0.67 0.33 0.50 0.50 0.67 1.00 0.80

Note: For each meso-sector network, indicated with its relative code (in columns), we report the
number of components generated after deleting 5% of random nodes in the network (first row),
and the ratio between the number of nodes in the giant component isolated after node deletion
(second row), the number of components generated after deleting 5% of topmost connected nodes
in the network (third row), and the ratio between the number of nodes in the giant component
isolated after node deletion (fourth row). For a more detailed description of this procedure, refer
to Sect. 5.3. The meso-sector relative to a code is indicated in Sect. 4

Table 10 Distribution of researchers according to scientific area

Area Frequency

13 (Economics and statistics) 1268

02 (Physics) 892

Table 11 Distribution of researchers according to their gender

Gender Frequency

Female (F) 513

Male (M) 1647

“excellence” measure (VQR scores) of researchers active in physics or economics
and covariates represented by some of the available individual characteristics and
individual network indices. In particular, as individual characteristics, we used
the scientific areas (physics and economics and statistics, the latter treated as a
reference category), gender (female as the reference category), and geographic
location of the university to which researchers were affiliated (S, Southern Italy,
I, Islands, NE, North-Eastern Italy, NO, North-Western Italy, and C, Central Italy,
this latter considered as reference category). The distribution of such covariates is
reported in Tables 10, 11, and 12, respectively. As far as the individual network
indices are concerned, we adopted the centrality measures defined in Sect. 3, namely
node degree, betweenness, and transitivity (i.e., clustering coefficient). The variable
excellence of the authors is the average VQR score of the authors’ papers. As
already stated, the VQR score is a 5-point scale with the scores reported in Table 2
and described in Sect. 4. In this analysis, we used the scores in Table 2 to compute
the average VQR evaluation for each author. In Fig. 1, we depict the distribution of
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Table 12 Distribution of researchers according to geographic location of their hiring university

Geographic location Frequency

Central Italy (C) 520

Islands (I) 159

North-Eastern Italy (NE) 472

North-Western Italy (NO) 568

Southern Italy (S) 441

Fig. 1 Histogram of log(excellence). 19 researchers with an overall excellence value equal to 0
are excluded

the log transform of the excellence variable that we used as dependent variable in
the regression model.

One of the distinct properties of several network characteristics measured on
the level of researchers is their asymmetric distribution. A specific feature of the
analyzed network is its high level of fragmentation with a large number of small
components and isolates, hence preventing the calculation of network statistics for
some of the units.

To meet the assumptions of the regression analysis, the network-based vari-
ables included in the model were categorized. Transitivity and betweenness were
dichotomized into categories indicating zero and nonzero values; degree (number of
connections) was categorized into three categories (0, 1–10, and 11–66) indicating
degree centrality of the researchers.
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Model and Interpretation
Model results are reported in Table 13. It can be noted that gender differences have
no significant effect on scientific performance; this means that after controlling for
the geographical area and network characteristics of the researchers, the gender
gap is not present in the analyzed scientific areas, differently from other studies
(Aksnes et al. 2019). Moving to the geographic location, the model assumes
universities located in Central Italy a reference category (baseline). The category
indicating researchers working in universities in North-Eastern Italy has negative
and significant effect, so their performance is significantly lower than Central Italy.
No significant differences are found among Central, Islands, South, and North-
Western Italy.

As can be noted from the Physics coefficient value, the authors in the physics area
have higher performance than the authors in economics and statistics area (baseline
category of Physics).

For the network indices of co-authorship network, the authors are more likely
to achieve a higher VQR score if they have a greater degree and betweenness
higher than 0. The same holds for transitivity as an indicator of working in clustered
research groups. This shows that working with several co-authors (high degree) and
being part of multiple clustered research groups (high betweenness) matter in terms
of successful research.

The differences between disciplines become even higher when the authors have
between 1 and 10 co-authors (estimated parameter of the interaction effect between
Physics and Degree[1,10)), which means that highly central researchers are more
successful in a bibliometric discipline, likewise physics macro-sectors. Above this

Table 13 Regression model estimates and fit

Dependent variable

log (Excellence)

Estimate Std. Error t-value Pr(> |t|)
(Intercept) 0.456 ∗ ∗∗ 0.0378 12.06 0.0000

Gender (male) −0.004 0.0298 −0.14 0.8852

Geographic area (Islands) 0.004 0.0522 0.07 0.9454

Geographic area (North-East) −0.101 ∗ ∗∗ 0.0368 −2.74 0.0062

Geographic area (North-West) −0.037 0.0352 −1.06 0.2901

Geographic area (South) 0.009 0.0375 0.25 0.8030

Physics 0.114 ∗ ∗∗ 0.0358 3.19 0.0015

Transitivity 0.101 ∗ ∗ 0.0455 2.23 0.0259

Degree[1,10) 0.292 ∗ ∗∗ 0.0349 8.35 0.0000

Degree[10,66] 0.830 ∗ ∗∗ 0.1895 4.38 0.0000

Betweenness 0.289 ∗ ∗∗ 0.0531 5.44 0.0000

Physics:degree[1,10) 0.110 ∗ ∗ 0.0535 2.06 0.0396

Physics:degree[10,66] 0.317 0.1946 1.63 0.1035

Note: ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01
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threshold (so for very high degree values), the effect of the number of co-authors on
performance is positive on average, independently on the scientific area. This latter
effect is in line with previous findings (Abbasi et al. 2011; De Stefano & Zaccarin
2016; Lee & Bozeman 2005) and shows that having high number of different co-
authors can lead to positive effects on scholars’ scientific performance in different
fields.

6 Concluding Remarks

The present chapter illustrated the use of SNA tools for co-authorship in the context
of the Italian research evaluation exercise that ran from 2011 to 2014. In particular,
we analyzed the results at the different network levels (global, subgroup, and
individual actor levels), here considering their relations with the performance of
researchers. The analysis is in line with the literature on scientific collaboration. In
fact, research collaboration is often reported as a driver of scientific quality and
productivity (Abbasi et al. 2011). For this reason, the analysis of collaboration
and co-authorship networks provides essential information for the design of many
academic policies. An in-depth understanding of the interactions among scientists
provides useful insights into the conditions underlying creativity and genesis of
scientific discovery, and it may provide information on new tools and policies that
have the potential to accelerate science (Fortunato et al. 2010). This is particularly
relevant when considering the interdisciplinary fields required to tackle complex
problems in innovative ways and bridge disciplinary silos, such as the fight against
climate change or the current COVID-19 crisis. The study of collaboration networks
can also be leveraged to provide scientists with access to new and non-redundant
information allowing them to engage in more innovative studies. For this reason,
the researchers have been progressively stimulated by new policies to activate new
forms of collaboration and improve their position in the co-authorship network. For
instance, this is the case of scientific policies providing research funding condi-
tional on the activation of a new intellectual collaboration or the case of internal
department tenure policies that require candidates to have a minimum amount of
publications but that do not fully discount articles by the number of authors (see
Ductor 2015 for a recent discussion). Knowledge of one’s collaboration network
is also an essential tool to forecast one’s future research output and productivity
(Ductor et al. 2014); therefore, it provides crucial information for conducting
good recruitment in a department and hiring talented researchers. Moreover, the
structure of scientific collaboration networks is a powerful source of information
on the dependence of a research team from the presence of so-called academic
stars (Azoulay et al. 2010; Waldinger 2010). Therefore, this finding provides useful
suggestions to design a system of incentives for “superstar” scholars to (i) remain in
the university and maintain an efficient network of collaborations and (ii) increase
the involvement of their collaborators in research projects, to reduce the dependency
of the overall network from their own work. Finally, collaboration networks are
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important predictors of the level of peer pressure suffered by an individual; this
can be altered to improve a scientist’s working environment and correct undesired
situations, such as the presence of gender or other kinds of disparities (Lindenlaub
& Prummer 2021). The results presented in the work, despite being retrieved from
a small sample of publications of scholars in specific areas, suggest that even in the
Italian scenario, it would be worth fostering intra and interdisciplinary collaboration
to improve group and individual scientific productivity and performance. This is
especially true based on the insights on the importance of a network position
in producing quality research outputs. To perform this task and introducing new
policies in this direction, comprehensive knowledge of the network structure in
disciplines is crucial. The understanding of network patterns by means of the
tools presented can guide in the detection of those researchers in certain structural
position who may be the target of some network-based interventions (e.g., scale-free
networks because the one observed on meso-sector 13/B5 relies on few important
nodes acting as hubs). We believe that the results are promising, but we think that
a future analysis would benefit from the availability of richer datasets containing
a larger set of individual publication records for retrieving a more comprehensive
co-authorship network.
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Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.
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