Skip to main content

In-Process Monitoring of Surface Roughness of Internal Channels Using

  • Conference paper
  • First Online:
European Workshop on Structural Health Monitoring (EWSHM 2022)

Part of the book series: Lecture Notes in Civil Engineering ((LNCE,volume 270))

Included in the following conference series:

  • 1903 Accesses

Abstract

Additively manufactured (AM) parts generally have a higher surface roughness than parts manufactured using conventional methods. In most applications, a smooth surface finishing is preferred since rough surfaces are prone to corrosion attacks and fatigue crack incubation. Therefore, surface finishing is necessary to reduce the surface roughness of AM parts before they are used. The roughness of outer surfaces can be measured directly, using either contact stylus profilometer or non-contact optical microscope. However, there are still challenges to quantify the roughness of the internal surfaces using these conventional techniques of surface metrology. In this paper, we present a method to measure the roughness of internal channels by analyzing ultrasonic signals from the backwall reflection. A frequency-domain technique based on phase-screen approximation is used to reconstruct the root mean square (\(R_{q}\)) value from the ultrasonic signal scattered from the rough surfaces. Finite element simulations are developed to demonstrate the method, showing excellent accuracy when the \(R_{q}\) value is within 1/15 of the wavelength of the incident ultrasound. The method is then applied to monitor the surface roughness of the internal channels during the Abrasive Flow Machining (AFM) process. The reconstructed roughness value shows a clear and steady downward trend during the polishing process, quantitatively indicating the polishing rate. This demonstrates that such ultrasonic method can be used as a tool to provide feedback controls in the polishing process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chan, K.S., Koike, M., Mason, R.L., Okabe, T.: Fatigue life of titanium alloys fabricated by additive layer manufacturing techniques for dental implants. Metall Mater Trans A 44(2), 1010–1022 (2013). https://doi.org/10.1007/s11661-012-1470-4

    Article  Google Scholar 

  2. Vayssette, B., Saintier, N., Brugger, C., Elmay, M., Pessard, E.: Surface roughness of Ti-6Al-4V parts obtained by SLM and EBM: effect on the high cycle fatigue life. Procedia Eng. 213, 89–97 (2018). https://doi.org/10.1016/j.proeng.2018.02.010

    Article  Google Scholar 

  3. Blessing, G.V., Eitzen, D.G.: Ultrasonic measurements of surface roughness. In: Nondestructive Characterization of Materials, Saarbrücken, pp. 763–770 (1989). https://doi.org/10.1007/978-3-642-84003-6_88

  4. Saniman, M.N.F., Ihara, I.: Application of air-coupled ultrasound to noncontact evaluation of paper surface roughness. J. Phys. Conf. Ser. 520, 012016 (2014). https://doi.org/10.1088/1742-6596/520/1/012016

  5. Stor-Pellinen, J., Haeggström, E., Karppinen, T., Luukkala, M.: Air-coupled ultrasonic measurement of the change in roughness of paper during wetting. Meas. Sci. Technol. 12(8), 1336–1341 (2001). https://doi.org/10.1088/0957-0233/12/8/348

    Article  Google Scholar 

  6. Stor-Pellinen, J., Luukkala, M.: Paper roughness measurement using airborne ultrasound. Sens. Actuators A 49(1), 37–40 (1995). https://doi.org/10.1016/0924-4247(95)01011-4

    Article  Google Scholar 

  7. Chimenti, D.E.: Review of air-coupled ultrasonic materials characterization. Ultrasonics 54(7), 1804–1816 (2014). https://doi.org/10.1016/j.ultras.2014.02.006

    Article  Google Scholar 

  8. Blessing, G., Slotwinski, J., Eitzen, D., Ryan, H.: Ultrasonic measurements of surface roughness. Appl. Optics 32(19), 3433–3437 (1993). https://doi.org/10.1364/AO.32.003433

    Article  Google Scholar 

  9. Smith, R.A., Bruce, D.A.: Pulsed ultrasonic spectroscopy for roughness measurement of hidden corroded surfaces. Insight Non-Destruct. Test. Cond. Monit. 43(3), 168–172 (2001)

    Google Scholar 

  10. Ultrasonic spectroscopy using a rapid sweep technique. In: Presented at the 16th WCNDT 2004 - World Conference on NDT, Montreal, Canada (2004). Accessed 11 Sept 2021. https://www.ndt.net/article/wcndt2004/html/general_nde/543_buckley/543_buckley.htm

  11. Sukmana, D.D., Ihara, I.: Surface roughness characterization through the use of diffuse component of scattered air-coupled ultrasound. Jpn. J. Appl. Phys. 45(5S), 4534 (2006). https://doi.org/10.1143/JJAP.45.4534

    Article  Google Scholar 

  12. Wilhjelm, J.E., Pedersen, P.C., Jacobsen, S.M.: The influence of roughness, angle, range, and transducer type on the echo signal from planar interfaces. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48(2), 511–521 (2001). https://doi.org/10.1109/58.911734

    Article  Google Scholar 

  13. Adler, R.S., et al.: Quantitative assessment of cartilage surface roughness in osteoarthritis using high frequency ultrasound. Ultrasound Med. Biol. 18(1), 51–58 (1992). https://doi.org/10.1016/0301-5629(92)90008-X

    Article  Google Scholar 

  14. Chiang, E.H., Adler, R.S., Meyer, C.R., Rubin, J.M., Dedrick, D.K., Laing, T.J.: Quantitative assessment of surface roughness using backscattered ultrasound: The effects of finite surface curvature. Ultrasound Med. Biol. 20(2), 123–135 (1994). https://doi.org/10.1016/0301-5629(94)90077-9

    Article  Google Scholar 

  15. Shi, F., Lowe, M.J.S., Craster, R.V.: Recovery of correlation function of internal random rough surfaces from diffusely scattered elastic waves. J. Mech. Phys. Solids 99, 483–494 (2017). https://doi.org/10.1016/j.jmps.2016.11.003

    Article  MathSciNet  Google Scholar 

  16. Gunarathne, G.P.P., Christidis, K.: Measurements of surface texture using ultrasound. IEEE Trans. Instrum. Meas. 50(5), 1144–1148 (2001). https://doi.org/10.1109/19.963174

    Article  Google Scholar 

  17. Nagy, P.B., Rose, J.H.: Surface roughness and the ultrasonic detection of subsurface scatterers. J. Appl. Phys. 73(2), 566–580 (1993). https://doi.org/10.1063/1.353366

    Article  Google Scholar 

  18. Bhattacharjee, A., Pilchak, A.L., Lobkis, O.I., Foltz, J.W., Rokhlin, S.I., Williams, J.C.: Correlating ultrasonic attenuation and microtexture in a near-alpha titanium alloy. Metall. Mater. Trans. A 42(8), 2358–2372 (2011). https://doi.org/10.1007/s11661-011-0619-x

    Article  Google Scholar 

  19. Garcia, N., Stoll, E.: Monte Carlo calculation for electromagnetic-wave scattering from random rough surfaces. Phys. Rev. Lett. 52(20), 1798–1801 (1984). https://doi.org/10.1103/PhysRevLett.52.1798

    Article  Google Scholar 

  20. Huthwaite, P.: Accelerated finite element elastodynamic simulations using the GPU. J. Comput. Phys. 257, 687–707 (2014). https://doi.org/10.1016/j.jcp.2013.10.017

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Fan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sun, Z., Zuo, P., Pavlovic, M., Ang, Y.F., Fan, Z. (2023). In-Process Monitoring of Surface Roughness of Internal Channels Using. In: Rizzo, P., Milazzo, A. (eds) European Workshop on Structural Health Monitoring. EWSHM 2022. Lecture Notes in Civil Engineering, vol 270. Springer, Cham. https://doi.org/10.1007/978-3-031-07322-9_78

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07322-9_78

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07321-2

  • Online ISBN: 978-3-031-07322-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics